13
Setting the Stage Setting the Stage • Oil shortage • Greenhouse Effect M. King Hubbert (1903-89) M. King Hubbert (1903-89) American geophysicist Shell Oil research laboratory Houston, TX US Oil Production Hubbert’s Prediction (1956) US Oil Production Hubbert’s Prediction (1956) 1870 90 1910 30 50 70 90 2010 30 50 Year 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Production (billion bbl/yr) Predicted Actual Source: Deffeyes, Hubbert’s Peak (2001) World Oil Production Deffeyes Prediction (2001) World Oil Production Deffeyes Prediction (2001) 35 30 25 20 15 10 5 Production (billion bbl/yr) 1860 80 1900 20 40 60 80 2000 20 40 60 Year Source: Deffeyes, Hubbert’s Peak (2001) Where will we get our energy? Where will we get our energy? Study by Shell Group Planning Georges Dupont-Roc Alexon Khor Chris Anastasi The Evolution of the World’s Energy Systems 1996

Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Embed Size (px)

DESCRIPTION

production of Mixalco liquid fuel from biomass

Citation preview

Page 1: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Setting the StageSetting the Stage

• Oil shortage• Greenhouse Effect

M. King Hubbert (1903-89)M. King Hubbert (1903-89)

American geophysicist

Shell Oil research laboratory

Houston, TX

US Oil ProductionHubbert’s Prediction (1956)US Oil ProductionHubbert’s Prediction (1956)

1870 90 1910 30 50 70 90 2010 30 50Year

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Prod

uctio

n (b

illio

n bb

l/yr)

Predicted

Actual

Source: Deffeyes, Hubbert’s Peak (2001)

World Oil ProductionDeffeyes Prediction (2001)World Oil ProductionDeffeyes Prediction (2001)

35

30

25

20

15

10

5Prod

uctio

n (b

illio

n bb

l/yr)

1860 80 1900 20 40 60 80 2000 20 40 60YearSource: Deffeyes, Hubbert’s Peak (2001)

Where will we get our energy?Where will we get our energy?

Study by Shell Group Planning

Georges Dupont-RocAlexon KhorChris Anastasi

The Evolution of the World’s Energy Systems

1996

Page 2: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

• Oil shortage• Greenhouse Effect

Setting the StageSetting the Stage Greenhouse EffectGreenhouse Effect

VisibleInfrared

Greenhouse GasesGreenhouse Gases

Visible

Greenhouse Gases• CH4

• CFC• NOx• CO2

Recent CO2 ConcentrationRecent CO2 Concentration

380

370

360

350

340

330

320

310

CO

2C

once

ntra

tion

(ppm

)

1960 1970 1980 1990 2000Year

Mauna Loa Observatory

Historical CO2 ConcentrationHistorical CO2 Concentration

380360340320300280260240220200180

160 140 120 100 80 60 40 20 0 Time Before Present (1000 years)

Car

bon

Dio

xide

Con

cent

ratio

n (p

pm)

1086420-2-4-6-8-10

160 140 120 100 80 60 40 20 0 Time Before Present (1000 years) T

empe

ratu

re C

hang

e fr

om P

rese

nt (o C

)

Temperature ChangeTemperature Change

Page 3: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

CombinedCombined

380360340320300280260240220200180

1086420-2-4-6-8-10

160 140 120 100 80 60 40 20 0 Time Before Present (1000 years)

Car

bon

Dio

xide

Con

cent

ratio

n (p

pm)

Tem

pera

ture

Cha

nge

from

Pre

sent

(o C)

CorrelationCorrelation

Hypothesis Independent Dependent

1 Temp CO2

2 CO2 Temp

Carbon Emissions Carbon Emissions

1905 15 25 35 45 55 65 75 85 95

7

6

5

4

3

2

1

CO2

Emis

sion

s (b

illio

n to

nnes

per

yea

r)

}} Developed

World(US, Canada, Western Europe)

Rest of World

Year

Recent CorrelationRecent Correlation

1860 80 1900 20 40 60 80 2000 Year

385

365

345

325

305

285

265 CO

2C

once

ntra

tion

(ppm

)

14.7

14.5

14.3

14.1

13.9

13.7

13.5

Ave

rage

Glo

bal T

empe

ratu

re (o C

)

