27
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR) (19) EP 1 005 656 B1 TEPZZ_ZZ5656B_T (11) EP 1 005 656 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention of the grant of the patent: 21.05.2014 Bulletin 2014/21 (21) Application number: 99933536.7 (22) Date of filing: 23.06.1999 (51) Int Cl.: G01N 35/00 (2006.01) G01N 35/10 (2006.01) G01N 33/49 (2006.01) (86) International application number: PCT/US1999/014105 (87) International publication number: WO 1999/067646 (29.12.1999 Gazette 1999/52) (54) FLUID SAMPLE TESTING SYSTEM TESTSYSTEM FÜR FLÜSSIGE PROBEN DISPOSITIF D’ANALYSE D’ECHANTILLONS DE FLUIDE (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE (30) Priority: 24.06.1998 US 90471 P (43) Date of publication of application: 07.06.2000 Bulletin 2000/23 (73) Proprietor: Chen & Chen, LLC Brookline, MA 02446 (US) (72) Inventor: CHEN, Shuqi Brookline, MA 02446 (US) (74) Representative: Horner, Martin Grenville et al Marks & Clerk LLP Aurora 120 Bothwell Street Glasgow G2 7JS (GB) (56) References cited: DE-A- 2 007 405 DE-A- 2 753 865 FR-A- 1 513 306 US-A- 3 579 303 US-A- 3 607 097 US-A- 4 846 005 US-A- 5 591 573

EP1005656B1 FLUID SAMPLE TESTING SYSTEM

Embed Size (px)

Citation preview

Page 1: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

Note: Within nine months of the publication of the mention of the grant of the European patent in the European PatentBulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with theImplementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has beenpaid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)E

P1

005

656

B1

TEPZZ_ZZ5656B_T(11) EP 1 005 656 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 21.05.2014 Bulletin 2014/21

(21) Application number: 99933536.7

(22) Date of filing: 23.06.1999

(51) Int Cl.:G01N 35/00 (2006.01) G01N 35/10 (2006.01)

G01N 33/49 (2006.01)

(86) International application number: PCT/US1999/014105

(87) International publication number: WO 1999/067646 (29.12.1999 Gazette 1999/52)

(54) FLUID SAMPLE TESTING SYSTEM

TESTSYSTEM FÜR FLÜSSIGE PROBEN

DISPOSITIF D’ANALYSE D’ECHANTILLONS DE FLUIDE

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 24.06.1998 US 90471 P

(43) Date of publication of application: 07.06.2000 Bulletin 2000/23

(73) Proprietor: Chen & Chen, LLCBrookline, MA 02446 (US)

(72) Inventor: CHEN, ShuqiBrookline, MA 02446 (US)

(74) Representative: Horner, Martin Grenville et alMarks & Clerk LLP Aurora 120 Bothwell StreetGlasgowG2 7JS (GB)

(56) References cited: DE-A- 2 007 405 DE-A- 2 753 865FR-A- 1 513 306 US-A- 3 579 303US-A- 3 607 097 US-A- 4 846 005US-A- 5 591 573

Page 2: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] The present invention is directed to a systemfor testing a fluid sample, and, more particularly, to a fluidsample testing system having improved automation,safety and efficiency.[0002] Collection, transportation and pretreatment offluid samples, such as blood samples, are currently donegenerally in a manual fashion. Blood is commonly col-lected in test tubes and samples from these test tubesare deposited in reaction chambers for testing. Thesetubes can be placed in an automated testing machine toperform testing using various assays. This process canbe expensive, time consuming, and may lead to humanerror, possibly leading to false test results. Current auto-mated testing systems require large capital investment;incur high costs for reagents, disposables, operation,maintenance, service and training; and do not providerequired sample pretreatment.[0003] DE2753865 discloses a device for collecting aplurality of samples delivered at a delivery station, witha chamber sealing apparatus to form a plurality of fluid-tight segments of the chamber, each segment containinga liquid sample.[0004] FR1513306 discloses a testing system per-forming tests on samples stored in chambers of a chainof flexible recipients stored around a drum. This systemcomprises a reagent injector actuator with a needle ac-tuator injecting a quantity of reagent in a segment. Thechambers can be without apertures comprise a self seal-ing material. FR1513306 discloses also a mixing deviceusing rollers or elastic pinching means between whichthe chamber is pressed (page 4, column 1). FR1513306discloses also a colorimeter which generates a signalcorresponding to the condition of the sample in eachchamber.[0005] It is an object of the present invention to providea sample testing system which reduces or wholly over-comes some or all of the aforesaid difficulties inherent inprior known devices. Particular objects and advantagesof the invention will be apparent to those skilled in theart, that is, those who are knowledgeable or experiencedin this field of technology, in view of the following disclo-sure of the invention and detailed description of certainpreferred embodiments.[0006] The present invention provides a sample testingsystem comprising, in combination: a chamber sealingapparatus to form a plurality of seals defining a pluralityof fluid-tight segments of a chamber; a reagent injectorhaving a reagent reservoir, at least one needle in fluidcommunication with one reagent reservoir, and a needleactuator to insert the needle into a segment of the cham-ber and to inject a quantity of reagent into the segmentof the chamber; a sensor to generate an output signalcorresponding to a condition of a fluid sample materialwithin a segment of a chamber; and a flow control devicecomprising: a base member for supporting a chambersegment; a central plunger, a first outer plunger and a

second outer plunger wherein the central plunger is po-sitioned such that in use said chamber segment is sand-wiched between central plunger and base member, cre-ating first and second reservoir zones in said chambersegment, with a flow passage extending there between;and wherein the first outer plunger is movable toward thefirst reservoir zone and the second outer plunger is mov-able toward the second reservoir zone, and the first andsecond outer plungers are movable in repeating fashionto alternately compress and decompress said first andsecond reservoir zones creating a flow of fluid sampleback and forth through said flow passage.[0007] Thus, the principles of the invention may beused to advantage to provide a sample testing systemwhich is highly automated, thereby increasing efficiency,reducing costs, and increasing safety due to reducedhandling of samples. A sample can be collected in achamber which is then divided into a plurality of sealedsegments. A reagent can be added to a segment and thesegment can be inspected to detect a condition of thesample.[0008] In accordance with a first aspect, a sample test-ing system has a chamber sealing apparatus to form aplurality of seals defining a plurality of fluid-tight seg-ments of the chamber. A reagent injector cartridge actu-ator is adapted to receive a reagent injector cartridgehaving at least one needle in fluid communication with areagent reservoir, and to move a reagent injector car-tridge to inject a quantity of reagent into a segment of achamber. A sensor generates an output signal corre-sponding to a condition of a fluid sample material withina segment of a chamber.[0009] In accordance with another aspect, a sampletesting system has a tube sealing apparatus having atube compression and sealing member to laterally seala flexible plastic tube containing a fluid sample material,whereby a fluid-tight tubule containing a portion of thefluid sample material can be formed between axiallyspaced lateral seals. A reagent injector cartridge actuatoris adapted to receive a reagent injector cartridge havingat least one needle in fluid communication with a reagentreservoir, and to move a reagent injector cartridge to in-ject a quantity of reagent into a tubule. A flow controldevice has a contact member movable into contact witha tubule to effect mechanically induced fluid flow withina fluid passageway in the tubule. An inspection systemhas a light detector to receive light passed through a tu-bule and to generate an output signal corresponding toa condition of the fluid sample material within a tubule.[0010] In accordance with another aspect, a sampletesting system has a tube sealing apparatus having atube compression and sealing member to laterally seala flexible plastic tube containing a fluid sample material,whereby a fluid-tight tubule containing a portion of thefluid sample material can be formed between axiallyspaced lateral seals. A reagent injector has at least oneneedle in fluid communication with a reagent reservoir,and a needle actuator to insert the needle into a tubule

1 2

Page 3: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

3

5

10

15

20

25

30

35

40

45

50

55

and inject a quantity of reagent into a tubule. A flow controldevice has a contact member movable into contact witha tubule to effect mechanically induced fluid flow withina fluid passageway in the tubule. An inspection systemhas a light detector to receive light passed through a tu-bule and to generate an output signal corresponding toa condition of the fluid sample material within a tubule.[0011] In accordance with another aspect, a reagentcartridge has a housing and at least one reservoir in thehousing. At least one needle in the housing is in fluidcommunication with one of the reagent reservoirs. A nee-dle actuator inserts the needle into a tubule and injectsa quantity of reagent.[0012] In accordance with yet another aspect, a sam-ple testing tubule has a length of flexible plastic tube hav-ing fluid-tight lateral seals at axially spaced locations todefine a fluid-tight fluid sample chamber between the lat-eral seals containing a fluid sample material. A self-seal-ing injection channel is formed in the tubule, the injectionchannel being normally substantially free of fluid samplematerial and capable of fluid communication with the fluidsample material in the tubule.[0013] In accordance with another aspect, a methodof performing a sample assay includes the followingsteps: collecting a sample of fluid material into a lengthof substantially transparent, flexible, heat-sealable, plas-tic tube; inserting the tube into a sample testing machinehaving a tube sealing apparatus, a reagent injector hav-ing at least one needle in fluid communication with a re-agent reservoir and a needle actuator to insert the needleinto a tubule and inject a quantity of reagent, a flow controldevice having a contact member movable into contactwith a tubule to effect mechanically induced fluid flowwithin the tubule, and an inspection system having a lightdetector to receive light passed through a tubule and togenerate an output signal corresponding to a conditionof the sample material within a tubule; actuating the tubesealing apparatus to seal lengths of the tube into tubules;actuating the needle actuator to insert the needle into aselected tubule and inject reagent to form a mixture ofsample material and reagent in the selected tubule; ac-tuating the flow control device to mix the mixture of sam-ple material and reagent; and actuating the inspectionsystem to inspect the mixture and to generate an outputsignal corresponding to a condition of the mixture.[0014] From the foregoing disclosure, it will be readilyapparent to those skilled in the art, that is, those who areknowledgeable or experienced in this area of technology,that the present invention provides a significant techno-logical advance. Preferred embodiments of the fluid sam-ple testing system of the present invention can provideincreased efficiency, reduced costs, and increase safety.These and additional features and advantages of the in-vention disclosed here will be further understood fromthe following detailed disclosure of certain preferred em-bodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Certain preferred embodiments are describedin detail below with reference to the appended drawingswherein:

