66
Different strategies for single molecule detection through nanoplasmonics Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto Italiano di Tecnologia (IIT) Cortona 2013 Magna Graecia University IIT Genova

Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Embed Size (px)

Citation preview

Page 1: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Different strategies for single molecule

detection through nanoplasmonics

Enzo Di Fabrizio - Remo Proietti Zaccaria

Istituto Italiano di Tecnologia (IIT)

Co

rto

na 2

013

Magna Graecia

University

IIT

Genova

Page 2: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Nanophotonics is the interaction of light with

micro/nanometric structures in order to realize optically

induced phenomena such as:

• light harvesting

• waveguiding (photonic crystals, quasi crystals, fibers, etc.)

• wavefront engineering

• near-field microscopy (STM, SNOM)

• near-field spectroscopy (SERS, TERS, SPPERS)

plasmonics (metallic-like nanodevices)

20 m

a)

b)

100nm

What is NanoPhotonics/Plasmonics?

1 Co

rto

na 2

013

Page 3: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Why NanoPhotonics?

2

Device oriented

nanophotonics

Photonics

COMPLEX SYSTEM

CO

MP

LE

X S

YS

TE

M C

OM

PLE

X S

YS

TE

M

COMPLEX SYSTEM Co

rto

na 2

013

Page 4: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Light is fun

3 Co

rto

na 2

013

Page 5: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Light is science

4

Micro

machine

Cloaking

device

X-rays zone-plate

Photonic

Crystal (PhC)

Co

rto

na 2

013

Page 6: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Outline C

ort

on

a 2

013

• Planar structures & Photonic crystals

• Metallic structures & Plasmonics

• AFM-Raman: toward few/single molecule detection

• Adiabatic compression in details (not too many though)

• Detection in Attomolar solution concentration

• Artificial Lotus effect

• Computational approach: a very powerful resource

5

• Few photons problem

• Electroporation

• Modulated SPPERS

• Adiabatic electrical generation

• Hot electrons nanoscopy

• THz antennas

• Optical computing

• Opto-mechanics

• Plasmo-catalysis

• Thermo-catalysis

Page 7: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Co

rto

na 2

013

What is nanofabrication?

6

Bottom-up & Top-Down

approaches

Page 8: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Co

rto

na 2

013

7 a-Si 2D Photonic Crystal

Coll. F. Pirri group

3D PH. Crys. By X-ray lithography 2D Bragg reflector Si/SiO2 Coll. F. Priolo

Topographic lenses

Planar nanostructures

Page 9: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

A little something about Photonic Crystals

8

3D

1D PhC

Light?

2D PhC

n1 n2 n1 n2 n1

Fundamental request: translational periodicity

1D

2D

Co

rto

na 2

013

Page 10: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Photonic crystals: the cradle of photonics

Ingredients:

• Different materials (no bulk)

• Dielectric or metal (absorption)

• Translational symmetry (1D, 2D, 3D)

What we can do:

• Filters

• Hot spot cavities with high Q factor

• Planar waveguides

• Fibers

• Fano modes

• Extention to quasi-crystals (self-similarity)

• Explain natural phenomena (butterfly color)

• Color changing paints

• Nonlinearity: optical computing

9 Co

rto

na 2

013

Page 11: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Co

rto

na 2

013

10

Metallic standing nanostructures

Elongated dimer

nanostars (flower-

like) patterns were

fabricated with

Electron Beam

Lithography.

H = 0-170 nm IPS = 6-250nm Branch ≈ 70 nm core ≈ 80 nm

Elongated Nanostar (flower-like) dimer pattern

SERS applications

Page 12: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

A little something about Plasmonics

11

Surface Plasmon Polaritons (SPP)= surface electromagnetic wave

Light is compressed without changing the carried energy

High spatial resolution (nm scale)

kx~1/

light line

=kc/n

Conservation

law: kx

dielectric

metal

z

x

The problem of optics (but not only): diffraction limit ( /2)

How can we see things at the nanoscale with visible/IR/THz light

(>400nm)?