Temp

CO2

ConclusionConclusion

Hypothesis Independent Dependent

1 Temp CO2

2 CO2 Temp

Princeton ModelPrinceton Model14.8

14.6

14.4

14.2

14.0

13.8

13.6

13.4

13.2Ave

rage

Glo

bal T

empe

ratu

re (o C

)

1860 80 1900 20 40 60 80 2000 Year

Model

Data

Model Includes:• CO2• Aerosols• Solar Radiation

Page 4: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Potential Negative EffectsPotential Negative Effects

• rapid extinctions• tropical diseases moving north• Grain Belt becomes Dust Belt• more insects• rising ocean levels• increased heat-related deaths• Gulf Stream shuts down, chilling Europe• increased storms/floods/hurricanes• droughts and floods more common• more forest fires due to drought• weakened coral reefs

Exacerbating EffectsExacerbating Effects

• extended thaw in tundra• polar ice caps melt• methane clathrates melt

Sustainable Energy and Transportation

Sustainable Energy and Transportation

CO2

ResearchersResearchersFaculty• Mark Holtzapple• Richard Davison

Post Docs

• Praveen Vadlani• Vincent Chang• Xu Li

Masters• Murlidahar Nagwani• Chang Ming Lee• Champion Lee • Seth Adleson • Robert Rapier• William Kaar• David Gaskin• Hiroshi Shirage• Wilbelto Adorno -Gomez• Shelly Williamson• Maria Almendarez• Ramasubramania Narayan• Patricia O'Dowd• Hung-Wen Yeh• Manohar Vishwanathappa

PhD• Nan Sheng Chang • Shushien Chang • Mitch Loescher • Kyle Ross• Susan Domke• Salvador Aldrett-Lee• Cateryna Aiello-Mazzarri• Wenning Chan• Piyarat Thanakoses• Xu Li• Cesar Granda• Guillermo Coward -Kelly• Li Zhu• Se Hoon Kim• Frank Agbogbo• Zihong Fu• Jonathan O'Dwyer

Research StatisticsResearch Statistics

• Year started = early 1991• Time spent = 12 years • Labor = ~107 person·years• Total funding = $2.1 mill

You can’t have it all!You can’t have it all!

CheapGoodFast

}{University

Industry

Page 5: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Examples of BiomassExamples of Biomass

•• treestrees•• grassgrass•• agricultural residuesagricultural residues•• energy cropsenergy crops

Most of these are “Most of these are “lignocelluloselignocellulose.”.”

FuelsChemicals

•• municipal solid wastemunicipal solid waste•• sewage sludgesewage sludge•• animal manureanimal manure

What is lignocellulose?What is lignocellulose?

•• CelluloseCellulose -- glucose polymerglucose polymer•• HemicelluloseHemicellulose -- xylosexylosepolymerpolymer•• LigninLignin -- aromatic polymeraromatic polymer

787810.910.9

334.34.3

400400330330220220

U.S. Biodegradable Wastes

Municipal Solid WasteMunicipal Solid WasteSewage SludgeSewage SludgeIndustrialIndustrial BiosludgeBiosludgeRecycled Paper FinesRecycled Paper FinesAgricultural ResiduesAgricultural Residues

Forestry ResiduesForestry ResiduesManureManure

AmountAmount(million(million tonnetonne/year)/year)

Alcohol PotentialAlcohol PotentialWasteWaste (billion gal/year)

10101.41.4

0.40.40.50.5

525243432828

TotalTotal 1,0461,046 135135U.S. Gasoline Consumption = 130 billion gal/yearU.S. Gasoline Consumption = 130 billion gal/yearU.S. Diesel Consumption = 40 billion gal/yearU.S. Diesel Consumption = 40 billion gal/year

MixAlco ProcessMixAlco Process

HydrogenHydrogen

BiomassBiomass

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

HydrogenateHydrogenate

MixedMixedKetonesKetonesThermalThermal

ConversionConversionDewaterDewaterFermentFermentPretreatPretreat

Calcium CarbonateCalcium Carbonate

LimeLime

CarboxylateSalts

PatentsPatents

5,986,1335,969,1896,262,313

5,962,3075,874,263

5,865,8985,693,296

6,043,3926,395,926

HydrogenHydrogen

BiomassBiomass

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

HydrogenateHydrogenate

MixedMixedKetonesKetonesThermalThermal

ConversionConversionDewaterDewaterFermentFermentPretreatPretreat

Calcium CarbonateCalcium Carbonate

LimeLime

Page 6: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

PretreatmentPretreatment

FermentFerment DewaterDewaterPretreat ThermalThermalConversionConversion HydrogenateHydrogenate