Fig. 1 is a partially schematic perspective view of asample testing system in accordance with a pre-ferred embodiment of the present invention;Fig. 2 is a schematic representation of the compo-nents of the sample testing system of Fig. 1;Fig. 3 is a schematic perspective view, partially inphantom, of a tube sealing apparatus of the testingsystem of Fig. 1;Fig. 4 is a schematic elevation view, shown partiallycut away, of a tube being compressed by the tubesealing apparatus of Fig. 3;Fig. 5 is a schematic elevation view, shown partiallycut away, of a tube being sealed by the tube sealingapparatus of Fig. 3;Fig. 6 is a schematic plan view of a sealing head ofthe tube sealing apparatus of Fig. 3;Fig. 7 is a schematic plan view of a plurality of tubulesformed in a length of tube by the tube sealing appa-ratus of Fig. 3;Fig. 8 is a schematic plan view of an alternative em-bodiment of a sealing head of the tube sealing ap-paratus of Fig. 3;Fig. 9 is a schematic plan view of another alternativeembodiment of a sealing head of the tube sealingapparatus of Fig. 3;Fig. 10 is a schematic section view of a reagent car-tridge suitable for use in the sample testing systemof Fig. 1;Fig. 11 is a schematic section view of an alternativeembodiment of a reagent cartridge for the sampletesting system of Fig. 1;Fig. 12 is a schematic section view of the reagentcartridge of Fig. 11 shown injecting reagent into atubule;Fig. 13 is a schematic section view of another alter-native embodiment of a reagent cartridge of the sam-ple testing system of Fig. 1;Fig. 14 is a schematic section view of yet anotheralternative embodiment of a reagent cartridge of thesample testing system of Fig. 1;Fig. 15 is a schematic elevation view of a flow controldevice and inspection system of the sample testingsystem of Fig. 1;Fig. 16 is a schematic elevation view of an exampleof a control device not part of the invention;Fig. 17 is a schematic elevation view of an exampleof a flow control device not part of the invention;Fig. 18 is a schematic elevation view of an exampleof a flow control device not part of the invention;Fig. 19 is a schematic elevation view of an alternativeembodiment of the inspection system of the sampletesting system of Fig. 1;

3 4

Page 4: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

4

5

10

15

20

25

30

35

40

45

50

55

Fig. 20 is a schematic elevation view of another al-ternative embodiment of the inspection system ofthe sample testing system of Fig. 1;Fig. 21 is a schematic elevation view of a coatingbeing applied to a tubule of the present invention;Fig. 22 is a schematic perspective view of a reagentcartridge and a tube divided into tubules, suitable forthe sample testing system of Fig. 1;Fig. 23 is a schematic perspective view of one pre-ferred embodiment of a tube of the present inventionand a drawing device into which the tube is placed;Fig. 24 is a schematic elevation view of an alternativeembodiment of the tube sealing apparatus of Fig. 1;andFig. 25 is a schematic plan view of an alternativeembodiment of a tubule of the present invention,shown with a pressure gate between compartmentsof the tubule.

[0016] The figures referred to above are not drawn nec-essarily to scale and should be understood to present arepresentation of the invention, illustrative of the princi-ples involved. Some features of the sample testing sys-tem depicted in the drawings have been enlarged or dis-torted relative to others to facilitate explanation and un-derstanding. The same reference numbers are used inthe drawings for similar or identical components and fea-tures shown in various alternative embodiments. Sampletesting system as disclosed herein, will have configura-tions and components determined, in part, by the intend-ed application and environment in which they are used.

DETAILED DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS

[0017] The present invention has many uses which willbecome readily apparent to those skilled in the art, giventhe benefit of this disclosure. Sample material to testedmay be, e.g., blood, cell suspensions, biofluids or otherfluids. Exemplary tests to be performed on fluid samplesinclude clinical diagnosis, therapeutic monitoring, andscreening of chemical compounds for discovery of newdrugs. The following discussion will discuss blood testingspecifically for purposes of illustration.[0018] The present invention provides for a chambercontaining a fluid sample to be divided into a plurality ofsegments, with fluid-tight seals separating adjacent seg-ments from one another. It is considered to be a highlyadvantageous feature of certain preferred embodimentsthat a chamber into which a fluid sample is drawn, e.g.,a tube into which a patient’s blood is drawn, can itselfthen also be the testing or reaction chamber within whichthat blood or other fluid sample is tested, without everhaving to remove the blood or fluid sample from thechamber.[0019] Referring to Fig. 1, a testing machine accordingto the present invention is shown generally by the refer-ence numeral 2. Testing machine 2 comprises a housing

4 having an entry port 6 on a front side thereof for receiv-ing a chamber containing a fluid sample. In the illustratedembodiment, the chamber is a tube 8 from a blood bag10. Tube 8 is preferably a flexible, thermoplastic, sub-stantially transparent tube having an inner diameter ofapproximately 1 mm to 5 mm, preferably approximately3-4 mm. Tube 8 may be formed of polyvinylchloride(PVC) or other suitable material. A control panel 7 is lo-cated on the front of housing 4 to receive information,such as information read from bar code labels or keyeddata, and a monitor 5 displays operating information,such as the results of testing. A tube sealing apparatus12, described in greater detail below, is contained withinhousing 4 for sealing portions of tube 8 into tubules 14.Reagent cartridge 60 is loaded into a reagent cartridgeactuator 49 in housing 4, with reagent from reservoirs 16contained within reagent cartridge 60 being added to tu-bules 14 (described in greater detail below). A sensor 41in housing 4 reads a bar code label 73 (seen in Fig. 22)on reagent cartridge 60 which provides information iden-tifying the particular reagent or reagents in reagent car-tridge 60 as well as information regarding test proceduresassociated with the particular reagent or reagents. Mixingdevice or flow control device 18, seen in Fig. 2 and de-scribed in greater detail below, is also contained withinhousing 4 for creating a fluid passageway to allow theflow of cells within tubule 14. Computerized microscopicinspection system 20 is mounted in housing 4 to viewand analyze the flow of cells within tubule 14. In certainpreferred embodiments, multiple testing machines 2 maybe connected to computer analysis and system controlcomponents of inspection system 20, either directly, orvia a computer network. In certain preferred embodi-ments, flow control device 18 may not be present, or maynot be employed if present. In such an alternative em-bodiment, inspection system 20 inspects a sample withintubule 14 without a flow of cells within the sample beingcreated.[0020] A tube advancement system 3 is provided tosupport and control forward movement of tube 8 throughtesting machine 2. Suitable tube advancement systemswill become readily apparent to those skilled in the art,given the benefit of this disclosure. In the embodimentillustrated in Fig. 2, tube advancement system 3 com-prises a pair of rotating wheels 22 which rotate in oppositedirections to advance the tube. At least one wheel 22 isconnected to and driven by output shaft 23 of a motorwhich is not shown. Tube 8 is inserted between rotatingwheels 22 and advanced into tube sealing apparatus 12.The volume of sample within each tubule 14 is controlledby compressing tube 8. Specifically, upper plunger 9 andlower plunger 11 are spaced apart from one another andmovable toward one another to partially compress a tu-bule 14 positioned therebetween prior to it being sealed.An upper, or first sealing head 24 and a lower, or secondsealing head 26 compress a portion of tube 8 and thenuse radio frequency energy to seal tube 8, forming lateralseals 13 between adjacent tubules 14. Lateral seals, as