SPP line: light is

compressed!

bulk bulk SPP

Co

rto

na 2

013

Page 13: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Outline C

ort

on

a 2

013

• Planar structures & Photonic crystals

• Metallic structures & Plasmonics

• AFM-Raman: toward few/single molecule detection

• Adiabatic compression in details (not too many though)

• Detection in Attomolar solution concentration

• Artificial Lotus effect

• Computational approach: a very powerful resource

• Few photons problem

• Electroporation

• Modulated SPPERS

• Adiabatic electrical generation

• Hot electrons nanoscopy

• THz antennas

• Optical computing

• Opto-mechanics

• Plasmo-catalysis

• Thermo-catalysis

Page 14: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Co

rto

na 2

013

Combination of AFM-Raman spectroscopy

12

Open challenge:

nanodevice on a cantilever

efficiently acting as AFM tip

and as a nanontenna for

Raman scattering.

F

d

Raman & force measurements

Force measurements

Page 15: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Co

rto

na 2

013 Tapered plasmonic waveguide

13

01 0 01 3

Mark Stockman,

PRL 93, 137404 (2004)

Electric field

Inte

nsity

Effective refractive index

Phase velocity

Page 16: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

14

Adiabatic compression

De Angelis et al., Nature Nanotech. 5,

67 (2010)

Adiabatic compression

Energy at the nanoscale

Nm

erical sim

ula

tion

Calc

ula

tion

benzenethiol

Radial mode

(TM0)

Tip radius < 10nm

High spatial

resolution

5fs

ec r

adia

l excitation

(ba

nd

wid

th: 0

.1P

Hz-0

.85

PH

z, 3

50

nm

-3m

)

Scala

r E

fie

ld

Ve

cto

r E

fie

ld

Co

rto

na 2

013

Page 17: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Co

rto

na 2

013

Fabrication process: pillar growth

15

Electron Beam

5 Kev, 2 nm spot

Si-N Membrane

gold

Pt precursor gas

100 nm

pillar height 2.5 m

pillar base 100 nm

Tip radius of curvature 10-15 nm

15 nm

Page 18: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

16

Single QD Raman spectrum C

ort

on

a 2

013

Amine peak estimated 10 NH2

groups (from company linkage

data) maximum 80 NH2 groups

De Angelis et al. Nano Lett., 8 (8), 2321–2327 (2008)

Page 19: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

17

QDs manipulation and deposition on the NW C

ort

on

a 2

013

Page 20: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

18

Adiabatic cone on PhC C

ort

on

a 2

013

Gold and Silver cones

Di Fabrizio, E., et al., Italian patent n. TO2008A000693 23.09.2008

5 nm radius

Page 21: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

19

AFM-Raman spectroscopy C

ort

on

a 2

013

Nanodevice on a cantilever

efficiently acting as AFM tip and as

a nanontenna for Raman scattering.

Page 22: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

20

Optical setup C

ort

on

a 2

013

Focal plane on the

cantilever

Focal plane on the tip end

TASC – CBM Trieste

Page 23: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

21

Raman & AFM: chemical sensing C

ort

on

a 2

013

silica

Cantilever with

Nano-Cone

Laser lithography Si/SiO2

(optical image)

10 m

Silicon nanocrystal

SiOx Raman

Band

Si Raman

Band

Page 24: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

22

Raman & AFM: chemical sensing, coarse scan C

ort

on

a 2

013

silica

Silicon nanocrystal

Scan length 2 µm

Scan step ~220 nm

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

2 m

Cantilever with

Nano-Cone

Page 25: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

23

Raman & AFM: chemical sensing, fine scan C

ort

on

a 2

013

Fine scan along the “wall”.

AFM scan step: 7 nm

110 nm Sensing and topography resolution 5-10 nm

From Raman detailed line shape analysis

we found nano crystal size 5-7 nm

Topography Raman intensity

at 520 cm-1

Simultaneously:

AFM topography

Page 26: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

24

Selected results C

ort

on

a 2

013

Page 27: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Nanocone on biological samples C

ort

on

a 2

013

Nanocone performs

exceptionally well on biological

samples in physiological

environment

Lipid bilayers in liquid: 4 nm

thickness. Sharp topography

without shear effects.

Topography on insulin fibrils in

liquid: down to resolution of

protofibrillar structures (3-4 nm).

Only 1 report in literature.