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

MixedMixedKetonesKetones

BiomassBiomass

HydrogenHydrogenCalcium CarbonateCalcium Carbonate

LimeLime

CarboxylateSalts

Lime TreatmentLime Treatment

TT = 100= 100ooCCtt = 1 h= 1 hLime loading = 0.1 g Ca(OH)Lime loading = 0.1 g Ca(OH)22/g biomass/g biomassWater loading = 5 to 15 g HWater loading = 5 to 15 g H22O/g biomassO/g biomass

In situ DigestionIn situ Digestion

•• Weigh ~ 2 g of biomassWeigh ~ 2 g of biomass•• Place biomass in “tea bag”Place biomass in “tea bag”•• Place “tea bags” in porous sackPlace “tea bags” in porous sack•• Place porous sacks in cattle rumenPlace porous sacks in cattle rumen•• IncubateIncubate•• Remove porous sackRemove porous sack•• Wash “tea bags”Wash “tea bags”•• DryDry•• Weigh residueWeigh residue

In-Situ DigestionIn-Situ Digestion

SugarSugar--canecanebagassebagasse

AfricanAfricanmilletmilletstrawstraw

SorghumSorghumstrawstraw

TobaccoTobaccostalksstalks

4848--h

Dig

estio

n h

Dig

estio

n (g

dig

este

d/g

fed)

(g d

iges

ted/

g fe

d) 1.01.00.80.8

0.60.60.40.4

0.20.20.00.0

UntreatedUntreatedLimeLime--treatedtreated

Pretreatment Vessels

Page 7: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Advanced Lime Treatment Advanced Lime Treatment

Biomass + Lime

Gravel

Air

Lignin RemovalLignin Removal

0

5

10

15

20

25

30

0 50 100 150 200 250 300

Time (days)

Lign

in C

onte

nt in

Tre

ated

Bag

asse

(g

lign

in/1

00 g

of

baga

sse)

0

5

10

15

20

25

30

0 50 100 150 200 250 300

Time (days)

Lign

in C

onte

nt in

Tre

ated

Bag

asse

(g

lig

nin/

100

g tr

eate

d ba

gass

e)

50 100 150 200 250 300Time (days)

50 100 150 200 250 300Time (days)

30

25

20

15

10

5

0

Lign

in C

onte

nt (g

lign

in/1

00 g

bag

asse

) 30

25

20

15

10

5

0

Lign

in C

onte

nt (g

lign

in/1

00 g

bag

asse

) 30

25

20

15

10

5

0

Lig

nin

Con

tent

(g

ligni

n/10

0 g

baga

sse)

30

25

20

15

10

5

0

Lig

nin

Con

tent

(g

ligni

n/10

0 g

baga

sse)

25oC

50oC57oC 25oC

50oC57oC

No Air Air

FermentationFermentation

Ferment DewaterDewaterPretreatPretreat ThermalThermalConversionConversion HydrogenateHydrogenate

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

MixedMixedKetonesKetones

BiomassBiomass

HydrogenHydrogenCalcium CarbonateCalcium Carbonate

LimeLime

CarboxylateSalts

Environments where organic acids naturally formEnvironments where organic acids naturally form

•• animal rumenanimal rumen-- cattlecattle-- sheepsheep-- deerdeer-- elephantselephants

•• anaerobic sewageanaerobic sewage digestorsdigestors•• swampsswamps•• termite gutstermite guts

Why are organic acids favored?Why are organic acids favored?