5 6

Page 5: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

5

5

10

15

20

25

30

35

40

45

50

55

used herein, refer to seals which separate axially adja-cent portions of tube 8. In a preferred embodiment, thelateral seals extend substantially perpendicular to a lon-gitudinal axis of tube 8. Seals 13 are fluid-tight seals, thatis, seals 13, under normal operating conditions, preventthe flow of fluid through the seal. Each tubule 14 containsa sample of blood. The length of each tubule 14 is pref-erably approximately 3 to 15 mm, and more preferablyabout 5 to 10 mm. Reagent is added to tubule 14 vianeedle 15 of injector 17.[0021] Tubules 14 then advance to one of an incuba-tion chamber 19, a centrifuge 35, or flow control device18. Flow control device 18 forms a pair of reservoir zonesin tubule 14 with a thin fluid passageway extending be-tween the reservoirs. Light from light source 28 is pro-jected through the tubule 14 in flow control device 18. Acamera with a microscopic lens 30 captures images ofblood cell aggregates flowing from one reservoir zone tothe other through the thin passageway. It sends the im-ages to a frame grabber 32, which in turn sends the im-ages to programmable control system or computer 34for analysis. The results of the testing done in computer34 may be transmitted to display 7, seen in Fig. 1, forreading by an operator. In other preferred embodiments,the results of the testing may be stored for later retrieval,or forwarded to another computer or other device, e.g. aprinter for preparing a hard copy of the results.[0022] Centrifuge 35 is provided to separate compo-nents of the sample in a length of tube 8 in a knownfashion. A length of tube 8, typically longer than a typicaltubule 14, is conveyed to centrifuge 35 via suitable con-veying means. Once the components of the sample inthe length of tube 8 have been separated, the length oftube is sealed into tubules 14 providing a fluid-tight sealbetween the different components. The length of tube issealed either by a tube sealing apparatus at centrifuge35, or it may be advanced to tube sealer 12 by suitableconveying means for sealing. Centrifuge 35 may also beused during testing in order to perform certain assays.[0023] In certain preferred embodiments, selected tu-bules 14 may be stored in incubation chamber 19 priorto advancing to flow control device 18. Incubation cham-ber 19 may provide temperature control of tubules 14,and may allow the addition of a second reagent to tubules14. Temperature controlling means 21 is connected toincubation-chamber 19 to heat and/or cool incubationchamber 19. It is to be appreciated that the temperatureof tubules 14 may be controlled directly, such as with atemperature sensor detecting the temperature of tubules14 and maintaining a desired setpoint temperature. Al-ternatively, the temperature of the tubules could be con-trolled indirectly by sensing and controlling the temper-ature of incubation chamber 19. Temperature controllingmeans 21 may include a heating element and may alsoinclude a cooling device. Other suitable temperature con-trolling means will become readily apparent to thoseskilled in the art given the benefit of this disclosure.[0024] Turning now to Fig. 3, tube sealing apparatus

12 will be shown in greater detail. Tube sealing apparatus12 comprises upper, or first sealing head 24 and lower,or second sealing head 26. Upper sealing head 24 hasconductors 36 extending from an upper surface 38 to alower sealing surface 40. Lower sealing head 26 alsohas conductors 36 extending from an upper sealing sur-face 42 to a lower surface 44. Conductors 36 are con-nected by cables 45 to a power source 46 which createsa radio frequency (RF) electrical field between the con-ductors 36 of upper sealing head 24 and lower sealinghead 26 which heat seals tube 8. Conductors 36 are pref-erably formed of a material having high electrical andheat conductivity. Suitable materials for conductor 36are, for example, metals such as copper. Other suitablematerials for the sealing heads will become readily ap-parent to those skilled in the art, given the benefit of thisdisclosure. Upper sealing head 24 and lower sealinghead 26 are preferably formed of a substantially rigidinsulating material having high heat conductivity. Suita-ble materials for the sealing heads include plastics suchas nylon. Other suitable materials for the sealing headswill become readily apparent to those skilled in the art,given the benefit of this disclosure. Resilient pads 48 arepreferably located at the outer edges of lower sealingsurface 40 and upper sealing surface 42. Resilient pads48 may be formed of rubber, silicone rubbers, teflon,fluoropolymers, or any other suitable resilient material.In certain preferred embodiments, a central bar 50 maybe located between a pair of conductors 36. As seen inFig. 4, both upper sealing head 24 and lower sealinghead 26 have a central bar 50. It is to be appreciated thatin certain preferred embodiments, only upper sealinghead 24 may have a central bar 50, while lower sealinghead 26 has a single conductor 36.[0025] As seen in Fig. 4, tube 8, containing fluid sample51, e.g., whole blood, is passed between upper sealinghead 24 and lower sealing head 26. The volume of aportion of tube 8, or tubule 14, is adjusted by compressingupper bar 9 and lower bar 11 together about tubule 14.In certain preferred embodiments, the volume of tubule14 is approximately 20ml. The tubule 14 may contain, forexample, approximately 5ml of whole blood or approxi-mately 15ml of plasma. Upper and lower sealing heads24, 26 are then squeezed together under pressure, com-pressing a portion of tube 8 and pushing fluid sample 51outwardly in the direction of arrows A. As sealing heads24, 26 compress tube 8, a sample free zone 52 is created,that is, a zone is created within tube 8 which is substan-tially free of any fluid sample 51. The pressure must besufficient to squeeze fluid sample 51 out of sample freezone 52 as well as sufficient to prevent pressure in tubule14 from forcing fluid sample 51 back into sample freezone 52, especially during sealing. The required pressureforcing sealing heads 24, 26 together is dependent onthe material of tube 8, as well as its diameter and wallthickness. In certain preferred embodiments, fluid sam-ple 51 is approximately 2mm away from conductors 36which provide the sealing of tubule 14.

7 8

Page 6: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

6

5

10

15

20

25

30

35

40

45

50

55

[0026] As seen in Fig. 5, central bar 50 is then raised,releasing the pressure in a central area of sample freezone 52 and creating an injection channel 54 which isalso free of fluid sample 51. Power source 46 then sup-plies RF power through cables 45 to conductors 36 whichseals tube 8 forming seal 13. In certain preferred embod-iments, the frequency of the RF power supplied is ap-proximately 40 MHz. The RF power is supplied for a timeperiod typically less than one second. The power andduration of the supplied RF energy may vary based onthe size of tube 8 and the material of which it is construct-ed. Upper sealing member 24 is then raised, tube 8 isadvanced to the left as seen in Fig. 4, and tube 8 is sealedagain, forming a tubule 14 between seals 13. By creatingsample free zone 52, fluid sample 51 is kept a safe dis-tance from conductors 36 when the RF power is applied,thereby reducing negative effects on fluid sample 51 fromthe RF power and the heat it generates.[0027] In the embodiment illustrated in Fig. 4, lowersealing head 26 is fixed and upper sealing head 24 movesdownwardly in the direction of arrows B toward lowersealing head 26. In other preferred embodiments, uppersealing head 24 may be fixed with lower sealing head 26moving toward upper sealing head 24, or both upper andlower sealing heads 24, 26 may move toward one anoth-er.[0028] In the embodiment illustrated in Figs. 4, 5, lowersealing surface 40 and upper sealing surface 42 have asubstantially convex profile. Thus when sealing heads24, 26 are brought together, tube 8 is compressed a max-imum amount in the central area of heads 24, 26, that is,in sample free zone 52, and compresses to a lesser ex-tent outside of sample free zone 52.[0029] In certain preferred embodiments, as seen inFig. 6, central bar 50 has an L shaped, or inverted Lshaped profile. In the embodiment illustrated, central bar50 of first sealing head 24 has an inverted L shape andcentral bar 50 of second sealing head 26 has an L shape.Conductor 36 is formed of conductor element 36A andconductor element 36B, spaced apart by central bar 50.Conductor element 36A extends along the long leg ofcentral bar 50 and terminates at its short leg. Conductorelement 36 B extends along the length of the long leg ofcentral bar 50. Lines W represent the width of a tube 8which is sealed by sealing heads 24, 26. It can be seenthat the sealing heads extend beyond the edge of thetube such that the seal, when formed, extends acrossthe entire width of the tube. When the RF power is ap-plied, as seen in Fig. 7, seal 13, comprising first portion13A and second portion 13B is formed only in the areaswhere conductor elements 36A, 36B lie, creating Lshaped injection channel 54 which is capable of being influid communication with tubule 14. However, tension inthe area of seal 13 prevents fluid sample 51 from enteringinjection channel 54. Reagent is added to injection chan-nel 54 through needle 15, seen in Fig. 2 and describedin greater detail below. The amount of reagent added totubule 14 is preferably approximately 1-15ml depending

on the assay being performed. By maintaining injectionchannel 54 free of fluid sample 51, any leakage fromtubule 14 is prevented when a needle punctures the sidewall of the tube to inject reagent into the tubule throughinjection channel 54. In certain preferred embodiments,the needle puncture in injection channel 54 has beenfound to be able to withstand pressure of up to approxi-mately 3 atm. without leaking.[0030] The specific configuration of injection channel54 is not critical, except that it must be sufficiently largeto receive the reagent injection needle. Also, in accord-ance with a highly advantageous aspect, indicatedabove, it is sufficiently small so as to be self-sealing. Thatis, the bore, length, and configuration of the injectionchannel are such that the passageway is normally sub-stantially devoid of fluid sample. Given the benefit of thisdisclosure of the general concept and principles of theinjection channel, it will be within the ability of those skilledin the art to select suitable dimensions and configurationsfor the injection channel, taking into account the size,wall thickness and resiliency of the flexible plastic tube.Thus, while the injection channel is normally closed orcollapsed so as to be devoid of fluid sample, it still pro-vides fluid communication into the main fluid chamberwithin the tubule. That is, reagent or other fluid injectedinto the injection channel under suitable injection pres-sure passes through the injection channel to the mainchamber. Once the injection needle is withdrawn, how-ever, the injection channel returns to its closed or col-lapsed condition such that leakage does not occur duringnormal operating conditions through the hole in the wallformed at the end of the passageway by the needle.[0031] In another preferred embodiment, seen in Fig.8, central bar 50’ has a T shaped profile with conductor36 comprising conductor elements 36B, 36C, and 36D.In yet another preferred embodiment, seen in Fig. 9, con-ductor 36 is formed of a single conductor element 36E.In this embodiment, a single lateral seal 13 is formedacross tube 8. Alternatively, tube 8 or tube sealing ap-paratus 12 can be repositioned after a first seal 13A isformed, creating a second seal 13B as seen in Fig. 7 toform an injection channel 54.[0032] As shown in Fig. 2, needle 15 is inserted intotubule 14, preferably into injection channel 54, to addreagent to fluid sample 51 into tubule 14. In a preferredembodiment, the reagent is added through injectionchannel 54 prior to upper and lower sealing heads 24,26 being fully released. In other preferred embodiments,the reagent is added just prior to the tubule 14 enteringflow control device 18, so that the inspection of the sam-ple is done soon after the reagent has been added. Re-agent can be drawn from reservoir 16 by releasing upperand lower bars 9, 11, creating vacuum pressure withintubule 14 and drawing reagent into tubule 14. Central bar50 may then be depressed, forcing any reagent remain-ing in injection channel 54 into tubule 14.[0033] As seen in Fig. 24, tube sealing apparatus 55may comprise a pair of rotatable wheels 57 having a plu-

