68
Enumeration of Flags in Eulerian Posets Louis Billera Cornell University, Ithaca, NY 14853 ***** Conference on Algebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005

Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Enumeration of Flags in Eulerian Posets

Louis Billera

Cornell University, Ithaca, NY 14853

* * * * *Conference on

Algebraic and Geometric CombinatoricsAnogia, Crete

20-26 August, 2005

Page 2: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Lecture I: Faces in polytopes and chains in posets

Lecture II: Enumeration algebra, quasisymmetric functions and

the peak algebra

Lecture III: Applications: arrangements, convex closures and

Coxeter groups

Page 3: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Lecture I: Faces in polytopes and chains in posets

• f-vectors of convex polytopes and the g-theorem

• flag f-vectors of graded posets

• Eulerian posets and the cd-index

• Convolutions of flag f-vectors

1

Page 4: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Preamble on f-vectors of polytopes

For a d-dimensional convex polytope Q, let

fi = fi(Q) = the number of i-dimensional faces of Q

f0 = the number of vertices,

f1 = the number of edges,...

fd−1 = the number of facets (or defining inequalities)

The f-vector of Q f(Q) = (f0, f1, . . . , fd−1)

Problem: Determine when a vector f = (f0, f1, . . . , fd−1)

is f(Q) for some d-polytope Q.

d = 2: Exercise

d = 3: Steinitz (1906)

d ≥ 4: open

2

Page 5: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Simplicial polytopes

A polytope is simplicial if all faces are simplices (equiv: verticesare in general position)

The h-vector (h0, . . . , hd) of a simplicial d-polytope is defined bythe polynomial relation

d∑i=0

hixd−i =

d∑i=0

fi−1(x− 1)d−i.

The corresponding g-vector (g0, . . . , gbd/2c) is defined by g0 = 1and gi = hi − hi−1, for i ≥ 1.

The h-vector and the f-vector of a polytope mutually determineeach other via the formulas (for 0 ≤ i ≤ d):

hi =i∑

j=0

(−1)i−j(d− j

i− j

)fj−1 ,

fi−1 =i∑

j=0

(d− j

i− j

)hj ,

3

Page 6: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The g-Theorem

Theorem(BL/S,1980): (h0, h1, . . . , hd) is the h-vector of a sim-plicial convex d-polytope if and only if

hi = hd−i (Dehn-Sommerville equations)

for all i, and gi = hi − hi−1, 0 ≤ i ≤⌊d2

⌋, satisfy

gi ≥ 0 (Generalized Lower Bound Thm)

and

gi+1 ≤ g〈i〉i (Macaulay-McMullen conditions)

for i ≥ 1.

Note: The last conditions derive from (but are not quite thesame as) the conditions of Kruskal and Katona for f-vectors ofgeneral simplicial complexes, but with gi in place of fi.

Equivalently, the gi’s are a Hilbert function. Necessity proof(Stanley) depends on producing a commutative ring with thisHilbert function.

4

Page 7: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

General polytopes

For general convex polytopes, the situation for f-vectors is much

less satisfactory.

1) The only equation they all satisfy is the Euler relation

f0 − f1 + f2 − · · · ± fd−1 = 1− (−1)d

2) Already in d = 4, we do not know all linear inequalities on

f-vectors.

3) There is little hope at this point of giving an analog to the

Macaulay-McMullen conditions.

A possible solution is to try to solve a harder problem: count

not faces, but chains of faces.

5

Page 8: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Flag f-vectors of Polytopes (first pass)

For a d-dimensional polytope Q and a set S of possible dimen-sions, define fS(Q) to be the number of chains of faces of Q

having dimensions prescribed by the set S.

The function

S 7→ fS(Q)

is called the flag f-vector of Q.

• It includes the f-vector, by counting chains of one element:(fS : |S| = 1).

• It has a straightforwardly defined flag h-vector that turns outto be a (finely graded) Hilbert function.

• It satisfies an analog of the Dehn-Sommerville equations, whichcut their dimension down to the Fibonacci numbers (comparedto

⌊n2

⌋).

• And more ...6

Page 9: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Face Lattices of Polytopes

The best setting in which to study the flag f-vector or a d-

polytope Q is that of its lattice of faces P = F(Q), a graded

poset of rank d + 1

Q

e

�����������E

EEEEEEEEEE

@@

@@

@@

@@

a b

cd

��

��

����

��

��

P = F(Q)

ab

��

��

...........................................................................

cc

ccc

��

��

��

AAAAAA

ee

ee

ee

��

��

��

��

SS

SS

SS

ll

ll

lll

��

��

��

���

AAAAAA

@@

@@

@@

""

""

""

""

""

BBBBBB

����

�������

##

##

##

#

JJ

JJ

JJ

SS

SS

bb

bb

bbb

@@

@@

bb

bb

bb

bb ..........................................................................................