The actualThe actual stoichiometrystoichiometry is more complexis more complex

CC66HH1212OO66 →→ 2 C2 C22HH55OH + 2 COOH + 2 CO 22 ∆∆G = G = --48.56 kcal/mol48.56 kcal/mol

CC66HH1212OO66 →→ 3 C3 C22HH33OOH OOH ∆∆G = G = --61.8 kcal/mol61.8 kcal/mol

5 C5 C66HH1212OO66 →→6 acetate + 2 propionate + butyrate + 5 CO6 acetate + 2 propionate + butyrate + 5 CO 22 + 3 CH+ 3 CH 4 4 + 6 H+ 6 H 22OO(67 mol%) (22 mol%) (11 mol%)(67 mol%) (22 mol%) (11 mol%)

glucose ethanolglucose ethanol

glucose acetic acidglucose acetic acid

Typical Product Spectrumat Different Culture TemperaturesTypical Product Spectrumat Different Culture Temperatures

40oC 55oC C2 – Acetic 41 wt % 80 wt %C3 – Propionic 15 wt % 4 wt %C4 – Butyric 21 wt % 15 wt %C5 – Valeric 8 wt % <1 wt %C6 – Caproic 12 wt % <1 wt %C7 – Heptanoic 3 wt % <1 wt %

100 wt % 100 wt %

Page 8: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Marine InoculumMarine Inoculum

0102030405060708090

0 0.2 0.4 0.6 0.8 1

Conversion

Tot

al a

cid

conc

entr

atio

n (g

/L)

5

LRT(days)

101 5

4111418

20.5

VSLR (g/(L·d))2

8

Marine InoculumAir

Terrestrial InoculumNo Air

Storage + Pretreatment + Fermentation

Storage + Pretreatment + Fermentation

Biomass + Lime + Calcium Carbonate

Gravel

Air

Tarp Cover

DewateringDewatering

FermentFerment DewaterPretreatPretreat ThermalThermalConversionConversion HydrogenateHydrogenate

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

MixedMixedKetonesKetones

BiomassBiomass

HydrogenHydrogenCalcium CarbonateCalcium Carbonate

LimeLime

CarboxylateSalts

Page 9: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Jet Ejector DewateringJet Ejector Dewatering

SaltSolution(FermentorBroth)

High-PressureSteam

Distilled Water

Filter

Jet Ejector

Salt Crystals

Heat RequirementsHeat Requirements

SingleSingle--effect evaporator 1000effect evaporator 1000TripleTriple--effect evaporator effect evaporator 333333Jet ejector dewateringJet ejector dewatering

1010--effect effect 100 100 2020--effecteffect 50503030--effecteffect 3333

BtuBtulb water removedlb water removed

Thermal ConversionThermal Conversion

FermentFerment DewaterDewaterPretreatPretreat ThermalConversion HydrogenateHydrogenate

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

MixedMixedKetonesKetones

BiomassBiomass

HydrogenHydrogenCalcium CarbonateCalcium Carbonate

LimeLime

CarboxylateSalts

Thermal ConversionStoichiometryThermal ConversionStoichiometry

HH33CCOCaOCCHCCOCaOCCH 33 → Η→ Η 33CCCHCCCH 33 + CaCO+ CaCO33

OO

Calcium Acetate AcetoneCalcium Acetate Acetone

OO OO

HH33CCHCCH22COCaOCCHCOCaOCCH22CHCH33 → Η→ Η 33CCHCCH 22CCHCCH22CHCH33 + CaCO+ CaCO33

Calcium Propionate DiethylCalcium Propionate Diethyl KetoneKetone

OO OO OO

HH33CCHCCH22CHCH22COCaOCCHCOCaOCCH 22CHCH22CHCH33 → Η→ Η 33CCHCCH22CHCH22CCHCCH 22CHCH22CHCH33 + CaCO+ CaCO33

Calcium ButyrateCalcium Butyrate Dipropyl KetoneDipropyl Ketone

OO OO OO

Thermal Conversion KineticsThermal Conversion Kinetics

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

380 400 420 440 460 480 500

T (°C)

t (m

in)

999590

Conversion (%)

Page 10: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

HydrogenationHydrogenation

FermentFerment DewaterDewaterPretreatPretreat ThermalThermalConversionConversion Hydrogenate