9 10

Page 7: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

7

5

10

15

20

25

30

35

40

45

50

55

rality of circumferentially disposed teeth 59. The outersurface of each tooth 59 is substantially planar or curvo-planar. A conductor 61 operably connected to powersource 46 by cables (not shown) is located within eachtooth 59. The surface 63 of wheels 57 extending betweenteeth 59 is substantially concave. Wheels 57 rotate inopposite directions to progress tube 8 through tube seal-ing apparatus 55, with surfaces 63 preferably being con-figured to compress each portion of tube 8 between theseals to a desired volume. As an opposed pair of teeth59 meet, radio frequency energy or heat, etc. is trans-mitted through conductors 61, forming seal 13 in the man-ner described above.[0034] In other preferred embodiments, sealing of thechamber or tube 8 can be accomplished by other suitablesealing means. Examples of other sealing means in-clude, for example, mechanical clamps, a fold lock, ul-trasound fusion, and direct application of heat to the tube.Tube 8 may, in certain preferred embodiments, be a heatshrinkable tube and the tube sealing apparatus may bea device for applying focused heat to each of the seallocations along the length of the tube.[0035] In another preferred embodiment, shown in Fig.10, reagent reservoir 16 may be contained in a reagentcartridge 60 having housing 62. Bladder 64 is disposedwithin housing 62 and is secured to an inner wall of hous-ing 62 by ring 66. Reagent is thus contained within blad-der 64. Needle 15 extends from housing 62 and is pref-erably covered by resilient cover 68. Vent 70 is providedin an upper surface of housing 62 and a filler plug 71 isprovided in housing 62 for adding reagent. In certain pre-ferred embodiments, magnetic stirrer 72 is positioned inreservoir 16 on a bottom surface of housing 62. A mag-netic field generator 74 positioned outside housing 62creates rotation of magnetic stirrer 72, mixing the rea-gent, e.g. a cell suspension, prior to injection into tubule14. The reagent may also be mixed by other means suchas shaking. Tube 76 of piezoelectric material surroundsneedle 15 and serves as a drop generator as describedmore fully in U.S. Patent No. 4,329,698, the contents ofwhich are incorporated herein by reference. Multiple res-ervoirs 16 of reagent may be contained within reagentcartridge 60, allowing different reagents to be added todifferent tubules 14 as they pass through testing machine2.[0036] One preferred embodiment is shown in Fig. 22.In the illustrated embodiment, reagent cartridge 60 con-tains 12 reservoirs of different reagents, each reservoirhaving its own needle 15, and each reagent being usedfor a specific test. A bar code label 73 on reagent cartridge60 provides information to identify particular reagentscontained therein and test procedure necessary for pro-gramming the sample test system. Tubules 14 are movedin an axial direction, preferably in step-wise fashion, pastreagent cartridge 60. Reagent cartridge 60 is movable ina direction transverse to a longitudinal axis of the tubulesin order to position the proper needle 15 correspondingto a desired reagent, at the injection channel of each

tubule in turn. Once reagent cartridge 60 is properly po-sitioned, needle 15 is injected into tubule 14 to inject thedesired reagent.[0037] Another preferred embodiment is shown in Fig.11, where reagent cartridge 60A has housing 62A withan adapter 78 located on an upper surface of housing62A to receive air nozzle 80. In use, as seen in Fig. 12,needle 15 extends through resilient cover 68 and pene-trates the wall of tubule 14. In the preferred embodimentillustrated, needle 15 extends into injection channel 54.Air pressure is introduced onto bladder 64 through airnozzle 80, causing reagent from reservoir 16 to be forcedinto tubule 14. In the embodiment illustrated, needle 15is fixed with respect to reagent cartridge 60A, and theentire reagent cartridge 60A is moved vertically by actu-ator 49 (seen in Fig. 1) in order to inject needle 15 intotubule 14. In other preferred embodiments, needle 15may be independent of reagent cartridge 60A such thatonly needle 15 moves in order to inject reagent into tubule14.[0038] Another preferred embodiment is shown in Fig.13, where reagent cartridge 60B comprises housing 62Bhaving piston 82 disposed therein above reservoir 16containing reagent. A pair of resilient annular rings 84are positioned between piston 82 and an inner wall ofhousing 62B, providing a seal between piston 82 andhousing 62B. Shaft 86 is in contact with the upper surfaceof piston 82 and pressure is introduced into reservoir 16as shaft 86 causes piston 82 to be lowered. The pressurein reservoir 16 forces reagent through needle 15 into tu-bule 14.[0039] Yet another embodiment is shown in Fig. 14,where reagent cartridge 60C comprises housing 62Chaving resilient sac 88 forming reservoir 16 therein. Shaft86 engages an outer surface of sac 88, introducing pres-sure into reservoir 16 in order to force reagent throughneedle 15.[0040] In other preferred embodiments, multiple rea-gent cartridges, each having a single reservoir or rea-gent, may be chained together with a flexible connectorsuch that a large number of reagent cartridges may beconnected together. The connected reagent cartridgescan then, for example, be rolled up to facilitate storageand delivery.[0041] In certain preferred embodiments, a reagentcartridge with multiple needles in fluid communicationwith a single, or corresponding multiple reservoirs, maybe used to inject, or deposit reagent simultaneously, orsequentially, into multiple different tubules. The reagentcartridge may also be used to inject or deposit reagentinto other chambers or containers. For example, a rea-gent cartridge with multiple needles in fluid communica-tion with a single, or corresponding multiple reservoirs,can be used to simultaneously, or sequentially, inject ordeposit reagent into a plurality of containers, such as therecesses of a ninety-six well microplate.[0042] Flow control device 18 is seen in Fig. 15 andcomprises transparent base member 90 upon which tu-

11 12

Page 8: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

8

5

10

15

20

25

30

35

40

45

50

55

bule 14 is placed. Transparent central plunger 92 is po-sitioned above tubule 14 and lowered onto tubule 14 suchthat tubule 14 is sandwiched between central plunger 92and base member 90, creating first and second reservoirzones 94, 96 in tubule 14, with a narrow flow passage98 extending therebetween through which a thin layer ofsample flows. A first outer plunger 100 is positionedabove first reservoir zone 94 and a second outer plunger102 is positioned above second reservoir zone 96. Firstand second outer plungers 100, 102 are alternatelyraised and lowered (shown by arrows D), engaging anddisengaging tubule 14, creating a flow of fluid sample 51back and forth through narrow flow passage 98. By sens-ing the pressure needed to cause the flow of fluid sample51 through passage 98, the specific molecular bindingstrength between cells or particles in the sample can bedetermined. The number of particles or cells in the sam-ple can be counted, and cell properties such as size andlight intensity can be measured. In a preferred embodi-ment, the height of, or gap created by, flow passage 98is approximately 10mm to 100mm, depending on the as-say performed. Through such a narrow passageway, theflow of fluid sample 51 can be analyzed by computerizedmicroscopic inspection system 20. Light from light source28, shown by arrows C, is projected through centralplunger 92 and passage 98. Images of fluid sample 51as it flows through passage 98 are captured by camerawith microscopic lens 30 which then transfers the imagesthrough frame grabber 32 to computer 34 (seen in Fig.2) for analysis through known signal processing algo-rithms. It is to be appreciated that operation of flow controldevice 18 may, in certain preferred embodiments, includeportions of time where no flow is generated through pas-sage 98, and camera 30 may capture images of fluidsample 51 during these non-flow periods. Camera 30 is,in certain preferred embodiments, a charged-coupled de-vice (CCD) camera. Cell interaction kinetics can be an-alyzed by computer 34 by monitoring cell motion and/orlocation as well as optical properties of the cells such aslight scattering.[0043] Cell-cell interaction occurs in tubule 14 whenany of certain known reagents are added to a blood sam-ple. Molecular interactions occur when the reagent isadded to the sample. Aggregates may be formed in thesample, and the size and distribution of the aggregatesvaries depending on the type of reagent added to fluidsample 51, the shear flow of the sample, and the timeperiod elapsed after injection of the reagent. In a knownfashion, the size and quantity of aggregates passingthrough flow passage 98 allows various types of screen-ing or analysis to be performed on fluid sample 51. Forexample, immunodiagnosis such as blood typing, anti-body screening and infectious disease testing can be per-formed using the present invention by selecting suitableknown reagents to be injected into one or more tubules.Specifically, blood forward typing can be performed byadding a related antibody as the reagent to fluid sample51 comprising whole blood. Blood reverse typing can be