Force spectroscopy

on titin protein

Titin Pulling

25

Page 28: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

26

Recent results:SERS on amyloid fibrils (on silicon) C

ort

on

a 2

013

1

2

Amyloid fibrils are involved in

Alzheimer disease.

Their characterization by AFM

is widely used, however to

date there are few reports

about their Raman signature.

Here we show that insulin

fibrils on silicon, bear a

Raman signature (1),

compared to the background

(2).

1 um scan (topography)

1

2

Page 29: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

27

Adiabatic compression: behind the scenes C

ort

on

a 2

013

SPP

Ag

Strong field

laser

(visible)

Page 30: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

27

Adiabatic compression: behind the scenes C

ort

on

a 2

013

SPP

Ag

Strong field

laser

(visible)

What kind of source?

Page 31: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

28

The source C

ort

on

a 2

013

x

z

Plane wave

X-polarized

Radial polarization

x

y

z

Page 32: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

29

3D simulation: radial-like source C

ort

on

a 2

013

Adiabatic compression

Field enhancement ~100

Strong localization

500nm

x

z

Page 33: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

30

3D simulation: longitudinal plane wave X C

ort

on

a 2

013

NO Adiabatic compression

Phase dependence

Field enhancement ~20

500nm

x

z

Page 34: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

31

Summarizing…

Nature Nanotech. 5, 67 (2010)

Adiabatic compression

Energy at the nanoscale

Nm

erical sim

ula

tion

Calc

ula

tion

benzenethiol

Radial mode

(TM0)

Tip radius < 10nm

High spatial

resolution

Co

rto

na 2

013

Opt. Exp. 19, 22268 (2011)

PRB 86, 035410 (2012)

Opt. Lett. 37, 545 (2012)

Page 35: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Outline C

ort

on

a 2

013

• Planar structures & Photonic crystals

• Metallic structures & Plasmonics

• AFM-Raman: toward few/single molecule detection

• Adiabatic compression in details (not too many though)

• Detection in Attomolar solution concentration

• Artificial Lotus effect

• Computational approach: a very powerful resource

• Few photons problem

• Electroporation

• Modulated SPPERS

• Adiabatic electrical generation

• Hot electrons nanoscopy

• THz antennas

• Optical computing

• Opto-mechanics

• Plasmo-catalysis

• Thermo-catalysis

32

Page 36: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

33

Diffusion limit C

ort

on

a 2

013

1 fM analyte concentration

Page 37: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

34

Question: can the diffusion limit be avoided?

SuperHydrophobicity for analyte concentration

Co

rto

na 2

013

Evaporation implies

concentration and localization

Page 38: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

35

Artificial Lotus effect: micropatterned surface C

ort

on

a 2

013

• Full controllable size

• High aspect ratio (up to 20 or more)

• Both rigid and flexible substrates

Photolithography combined with Deep RIE

10 m

Page 39: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

36

Artificial Lotus effect C

ort

on

a 2

013

Evaporation of 10 ml of water in few minutes

Page 40: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

36

Artificial Lotus effect C

ort

on

a 2

013

Evaporation of 10 ml of water in few minutes

Few molecules...

and we know where they are!

Page 41: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

37

Evaporation and concentration (10 Attomolar)

Rhodamine

Co

rto

na 2

013

Page 42: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

38

Raman detection of Rhodamine on pillars C

ort

on

a 2

013

1050 1250 1450 1650 1850

Inte

ns

ity

(a

rb.

un

its

)

Raman shift (cm-1)

Rhodamine 6G

10 l - 10-17 mol/l

Roughly 10 Rhodamine

molecules!