Lime KilnLime Kiln

MixedMixedAlcoholAlcoholFuelsFuels

MixedMixedKetonesKetones

BiomassBiomass

HydrogenHydrogenCalcium CarbonateCalcium Carbonate

LimeLime

CarboxylateSalts

Ketone HydrogenationStoichiometryKetone HydrogenationStoichiometry

O OHH3CCCH3 + H2 → H3CCCH3

HAcetone Isopropanol

H3CCCH2CH3 + H 2 → H3CCCH2CH3H

O OH

Methyl Ethyl Ketone 2-Butanol

H3CCH2CCH2CH3 + H2 → H3CCH2CCH2CH3

O

H

OH

Diethyl Ketone 3-Pentanol

Ketone HydrogenationKetone Hydrogenation

HH22

Liquid Liquid KetonesKetones

Catalyst = 200 g/L Raney nickelCatalyst = 200 g/L Raney nickel

Temperature = 130Temperature = 130ooCC

Time = 35 min (@ P = 15Time = 35 min (@ P = 15 atmatm) )

Advantages of MixAlcoApproachAdvantages of MixAlcoApproach

•• nonsterilenonsterile fermentationfermentation•• no spoiled batchesno spoiled batches•• inexpensive tanksinexpensive tanks•• robust plant operationrobust plant operation•• adaptable microorganismsadaptable microorganisms•• stable microorganismsstable microorganisms•• microorganisms selfmicroorganisms self--generategenerate•• no enzyme additionno enzyme addition

Page 11: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

EconomicsEconomics Plant CapacityPlant Capacity

((tonnetonne/h) (mill gal/yr)/h) (mill gal/yr)Plant CapacityPlant Capacity

City PopulationCity Population

2 1.5 40,0002 1.5 40,0001010 7.67.6 200,000200,00040 30.3 800,00040 30.3 800,000

160 121.2 3,200,000160 121.2 3,200,000800 606.2 16,000,000800 606.2 16,000,000

Base Base CaseCase

Capital Cost of Each Section (mill $)(40 tonne/h) Capital Cost of Each Section (mill $)(40 tonne/h)

PretreatPretreat/ / Dewater Dewater Thermal HydrogenThermal HydrogenFerment Ferment ConvConv

10.610.6

4.04.0 4.14.1

1.31.3

Total = $20 millTotal = $20 mill

Effect of Feedstock Cost( 40 tonne/h, 15% ROI)Effect of Feedstock Cost( 40 tonne/h, 15% ROI)

-40 -20 0 20 40Biomass Cost ($/tonne)

1.00

0.80

0.60

0.40

0.20

0.00

Alc

ohol

Sel

ling

Pric

e ($/

gal)

30 g/L, 10-effect

50 g/L, 20-effect

70 g/L, 30-effect

Fuels and Sugar from Energy Cane Productivity in Puerto Rico(dry ton/(acre·yr))Productivity in Puerto Rico(dry ton/(acre·yr))

Energy Cane

Source: Alex Alexander, The Energy Cane Alternative, Sugar Series 6, Elsevier

Sugar

BiomassFiber

ConventionalSugarcane

5.8

8.8

14.6

9

21

30

40%

60%

70%

30%

Page 12: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Energy Cane ProcessingEnergy Cane Processing

Energy Cane Extract

Sugar Mill

MixAlcoProcess

Sugar

AlcoholFuel

Sugar

BiomassFiber

Residue(Boiler Fuel)

Fuels from Energy Cane(no sugar credit)

Required AreaRequired Area

Scale = 800 tonne/h

Feedstock yield = 30 ton/(acre·yr)

acre 000,23530

acre·yrtonne

ton1.1yr

h 8000h

tonne800 Area =×××=

= 366 mi2

Centralized ProcessingCentralized Processing

15.3 mi50% of area planted

Supply US Gasoline Consumption Supply US Gasoline Consumption

plants 248alc gal 10 629

plant·yrgas gal

alc gal 2.1yr

gas gal 10 130 Plants 6

9=

××××=

22

mi 900,90plant

mi 366plants 248 Area =×=

100% planted 302 mi

Effect of Automotive EfficiencyEffect of Automotive Efficiency

302 mi1× better (Current)

2× better

3× better

213 mi

174 mi

Page 13: Environmental Ethics by Mark Holtzapple -- Mixalco Ppt

Land required in BrazilLand required in Brazil

1 × 2 × 3 ×

Sweet SorghumSweet Sorghum

Grows in ~35 US states

William Rooney, Soil and Crop Sciences, Texas A&M University

Yield = 20–25 dry ton/(acre·yr)

100% planted 345 mi1×

Land Area in United StatesLand Area in United States

1× 2× 3×