performed by adding a cell suspension as the reagent tofluid sample 51 comprising plasma. Blood reverse typingcan also be performed by adding cell suspension as thereagent to fluid sample 51 comprising whole blood. He-matology tests for blood components such as red andwhite blood cell counts, coagulation and aggregation timetesting, and platelet function tests can be performed aswell. The reagent may comprise anti-analyte coatedbeads in order to detect specific analyte in the sample.Other tests such as nucleic acid amplification and DNAanalysis may also be performed in the manner disclosedhere. Blood chemistry analysis can detect, for example,sugar levels, cholesterol levels, etc. Drug compound test-ing can also be performed using the present invention.Other testing which can be performed using the presentinvention will become readily apparent to those skilled inthe art, given the benefit of this disclosure.[0044] The present invention provides many advantag-es. A testing machine can be used cost effectively formany different tests and groups of tests. The testing ma-chine has high throughput and low complexity for easeof operation. Bio-safety is increased due to reduced han-dling of samples such as blood.[0045] Computer 34, in certain preferred embodi-ments, may be operably connected to tube advancingsystem 3, tube sealing apparatus 12, flow control device18, incubation chamber 19, centrifuge 35, and inspectionsystem 20 by cables (not shown). Computer 34 can pro-vide control and coordination of the operating parametersof the components of testing machine 2 in a known fash-ion, and further description of the control of the compo-nents of testing machine 2 need not be provided here.[0046] In an example not part of the invention, shownin Fig. 16, flow control device 18A comprises transparentcylindrical plunger 92A having a longitudinal axis L anda beveled surface 104 formed on lower surface 106 ofplunger 92A. A reservoir 94A is formed beneath beveledsurface 104 and passage 98A is formed beneath lowersurface 106. As plunger 92A is rotated about longitudinalaxis L, flow through passage 98A can be observed in thesame manner described above.[0047] Another example not part of the invention isshown in Fig. 17, where flow control device 18B compris-es transparent plunger 92B having first and second bev-eled surfaces 108, 110 formed on a lower surface thereof.First and second reservoirs 94B, 96B are formed beneathbeveled surfaces 108, 100, respectively, with narrowpassage 98B extending therebetween. As plunger 92Bis rocked back and forth, fluid sample 51 passes backand forth from first reservoir 94B to second reservoir 96Bthrough passage 98B. The flow of fluid sample 51 is ob-served by camera 30 as described above.[0048] Yet another example not part of the inventionis shown in Fig. 18, where flow control device 18C com-prises transparent plunger 92C whose lower surface 112has an arcuate profile. The arcuate profile of lower sur-face 112 creates a narrow flow passage 98C extendingbetween a first reservoir 94C and a second reservoir 96C.

13 14

Page 9: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

9

5

10

15

20

25

30

35

40

45

50

55

Plunger 92C is rolled back and forth, forcing fluid sample51 back and forth from first reservoir 94C to second res-ervoir 96C through flow passage 98C. The flow of fluidsample 51 through flow passage 98C is observed bycamera 30 as described above.[0049] In certain preferred embodiments, as seen inFig. 19, a first electrode 120 and a second electrode 122are inserted into tubule 14 and are connected by cables124 to voltage source 126 which creates a voltage dif-ference between first and second electrodes 120, 122.Red blood cells in fluid sample 51 within tubule 14 arenegatively charged so that by electrophoresis they areattracted to the positively charged electrode 122. An elec-trochemiluminescent reagent is added to tubule 14 byreagent cartridge 60 or other suitable means, creatingan electrochemiluminescent reaction near the surface ofelectrode 122 which causes a particular light to be emit-ted (shown by arrows E) from electrode 122 based onthe type of reagent added to tubule 14. Sensor 128 re-ceives the transmitted light and generates a correspond-ing electrical signal which is sent to computer 34 for anal-ysis, display, recording, etc. In other preferred embodi-ments, a current is passed by first and second electrodes120,122 through the sample. In this embodiment, certainelectrochemical properties of the sample can be meas-ured by analyzing the voltage difference between the firstand second electrodes 120, 122.[0050] Another preferred embodiment is shown in Fig.20. First and second electrodes 130, 132 are insertedinto tubule 14. Second electrode 132 is a fiberoptic sen-sor. As described above with respect to Fig. 19, an elec-trochemiluminescent reaction occurs near the surface ofelectrode 132 causing light to be generated. The lighttravels through fiberoptic electrode 132 to a fiber opticsensor, or reader 134 which captures and interprets theinformation provided by the type of light generated. Sec-ond electrode 132 preferably has a diameter betweenapproximately 0.4mm and 1mm. Second electrode 132is formed of a material or is coated with a material suitablefor providing sufficient conductivity.[0051] In certain preferred embodiments, a coatingmay be deposited on tubule 14 to increase visibilitythrough the wall of tubule 14. As seen in Fig. 21, a coatingmaterial 140 is transferred through conduit 142 from coat-ing supply 144 and deposited on the outer surface oftubule 14. If the walls of tubule 14 are translucent, theaddition of coating 140 to the outer surface of tubule 14can make the walls of tubule 14 substantially transparent,increasing the effectiveness of viewing the flow of fluidsample 51 through flow passage 98. Coating 140 pref-erably has the same optical refractive index as that ofthe walls of tubule 14. Suitable materials for coating 140are dependent on the material of tubule 14 and include,for example, oil.[0052] Suitable methods for filling a tube with a samplewill be apparent to those skilled in the art, given the benefitof this disclosure. Exemplary methods include injectingsample fluid into one end of a tube or drawing sample

into a tube by creating a vacuum in the tube. A suitabletube 150 is shown in Fig. 23, having a self-sealing head152 at a first end thereof for needle penetration. Tube150 may have a label 154 to assist in identifying thesource of the sample, e.g., a patient’s name when thesample is blood. Label 154 may be, e.g., a bar code label.Tube 150 is inserted into a tube-like drawing device 156through an aperture 158 at a first end of drawing device156. To draw a sample into tube 150, the tube-like draw-ing device 156 is plugged into a needle holder commonlyused for drawing blood into a vacuum tube, and slidehandle 160 is moved downwardly along drawing device156. A pair of opposed rollers (not shown) within drawingdevice 156 and operably connected to slide handle 160compress a portion of, and roll downwardly along, tube150, pumping or drawing a sample of blood into tube 150.[0053] In some cases a multiple stage reaction withina segment of a chamber may be desired. In one embod-iment, the reagent is injected through an injection chan-nel in the segment, reacted with the contents therein, andthen, later, a second reagent is added and reacted withthe contents. In an alternative preferred embodiment, thesegment may be formed with a pressure gate, separatingthe volume of the segment into two compartments be-tween which there is fluid communication only at pres-sure levels achieved by application of external pressure.Pressure for moving sample material from one compart-ment into an adjacent compartment may be applied, e.g.,by hand or by automatic mechanical pressure devicessuch as those shown in Figs. 2, 4, 5 and adapted to applypressure to a single compartment.[0054] One preferred example is shown in Fig. 25,where a segment or tubule 168 is separated by a seal170 into first compartment 172 and second compartment174. Seal 170 is formed in a manner as described abovewith respect to seal 13. Seal 170 forms a pressure gate176, which, under normal operating conditions, providesa fluid-tight seal between first and second sub-segmentsor compartments 172, 174. In a preferred embodiment,pressure gate 176 opens upon application of pressuregreater than a certain value, for example, approximately2 atm. When external pressure is applied to one of thecompartments, pressure gate 176 opens, allowing fluidto flow from the high pressure compartment to the lowpressure compartment. One preferred application is in atwo stage antibody screening wherein first compartment172 of tubule 168 is pre-filled with plasma. A first reagentis injected through injection channel 54 into second com-partment 174. External pressure is then applied to sec-ond compartment 174, forcing the first reagent into firstcompartment 172. A second reagent is added to secondcompartment 174 through injection channel 54. Tubule168 is then conveyed by suitable means to incubationchamber 19 for a predetermined time period of incuba-tion. Tubule 168 is then conveyed by suitable means tocentrifuge 35 where tubule 168 is spun such that the cellsof the first reagent accumulate proximate pressure gate176. In certain preferred embodiments, the second rea-

15 16

Page 10: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

10

5

10

15

20

25

30

35

40

45

50

55

gent may be added after tubule 168 has been incubatedin incubation chamber 19 or spun in centrifuge 35. Ex-ternal pressure is applied to first compartment 172 suchthat cells of the first reagent are passed to second com-partment 174. Tubule 168 is then conveyed to flow controldevice 18 and inspected by inspection system 20 in themanner described above.[0055] In light of the foregoing disclosure of the inven-tion and description of the preferred embodiments, thoseskilled in this area of technology will readily understandthat various modifications and adaptations can be madewithout departing from the true scope of the inventiondefined by the following claims.