,,

,,

, bb

bb

bb

b�����

�����

��

��ZZ

ZZ

ZZ

@@

@@%

%%

%%

HHHHHH

HH

HHHHH

HHHH

ll

ll

l��

��

��B

BBBB@

@@

@@��

�����

HHHH

HHHH""

""

""

"

abcd abe bce cde ade

bc cd ad ae be ce de

a b c d

e

Q���

�����

7

Page 10: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Flag f-vectors of Graded Posets

P a graded poset (with 0 and 1) of rank n + 1,with rank function ρ : P → N.

Flag f-vector is the function S 7→ fS = fS(P ),where for S = {i1, . . . , ik} ⊂ [n] := {1, . . . , n},

fS = #{y1 < y2 < · · · < yk | yj ∈ P, ρ(yj) = ij}

To begin to understand flag f-vectors of convex polytopes, itmight be helpful to first be able to answer:

Question 1: Determine all flag f-vectors of graded posets,

Question 1a: Determine all linear inequalities satisfied by flagf-vectors of graded posets.

The former is a Kruskal-Katona analog and remains open. Thelatter are DS and GLB analogs for graded posets. They havecomplete solutions (B & Hetyei, 1998).

8

Page 11: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Eulerian Posets

P is Eulerian if for all x < y ∈ P ,

µ(x, y) = (−1)ρ(y)−ρ(x)

where µ is the Mobius function of P .

(Equivalently, number of elements of even rank in [x, y] = numberof elements of odd rank.)

• Face posets of polytopes and spheres are Eulerian.

Again, two natural questions arise:

Question 2: Determine all flag f-vectors of Eulerian posets,

Question 2a: Determine all linear inequalities satisfied by flagf-vectors of Eulerian posets.

• The linear equations are known: For Eulerian posets, onlyFibonacci many fS are linearly independent.

9

Page 12: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Generalized Dehn-Sommerville Equations

There are 2n flag numbers fS, S ⊂ [n] for graded posets of rank

n + 1. For Eulerian posets, these are not independent:

n= 0: f∅

n= 1: f∅, f{1} but f{1} = 2f∅ (Euler relation)

n= 2: f∅, f{1}, f{2}, f{1,2} but f{1} = f{2} (Euler relation) and

f{1,2} = 2f{2}

n= 3: f∅, f{1}, f{2}, f{3}, f{1,2}, . . . , f{1,2,3} but

f{1} − f{2}+ f{3} = 2f∅ (Euler relation), f{1,2} = 2f{2}, etc.

n=4: f∅, f{1}, f{2}, f{3}, f{1,3}

The relevant relations for P are all derived from Euler relations

in P and in intervals [x, y] of P . Details later ...

10

Page 13: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The cd-index for Eulerian posets

For S ⊂ [n] let the flag h-vector be defined by

hS =∑

T⊂S

(−1)|S|−|T |fT

and for noncommuting indeterminates a and b let uS = u1u2 · · ·un,

where

ui =

b if i ∈ S

a if i /∈ S

Let c = a + b and d = ab + ba. Then for Eulerian posets, the

generating function

ΨP =∑S

hS(P )uS

is always a polynomial in c and d; this polynomial ΦP (c,d) is

called the cd-index of P .

11

Page 14: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

cd monomials and cd coefficients

• If P has rank n + 1 then the degree of ΦP (c,d) is n.

• There are Fibonacci many cd monomials of degree n.

• Write ΦP =∑

w [w]P w over cd-words w.

Stanley: [w]P ≥ 0 for polytopes (S-shellable CW spheres)

Karu: [w]P ≥ 0 for all Gorenstein∗ posets.

• B , Ehrenborg & Readdy: Among all n-dimensional zonotopes,

the cd-index is termwise minimized on the n-cube Cn.

• B & Ehrenborg: Among all n-dimensional polytopes, the cd-

index is termwise minimized on the n-simplex ∆n.