Page 43: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

39

Combination of Plasmonics and hydrophobic surfaces C

ort

on

a 2

013

200 nm

4 m 40 m

Page 44: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

40 Co

rto

na 2

013

3 m

50 nm

Combination of Plasmonics and hydrophobic surfaces

Page 45: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

41 Co

rto

na 2

013

m m

m m

Combination of Plasmonics and hydrophobic surfaces

Page 46: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

42

Selected results C

ort

on

a 2

013

Page 47: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Outline C

ort

on

a 2

013

• Planar structures & Photonic crystals

• Metallic structures & Plasmonics

• AFM-Raman: toward few/single molecule detection

• Adiabatic compression in details (not too many though)

• Detection in Attomolar solution concentration

• Artificial Lotus effect

• Computational approach: a very powerful resource

43

• Few photons problem

• Electroporation

• Modulated SPPERS

• Adiabatic electrical generation

• Hot electrons nanoscopy

• THz antennas

• Optical computing

• Opto-mechanics

• Plasmo-catalysis

• Thermo-catalysis

Page 48: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

44

200nm

=514/5

30nm

d: 30nm

-200nm

Signal

Noise

• very high signal to noise ratio ~ 100

• field localization

#1: Few photons sub-wavelenght transmission

Max E ~1.7V/m

Z

Polarization: X

Holes diameter: 80nm

0: 530nm

Period: 1 m

|E| @ z=150nm along x (nm)

--- 514nm

--- 530nm

(Ihole/Ibg)x~1400

and

(Ihole/Ibg)y~120

Very high signal

to-noise ratio !

~E0

Decay of |E| along z (nm)

(side hole)

--- 514nm

--- 530nm

(Ihole/Ibg)x~1400

and

(Ihole/Ibg)y~120

Very high signal

to-noise ratio !

~E0

hole

~10nm 1/e

European project: FOCUS

Co

rto

na 2

013

Page 49: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

45

200nm

=514/5

30nm

d: 30nm

-200nm

Signal

Noise

• very high signal to noise ratio ~ 100

• field localization

#1: Few photons sub-wavelenght transmission

Max E ~1.7V/m

Z

Polarization: X

Holes diameter: 80nm

0: 530nm

Period: 1 m

|E| @ z=150nm along x (nm)

--- 514nm

--- 530nm

(Ihole/Ibg)x~1400

and

(Ihole/Ibg)y~120

Very high signal

to-noise ratio !

~E0

Decay of |E| along z (nm)

(side hole)

--- 514nm

--- 530nm

(Ihole/Ibg)x~1400

and

(Ihole/Ibg)y~120

Very high signal

to-noise ratio !

~E0

hole

~10nm 1/e

E field travelling through the slab

Co

rto

na 2

013

Page 50: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Va

Vb

Vc

= electrode

#2: Computational electroporation

46 Co

rto

na 2

013

Page 51: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

#2: Computational electroporation

DNA is negatively charged

47 Co

rto

na 2

013

Page 52: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

48

#3: Modulated SPPERS (Energy/Life) U

nfo

lde

d p

rote

in

Pro

pa

ga

tin

g lig

ht

Fo

lde

d p

rote

in

Lo

ca

lize

d lig

ht

• Logic ports (1/0 unit)

optical computing

• Near/Far-field Spectroscopy

Adia

ba

tic c

om

pre

ssio

n!

1 m

Au

Co

rto

na 2

013

Page 53: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

49

#4: Electrically generated energy concentrator

Laser approach

a)

Electrical

contribution:

adiabatic

compression

~V Hot

electrons

injection

Wide excitation range Not yet possible

(maximum frequency:

100 GHz;

Visible: 500THz)

b)

Electrical approach

Narrow excitation range

Magnetic

contribution:

spectroscopical

shift

• Near-field

magnetic probe?

• Magnetic

compression?

1≠ 2

Co

rto

na 2

013

Page 54: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

50

#5: Plasmonic hot electrons nanoscopy

5 m m

=1060nm (1.17eV); P=2.43 m;

d=365nm; Tip radius= 25nm

500nm

Ho

t ele

ctro

ns m

ap

an

d m

orp

ho

log

y m

ap

GaAs: Egap=1.42eV

Highly efficient photon-to-

hot electrons conversion

(>30%)!