Claims

1. A sample testing system comprising, in combination:

a chamber sealing apparatus (12) to form a plu-rality of seals defining a plurality of fluid-tightsegments (14) of a chamber;a reagent injector (17) having a reagent reser-voir (16), at least one needle (15) in fluid com-munication with the reagent reservoir, and aneedle actuator to insert the needle into a seg-ment of the chamber and to inject a quantity ofreagent into the segment of the chamber;a sensor to generate an output signal corre-sponding to a condition of a fluid sample materialwithin a segment of a chamber; anda flow control device (18) comprising:

a base member (90) for supporting a cham-ber segment;a central plunger (92), a first outer plunger(100) and a second outer plunger (102)wherein the central plunger is positionedsuch that in use said chamber segment (14)is sandwiched between central plunger (92)and base member (90), creating first andsecond reservoir zones (94,96) in saidchamber segment (14), with a flow passage(98) extending there between; and whereinthe first outer plunger (100) is movable to-ward the first reservoir zone (94) and thesecond outer plunger (102) is movable to-ward the second reservoir zone (96), andthe first and second outer plungers(100,102) are movable in repeating fashionto alternately compress and decompresssaid first (94) and second (96) reservoirzones creating a flow of fluid sample (51)back and forth through said flow passage(98).

2. The sample testing system of claim 1, further com-prising an output device responsive to the output sig-

nal.

3. The sample testing system of claim 1 or claim 2,wherein the sensor comprises a light detector (30)to receive light responsive to a fluid sample in a seg-ment of a chamber and to generate an output signalcorresponding to a condition of a fluid sample mate-rial within a segment of a chamber.

4. The sample testing system of any preceding claim,further comprising a label sensor (41) to receive in-formation from a label of a reagent injector.

5. The sample testing system of claim 1, wherein thechamber sealing apparatus comprises:

a compression and sealing member (24, 26) tolaterally seal a flexible plastic chamber contain-ing a fluid sample material, whereby a fluid-tightsegment containing a portion of the fluid samplematerial can be formed between axially spacedlateral seals.

6. The sample testing system according to claim 5, fur-ther comprising a programmable control system cou-pled with the chamber sealing apparatus, the rea-gent injector, the flow control device and the sensor.

7. The sample testing system according to claim 5 or6, wherein the chamber sealing apparatus compris-esa first sealing head (24) comprising the compressionand sealing member; anda second sealing head (26), at least one of the firstand second sealing heads being movable toward theother of the sealing heads to compress a section ofthe chamber positioned between the first and secondsealing heads to create a sample-free zone in thechamber, wherein the chamber compression andsealing member is operatively connected to a powersource to heat a sealing zone of the chamber locatedin the sample-free zone to form a fluid-tight lateralseal in the chamber.

8. The sample testing system according to claim 7,wherein the first sealing head has a substantiallyconvex profile and an electrically conductive centralportion, and the second sealing head has a substan-tially convex profile and an electrically conductivecentral portion.

9. The sample testing system according to claim 7 orclaim 8, further comprising a radio frequency powergenerator to transmit radio frequency energy be-tween the first and second sealing heads throughthe sealing zone to form a lateral seal in the tube.

10. The sample testing system according to claim 7, 8,

17 18

Page 11: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

11

5

10

15

20

25

30

35

40

45

50

55

or 9, wherein the chamber sealing apparatus furthercomprises a compression apparatus to partiallycompress a portion of the chamber to create a seg-ment of a predetermined volume.

11. The sample testing system according to any preced-ing claim, further comprising an incubation chamber(19) to retain a segment for a predetermined periodof time.

12. The sample testing system according to claim 11,wherein the incubation chamber includes a temper-ature control device (21) to control the temperatureof the segment in the incubation chamber.

13. The sample testing system according to any one ofclaims 1, 5 to 12, wherein the sensor detects a signalpassing through a segment as the flow control deviceis operating to induce fluid flow in that tubule.

14. The sample testing system according to claim 3,wherein the light detector detects properties of par-ticles within a fluid sample in a segment.

15. The sample testing system according to claim 3,wherein the light detector comprisesa camera (30) having a microscopic lens to captureimages of a fluid sample in an inspection zone of asegment as the light source is projecting light throughthe inspection zone; andwherein the system further comprises a computeroperably connected to the camera to analyze theimages of the fluid sample.

16. The sample testing system according to claim 3, fur-ther comprisinga pair of electrodes (120, 122) adapted to have apredetermined voltage difference; andan electrode actuator to insert the pair of electrodesinto a segment, wherein the light detector is respon-sive to electrophoretic light emitted from within a seg-ment.

17. The sample testing system according to claim 16,wherein one of the electrodes comprises a fiber opticconductor.

18. The sample testing system according to any preced-ing claim, further comprising a segment and a coat-ing on an outside surface of the segment to increasethe transmission of light through the segment.

19. The sample testing system according to claim 18,wherein the coating has a refractive index substan-tially the same as a refractive index of the segment.

20. The sample testing system according to any preced-ing claim, further comprising an advancing device to

transport a length of the chamber within the sampletesting system.

21. The sample testing system according to claim 20,wherein the advancing device comprises a pair ofrotatable wheels spaced apart from one another toreceive the chamber therebetween, at least one ofthe wheels being a driven wheel operatively connect-ed to an output member of an electric motor.

22. The sample testing system according to any preced-ing claim, wherein the reagent injector further com-prises a housing, and wherein the reagent reservoir,the needle, and the needle actuator are in the hous-ing.

23. The sample testing system according to any preced-ing claim, wherein the chamber comprises:

a length of flexible plastic tube having fluid-tightlateral seals at axially spaced locations to definefluid-tight fluid sample segments between thelateral seals, the segments containing fluid sam-ple material; anda self-sealing injection channel formed in at leastone segment, the injection channel being nor-mally substantially free of fluid sample materialand capable of fluid communication with the fluidsample material in the segment.

24. The sample testing system of claim 1, wherein thecentral plunger is movable to create a flow passagehaving a height between 10 um to 100 um.

25. A method of performing a sample assay comprisingthe following steps, in combination:

collecting a sample of fluid material into a cham-ber in the form of a length of substantially trans-parent, flexible, heat-sealable, plastic tube;inserting the tube into a sample testing systemaccording to any preceding claimactuating the tube sealing apparatus to seallengths of the tube into segments;actuating the needle actuator to insert the nee-dle into a selected segment and inject reagentto form a mixture of sample material and reagentin the selected segment;actuating the flow control device to mix the mix-ture of sample material and reagent by effectingmechanically induced fluid flow within the se-lected segment; andactuating the sensor to inspect the mixture andto generate an output signal corresponding to acondition of the mixture.

19 20

Page 12: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

12

5

10

15

20

25

30

35

40

45

50

55

Patentansprüche

1. Probentestsystem, das in Kombination aufweist:

eine Kammerabdichtvorrichtung (12), um eineVielzahl von Abdichtungen zu bilden, die eineVielzahl von flüssigkeitsdichten Segmenten(14) einer Kammer definieren;einen Reagenzieninjektor (17) mit einem Rea-genzienspeicher (16), wobei mindestens eineNadel (15) in Flüssigkeitsverbindung mit demReagenzienspeicher ist, und einem Nadelbetä-tigungselement, um die Nadel in ein Segmentder Kammer einzusetzen, und um eine Mengedes Reagens in das Segment der Kammer zuinjizieren;einen Sensor, um ein Ausgangssignal entspre-chend einem Zustand eines flüssigen Proben-materials innerhalb eines Segmentes einerKammer zu erzeugen; undeine Durchflussregelungsvorrichtung (18), dieaufweist:

ein Basiselement (90) für das Halten einesKammersegmentes;einen mittleren Kolben (92), einen erstenäußeren Kolben (100) und einen zweitenäußeren Kolben (102), wobei der mittlereKolben so positioniert wird, dass bei Benut-zung das Kammersegment (14) zwischendem mittleren Kolben (92) und dem Basise-lement (90) angeordnet wird, wobei eineerste und zweite Speicherzone (94, 96) imKammersegment (14) mit einem sich dortdazwischen erstreckenden Strömungs-durchgang (98) gebildet wird; und wobei dererste äußere Kolben (100) in Richtung derersten Speicherzone (94) und der zweiteäußere Kolben (102) in Richtung der zwei-ten Speicherzone (96) beweglich sind, undwobei der erste und zweite äußere Kolben(100, 102) in einer sich wiederholendenWeise beweglich sind, um abwechselnd zukomprimieren und zu dekomprimieren, wo-bei die erste (94) und die zweite Speicher-zone (96) eine Strömung der flüssigen Pro-be (51) vorwärts und rückwärts durch denStrömungsdurchgang (98) erzeugen.

2. Probentestsystem nach Anspruch 1, das außerdemeine Ausgabevorrichtung aufweist, die auf das Aus-gangssignal anspricht.

3. Probentestsystem nach Anspruch 1 oder Anspruch2, bei dem der Sensor einen Lichtempfänger (30)aufweist, um Licht aufzunehmen, das auf eine flüs-sige Probe in einem Segment einer Kammer an-spricht, und um ein Ausgangssignal entsprechend

einem Zustand eines flüssigen Probenmaterials in-nerhalb eines Segmentes einer Kammer zu erzeu-gen.

4. Probentestsystem nach einem der vorhergehendenAnsprüche, das außerdem einen Sensor (41) zurAufklebererfassung aufweist, um eine Informationvon einem Aufkleber eines Reagenzieninjektors zuempfangen.

5. Probentestsystem nach Anspruch 1, bei dem dieKammerabdichtvorrichtung aufweist:

ein Kompressions- und Abdichtungselement(24, 26), um eine flexible, verformbare Kammerseitlich abzudichten, die ein flüssiges Proben-material enthält, wobei ein flüssigkeitsdichtesSegment, das einen Teil des flüssigen Proben-materials enthält, zwischen axial beabstande-ten seitlichen Abdichtungen gebildet werdenkann.

6. Probentestsystem nach Anspruch 5, das außerdemein programmierbares Steuersystem aufweist, dasmit der Kammerabdichtvorrichtung, dem Reagenzi-eninjektor, der Durchflussregelungsvorrichtung unddem Sensor verbunden ist.

7. Probentestsystem nach Anspruch 5 oder 6, bei demdie Kammerabdichtvorrichtung aufweist:

einen ersten Abdichtungskopf (24), der dasKompressions- und Abdichtungselement auf-weist; undeinen zweiten Abdichtungskopf (26), wobei min-destens einer von erstem und zweitem Abdich-tungskopf in Richtung des anderen der Abdich-tungsköpfe beweglich ist, um einen Abschnittder Kammer, der zwischen dem ersten und demzweiten Abdichtungskopf positioniert ist, zukomprimieren, um eine probenfreie Zone in derKammer zu bilden, wobei das Kammerkompres-sions- und -abdichtungselement funktionell miteiner Stromquelle verbunden ist, um eine Ab-dichtungszone der Kammer, die sich in der pro-benfreien Zone befindet, zu erwärmen, um eineflüssigkeitsdichte seitliche Abdichtung in derKammer zu bilden.

8. Probentestsystem nach Anspruch 7, bei der der ers-te Abdichtungskopf ein im Wesentlichen konvexesProfil und einen elektrisch leitenden mittleren Ab-schnitt aufweist, und wobei der zweite Abdichtungs-kopf ein im Wesentlichen konvexes Profil und einenelektrisch leitenden mittleren Abschnitt aufweist.

9. Probentestsystem nach Anspruch 7 oder Anspruch8, das außerdem einen Hochfrequenzstromerzeu-

21 22

Page 13: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

13

5

10

15

20

25

30

35

40

45

50

55

ger aufweist, um Hochfrequenzenergie zwischendem ersten und dem zweiten Abdichtungskopf durchdie Abdichtungszone zu übertragen, um eine seitli-che Abdichtung im Schlauch zu bilden.

10. Probentestsystem nach Anspruch 7, 8 oder 9, beidem die Kammerabdichtvorrichtung außerdem eineKompressionsvorrichtung aufweist, um einen Teilder Kammer teilweise zu komprimieren, um ein Seg-ment mit einem vorgegebenen Volumen zu erzeu-gen.

11. Probentestsystem nach einem der vorhergehendenAnsprüche, das außerdem eine Inkubationskammer(19) aufweist, um ein Segment über eine vorgege-bene Zeitdauer festzuhalten.

12. Probentestsystem nach Anspruch 11, bei dem dieInkubationskammer eine Temperaturregelungsvor-richtung (21) umfasst, um die Temperatur des Seg-mentes in der Inkubationskammer zu steuern.

13. Probentestsystem nach einem der Ansprüche 1, 5bis 12, bei dem der Sensor ein Signal nachweist,das durch ein Segment gelangt, als die Durchfluss-regelungsvorrichtung funktioniert, um einen Flüssig-keitsstrom in jenem Tubus hervorzurufen.

14. Probentestsystem nach Anspruch 3, bei dem derLichtempfänger Eigenschaften der Teilchen inner-halb einer flüssigen Probe in einem Segment nach-weist.

15. Probentestsystem nach Anspruch 3, bei dem derLichtempfänger aufweist:

eine Kamera (30) mit einer mikroskopischenLinse, um Bilder einer flüssigen Probe in einerKontrollzone eines Segmentes zu erfassen, alsdie Lichtquelle Licht durch die Kontrollzone pro-jiziert; undwobei das System außerdem einen Computeraufweist, der funktionell mit der Kamera verbun-den ist, um die Bilder der flüssigen Probe zuanalysieren.

16. Probentestsystem nach Anspruch 3, das außerdemaufweist:

ein Paar Elektroden (120, 122), die ausgebildetsind, um eine vorgegebene Spannungsdiffe-renz aufzuweisen; undein Elektrodenbetätigungselement, um dasPaar Elektroden in ein Segment einzusetzen,wobei der Lichtempfänger auf das elektropho-retische Licht anspricht, das von innerhalb einesSegmentes emittiert wird.

17. Probentestsystem nach Anspruch 16, bei dem eineder Elektroden einen faseroptischen Leiter aufweist.

18. Probentestsystem nach einem der vorhergehendenAnsprüche, das außerdem ein Segment und eineBeschichtung auf einer Außenfläche des Segmen-tes aufweist, um die Übertragung des Lichtes durchdas Segment zu verstärken.

19. Probentestsystem nach Anspruch 18, bei dem dieBeschichtung einen Brechungsindex aufweist, derim Wesentlichen der gleiche ist wie ein Brechungs-index des Segmentes.

20. Probentestsystem nach einem der vorhergehendenAnsprüche, das außerdem eine Transportvorrich-tung aufweist, um eine Länge der Kammer innerhalbdes Probentestsystems zu transportieren.

21. Probentestsystem nach Anspruch 20, bei dem dieTransportvorrichtung ein Paar drehbare Räder auf-weist, die voneinander beabstandet sind, um dieKammer dazwischen aufzunehmen, wobei mindes-tens eines der Räder ein Abtriebsrad ist, das funkti-onell mit einem Abtriebselement eines Elektromo-tors verbunden ist.

22. Probentestsystem nach einem der vorhergehendenAnsprüche, bei dem der Reagenzieninjektor außer-dem ein Gehäuse aufweist, und bei dem sich derReagenzienspeicher, die Nadel und das Nadelbetä-tigungselement im Gehäuse befinden.

23. Probentestsystem nach einem der vorhergehendenAnsprüche, bei dem die Kammer aufweist:

eine Länge eines flexiblen Kunststoffschlau-ches mit flüssigkeitsdichten seitlichen Abdich-tungen an axial beabstandeten Stellen, um flüs-sigkeitsdichte Probensegmente zwischen denseitlichen Abdichtungen zu definieren, wobei dieSegmente das flüssige Probenmaterial enthal-ten; undeinen selbstabdichtenden Injektionskanal, derin mindestens einem Segment ausgebildet ist,wobei der Injektionskanal normalerweise imWesentlichen frei von flüssigem Probenmaterialist, und wobei er zu einer Flüssigkeitsverbin-dung mit dem flüssigen Probenmaterial im Seg-ment in der Lage ist.

24. Probentestsystem nach Anspruch 1, bei dem dermittlere Kolben beweglich ist, um einen Strömungs-durchgang mit einer Höhe von zwischen 10 mm bis100 mm zu bilden.

25. Verfahren zur Durchführung einer Probenanalyse,das die folgenden Schritte in Kombination aufweist:

23 24

Page 14: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

14

5

10

15

20

25

30

35

40

45

50

55

Sammeln einer Probe des flüssigen Materials ineiner Kammer in der Form einer Länge eines imWesentlichen transparenten, flexiblen, heißsie-gelfähigen Kunststoffschlauches;Einsetzen des Schlauches in ein Probentestsys-tem nach einem der vorhergehenden Ansprü-che;Betätigen der Schlauchabdichtvorrichtung, umdie Länge des Schlauches in Segmente abzu-dichten;Betätigen des Nadelbetätigungselementes, umdie Nadel in ein ausgewähltes Segment einzu-setzen und ein Reagens zu injizieren, um eineMischung des Probenmaterials und des Rea-gens im ausgewählten Segment zu bilden;Betätigen der Durchflussregelungsvorrichtung,um die Mischung des Probenmaterials und desReagens, durch das Bewirken eines mecha-nisch hervorgerufenen Flüssigkeitsstroms in-nerhalb des ausgewählten Segmentes, zu mi-schen; undBetätigen des Sensors, um die Mischung zukontrollieren, und um ein Ausgangssignal ent-sprechend einem Zustand der Mischung zu er-zeugen.

Revendications

1. Système d’analyse d’échantillon comprenant, encombinaison :

un appareil (12) de scellage de chambre per-mettant de former une pluralité de scellages dé-finissant une pluralité de segments (14) étan-ches d’une chambre ;un injecteur (17) de réactif présentant un réser-voir (16) de réactif, au moins une aiguille (15)en communication fluidique avec le réservoir deréactif, et un actionneur d’aiguille permettantd’insérer l’aiguille dans un segment de la cham-bre et d’injecter une quantité de réactif dans lesegment de la chambre ;un détecteur pour générer un signal de sortiecorrespondant à un état d’une matière d’échan-tillon de fluide au sein d’un segment d’unechambre ; etun dispositif de commande de circulation (18)comprenant :

un élément formant base (90) pour suppor-ter un segment de chambre ;un piston central (92), un premier piston ex-térieur (100) et un second piston extérieur(102), où le piston central est positionné demanière à ce que, en cours d’utilisation, leditsegment de chambre (14) est serré entre lepiston central (92) et l’élément formant base

(90), ce qui crée des première et secondezones de réservoir (94, 96) dans ledit seg-ment de chambre (14), avec un passage decirculation (98) s’étendant entre celles-ci ;et où le premier piston extérieur (100) estmobile en direction de la première zone deréservoir (94) et le second piston extérieur(102) est mobile en direction de la secondezone de réservoir (96), et les premier et se-cond pistons extérieurs (100, 102) sont mo-biles de manière répétitive afin de compri-mer et décomprimer successivement lesdi-tes première (94) et seconde (96) zones deréservoir, ce qui crée une circulationd’échantillon de fluide (51) vers l’avant etvers l’arrière à travers ledit passage de cir-culation (98).