(k vector from the cone)

AF

M

Co

rto

na 2

013

Page 55: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

#6: THz antennas (0.1-10THz) Characteristics of THz:

• can penetrate inside most dielectric materials that may be opaque to

visible light

• has low photon energies that do not cause photoionization in

biological tissues

Applications of THz:

• imaging of plastic/ceramic/semiconductors (e.g, quality control)

• spectroscopy (semiconductors, molecules, DNA, proteins)

51

Diffr

action lim

it:

/2

Solu

tion:

resonant

pla

sm

onic

nanoante

nnas

Co

rto

na 2

013

Page 56: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

#7: Optical computing

52

Logic gate:

AND

T-shape

antenna:

Fano mode

Co

rto

na 2

013

Page 57: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

53

#8: Opto-mechanic interactions at the

nanoscale Rb = 60nm

H = 3.5 um

T_polymer = 30nm (SU8)

Rho = 1217.9 Kg/m3 (SU8)

Young_mod = 3.1982*108 (1/10

SU8)

Poisson_ratio = 0.33

Core = 30nm Au

Immagine SEM

da Mario

Applications:

• time (msec) resolved spectroscopy (quality

factor, force spectroscopy, sensing)

• microfluidics

• optofluidics

V

m

V V

V V

Co

rto

na 2

013

Page 58: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

54

#9: Plasmocatalysis

UV

TiO2

e-

h+

O2

O-2

OH-

*OH

Two main issues:

1) UV light (<5% total) Visible with doping

(nitrogen, tungsten, etc.)

2) High e-h recombination rate & low light

absorption Resonant plasmonic

nanodevices

Bayarri et al., Chem.

Eng. J. 200, 158 (2012)

c)

J. Mater. Chem., 2008,

18, 1858-1864

+ superhydrophobicity!

Al

Nature Nanotech. 247, 8, 2013

Co

rto

na 2

013

Page 59: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

55

#10: Localized high temperature catalysis

Below 1000 C:

Ag=961 C - Au=1065 C - Al=595 C

Ti=1670 C - Cu=1083 C - Cr=1857 C

Pt= 1768 C

e.m

. field

heat sourc

e

tem

pera

ture

440

300

K

Joule effect:

P =J·E

Rb

Te

mp

era

ture

(K

)

Single gold nanoantenna

=1070nm; P=15 W; Waist=1 m;

L=500nm; W=25nm

Conduction

heat transfer:

P= T·S·k/d,

kair=0.026

Co

rto

na 2

013

Page 60: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Thank you!

Co

rto

na 2

013

Page 61: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Extra

Remo Proietti Zaccaria

Istituto Italiano di Tecnologia (IIT)

Co

rto

na 2

013

Page 62: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

Computational/analytical research flow chart

Photonic Crystals Plasmonic

structures

Application:

SPPERS*

*Surface Plasmon Polaritons Enhanced Raman Spectroscopy;

Quasicrystals

Application:

Quasicrystals

fibers

Fundamentals:

Quasicrystals

properties

Fundamentals:

symmetry mode

in slab cavities

Metallic Photonic

Crystals

Fundamentals: High

Q factor & Low

modal volume

Fundamentals:

Adiabatic

devices

Super-long

SPP

SMD project Focus project

Nanoantenna project

Applications:

Super-lenses

Sub-wavelength

sensors

E1 Co

rto

na 2

013

Page 63: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

E2

Computational and analytical instruments

RSoft

• Plane wave expansion (PMW)

• Rigorous Coupled Wave Analysis (RCWA)

• Finite Difference Time Domain (FDTD)

Finite Difference

Ttime Domain

(FDTD)

Lumerical CST

Finite Integrate

Technique (FIT)

Robust but not

versatile

Finite Element

Method (FEM)

Less robust than

CST but very

versatile

Comsol

Mathematica

Analytical tool

Co

rto

na 2

013

Page 64: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

E3

Plasmonic at the DUV range (Life/Energy)

Energy (eV)

Experi

ment

Sim

ula

tion

Al/Al2O3 nanoparticles array

E near-field

Extinction e

ff.

Extinction

4 6 8 10

ACS Nano 2013

5.8eV!

Co

rto

na 2

013

Page 65: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

High temperature catalysis (Env.) Matrix of gold nanoantennas

Localized temperature pattern!

400nm

E4 Co

rto

na 2

013

Page 66: Enzo Di Fabrizio - Remo Proietti Zaccaria Istituto ...web.nano.cnr.it/scuolafotonica2013/wp-content/.../06/Remo-Proietti.pdf · Different strategies for single molecule detection

KA

US

T 2

013

E5

V V

V V

V V

V V

V V

V=1.1V

V=0.3V

V=0.6V