2. Système d’analyse d’échantillon selon la revendica-tion 1, comprenant en outre un dispositif de sortieréagissant au signal de sortie.

3. Système d’analyse d’échantillon selon la revendica-tion 1 ou 2, où le détecteur comprend un photodé-tecteur (30) permettant de recevoir de la lumière enréaction à un échantillon de fluide présent dans unsegment d’une chambre et de générer un signal desortie correspondant à un état d’une matièred’échantillon de fluide présente au sein d’un seg-ment d’une chambre.

4. Système d’analyse d’échantillon selon l’une quel-conque des revendications précédentes, compre-nant en outre un détecteur de marquage (41) per-mettant de recevoir une information provenant d’unmarquage d’un injecteur de réactif.

5. Système d’analyse d’échantillon selon la revendica-tion 1, dans lequel l’appareil de scellage de chambrecomprend :

un élément de compression et de scellage (24,26) pour sceller de manière latérale une cham-bre en plastique flexible contenant une matièred’échantillon de fluide, grâce auquel un segmentétanche contenant une partie de la matièred’échantillon de fluide peut être formé entre desjoints latéraux axialement espacés.

6. Système d’analyse d’échantillon selon la revendica-tion 5, comprenant en outre un système de comman-de programmable couplé à l’appareil de scellage dechambre, à l’injecteur de réactif, au dispositif de com-mande de circulation et au détecteur.

7. Système d’analyse d’échantillon selon la revendica-tion 5 ou 6, où l’appareil de scellage de chambrecomprend

25 26

Page 15: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

15

5

10

15

20

25

30

35

40

45

50

55

une première tête de scellage (24) comprenant l’élé-ment de compression et de scellage ; etune seconde tête de scellage (26), au moins uneparmi les première et seconde têtes de scellageétant mobiles en direction de l’autre tête de scellageafin de comprimer une section de la chambre posi-tionnée entre les première et seconde têtes de scel-lage pour créer une zone exempte d’échantillon dansla chambre, où l’élément de compression et de scel-lage de chambre est connecté de manière fonction-nelle à une source d’alimentation afin de chaufferune zone de scellage de la chambre située dans lazone exempte d’échantillon pour former un joint la-téral étanche dans la chambre.

8. Système d’analyse d’échantillon selon la revendica-tion 7, où la première tête de scellage présente unprofil essentiellement convexe et une partie centraleélectriquement conductrice, et la seconde tête descellage présente un profil essentiellement convexeet une partie centrale électriquement conductrice.

9. Système d’analyse d’échantillon selon la revendica-tion 7 ou 8, comprenant en outre un générateur d’ali-mentation haute fréquence permettant de transmet-tre une énergie haute fréquence entre les premièreet seconde têtes de scellage à travers la zone descellage afin de former un joint latéral dans le tube.

10. Système d’analyse d’échantillon selon l’une quel-conque des revendications 7, 8 ou 9, où l’appareilde scellage de chambre comprend en outre un ap-pareil de compression permettant de comprimer par-tiellement une partie de la chambre pour créer unsegment d’un volume prédéterminé.

11. Système d’analyse d’échantillon selon l’une quel-conque des revendications précédentes, compre-nant en outre une chambre d’incubation (19) per-mettant de conserver un segment pendant une pé-riode de temps prédéterminée.

12. Système d’analyse d’échantillon selon la revendica-tion 11, où la chambre d’incubation comprend undispositif de commande de température (21) permet-tant de commander la température du segment dansla chambre d’incubation.

13. Système d’analyse d’échantillon selon l’une quel-conque des revendications 1, 5 à 12, où le détecteurdétecte un signal passant à travers un segment àmesure que le dispositif de commande de circulationfonctionne afin d’induire une circulation de fluidedans ce tubule.

14. Système d’analyse d’échantillon selon la revendica-tion 3, où le photodétecteur détecte des propriétésde particules au sein d’un échantillon de fluide dans

un segment.

15. Système d’analyse d’échantillon selon la revendica-tion 3, où le photodétecteur comprendune caméra (30) présentant une lentille microscopi-que permettant de capturer des images d’un échan-tillon de fluide dans une zone d’inspection d’un seg-ment à mesure que la source lumineuse projette dela lumière à travers la zone d’inspection ; etoù le système comprend en outre un ordinateur con-necté de manière fonctionnelle à la caméra afind’analyser les images de l’échantillon de fluide.

16. Système d’analyse d’échantillon selon la revendica-tion 3, comprenant en outre :

une paire d’électrodes (120, 122) adaptée pourprésenter une différence de tensionprédéterminée ; etun actionneur d’électrode permettant d’insérerla paire d’électrodes dans un segment, où lephotodétecteur réagit à de la lumière électro-phorétique émise depuis l’intérieur d’un seg-ment.

17. Système d’analyse d’échantillon selon la revendica-tion 16, où une des électrodes comprend un conduc-teur à fibres optiques.

18. Système d’analyse d’échantillon selon l’une quel-conque des revendications précédentes, compre-nant en outre un segment et un revêtement sur unesurface extérieure du segment afin d’augmenter latransmission de lumière à travers le segment.

19. Système d’analyse d’échantillon selon la revendica-tion 18, où le revêtement présente un indice de ré-fraction essentiellement égal à celui d’un indice deréfraction du segment.

20. Système d’analyse d’échantillon selon l’une quel-conque des revendications précédentes, compre-nant en outre un dispositif d’avance permettant detransporter une longueur de la chambre au sein dusystème d’analyse d’échantillon.

21. Système d’analyse d’échantillon selon la revendica-tion 20, où le dispositif d’avance comprend une pairede roues rotatives espacées l’une de l’autre permet-tant d’accueillir la chambre entre elles, au moins unedes roues étant une roue entraînée connectée demanière fonctionnelle à un élément de sortie d’unmoteur électrique.

22. Système d’analyse d’échantillon selon l’une quel-conque des revendications précédentes, où l’injec-teur de réactif comprend en outre un boîtier, et où leréservoir de réactif, l’aiguille, et l’ actionneur

27 28

Page 16: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

16

5

10

15

20

25

30

35

40

45

50

55

d’aiguille se trouvent dans le boîtier.

23. Système d’analyse d’échantillon selon l’une quel-conque des revendications précédentes, où lachambre comprend :

une longueur de tube plastique flexible présen-tant des joints latéraux étanches au niveaud’emplacements axialement espacés permet-tant de définir des segments d’échantillon defluide étanches entre les joints latéraux, les seg-ments contenant une matière d’échantillon defluide ; etun canal d’injection auto-obturant formé dansau moins un segment, le canal d’injection étantnormalement essentiellement exempt de matiè-re d’échantillon de fluide et capable d’une com-munication fluidique avec la matière d’échan-tillon de fluide présente dans le segment.

24. Système d’analyse d’échantillon selon la revendica-tion 1, où le piston central est mobile afin de créerun passage de circulation présentant une hauteurcomprise entre 10 mm et 100 mm.

25. Procédé de mise en oeuvre d’une évaluationd’échantillon comprenant les étapes suivantes, encombinaison, consistant à :

collecter un échantillon d’une matière fluidedans une chambre sous la forme d’une longueurde tube plastique, thermoscellable, flexible, es-sentiellement transparent ;insérer le tube dans un système d’analysed’échantillon selon l’une quelconque des reven-dications précédentes ;actionner l’appareil de scellage de tube afin desceller des longueurs du tube dans dessegments ;actionner l’actionneur d’aiguille afin d’insérerl’aiguille dans un segment sélectionné et injecterdu réactif pour former un mélange de matièred’échantillon et de réactif dans le segmentsélectionné ;actionner le dispositif de commande de circula-tion pour mélanger le mélange de matièred’échantillon et de réactif en provoquant une cir-culation de fluide mécaniquement induite ausein du segment sélectionné ; etactionner le détecteur pour inspecter le mélangeet pour générer un signal de sortie correspon-dant à un état du mélange.

29 30

Page 17: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

17

Page 18: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

18

Page 19: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

19

Page 20: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

20

Page 21: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

21

Page 22: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

22

Page 23: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

23

Page 24: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

24

Page 25: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

25

Page 26: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

26

Page 27: EP1005656B1 FLUID SAMPLE TESTING SYSTEM

EP 1 005 656 B1

27

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the Europeanpatent document. Even though great care has been taken in compiling the references, errors or omissions cannot beexcluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• DE 2753865 [0003]• FR 1513306 [0004]

• US 4329698 A [0035]