12

Page 15: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

An example: The Boolean algebra B3

Ex. For P = B3 = 2[3],

cw w w

wwww

��

���

��

���

HHHHHH

HHH

@@

@@@

��

���

@@

@@@�

��

��

��

��

��

��� S

SS

SS

SS

SS

{a, b, c}

{a, c} {a, b} {b, c}

{a} {c}

{b}= faces of

a b

w

f∅ = 1, f{1} = 3, f{2} = 3, f{1,2} = 6 so

h∅ = 1, h{1} = 2, h{2} = 2, h{1,2} = 1, and so

ΨP = aa + 2ba + 2ab + bb

= (a + b)2 + (ab + ba)

= c2 + d = ΦP

13

Page 16: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Convolutions of flag f-vectors

Notation: Write f(n)S , S ⊂ [n−1], when counting chains in a poset

of rank n.

Given f(n)S and f

(m)T , S ⊂ [n − 1], T ⊂ [m − 1] and P a poset of

rank n + m, define

f(n)S ∗ f

(m)T (P ) =

∑x∈P : r(x)=n

f(n)S ([0, x]) · f(m)

T ([x, 1])

Claim: f(n)S ∗ f

(m)T = f

(n+m)S∪{n}∪(T+n)

where T + n := {x + n | x ∈ T}

14

Page 17: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

If rank P is n + m

f(n)S ∗ f

(m)T (P ) =

∑x∈P : r(x)=n f

(n)S ([0, x]) · f(m)

T ([x, 1])

[0,x]

�����������

�����������

�����������

�����������

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

x

0

1

P

[x,1]

f(n)S ∗ f

(m)T = f

(n+m)S∪{n}∪(T+n)

Ex. f(2){1} ∗ f

(3){2} = f

(5){1,2,4}

f(2)∅ ∗ f

(3)∅ = f

(5){2}

15

Page 18: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Convolved Inequalities

Kalai: If F =∑

αS f(n)S , G =

∑βS f

(m)S where

F (P1) ≥ 0 and G(P2) ≥ 0

for all polytopes (graded posets, Eulerian posets) P1 and P2 of

ranks n and m, respectively, then

F ∗G(P ) ≥ 0

for all polytopes (graded posets, Eulerian posets) P of rank n+m

Ex. Polygons have at least 3 vertices, so

f(3){1} − 3f

(3)∅ ≥ 0

for all polygons (rank = dimension + 1). Thus(f(3){1} − 3f

(3)∅

)∗ f

(1)∅ = f

(4){1,3} − 3f

(4){3} ≥ 0

for all 3-polytopes (number of vertices in 2-faces ≥ 3 times the

number of 2-faces).

16

Page 19: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Derived Inequalities for Polytopes

Most of the inequalities described earlier are of the form

F (P ) =∑

αS f(n)S (P ) ≥ 0

and so can be convolved to give further inequalities. For exam-

ple:

Let w = cn1dcn2dcn3 · · · cnpdcnp+1 be a cd-word, and define m0, . . . , mp

by m0 = 1 and mi = mi−1 + ni +2. Then the coefficient of w in

the cd-index is given by∑i1,...,ip

(−1)(m1−i1)+(m2−i2)+···+(mp−ip) ki1i2···ip

where the sum is over all p-tuples (i1, i2, . . . , ip) such that mj−1 ≤ij ≤ mj − 2 and

kS =∑

T⊆S

(−2)|S|−|T | fT

17

Page 20: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

cd coefficients as forms

The cd-indices for posets of ranks 1–5:

f(1)∅

f(2)∅ c

f(3)∅ c2+

(f(3){1} − 2f

(3)∅

)d

f(4)∅ c3+

(f(4){1} − 2f

(4)∅

)dc+

(f(4){2} − f

(4){1}

)cd

f(5)∅ c4+

(f(5){1} − 2f

(5)∅

)dc2

(f(5){2} − f

(5){1}

)cdc

+(f(5){3} − f

(5){2} + f

(5){1} − 2f

(5)∅

)c2d

+(f(5){1,3} − 2f

(5){3} − 2f

(5){1} + 4f

(5)∅

)d2

18

Page 21: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Relations on the fS

Polytopes of dimension d− 1 (Eulerian posets of rank d) satisfy

the Euler relations:

f(d)∅ − f

(d){1}+ f

(d){2} − · · ·

· · ·+ (−1)d−1f(d){d−1}+ (−1)df

(d)∅ = 0

Thm (Bayer & B.): All linear relations on the f(d)S for polytopes,

and so for Eulerian posets, come from these via convolution.

Proof consists of producing Fibonacci many polytopes whose

flag f-vectors span. These can be made by considering repeated

pyramids (P ) and prisms (B) starting with an edge, never taking

two B’s in a row. (Count the number of words of length d − 1

in P and B with no repeated B, get Fibonacci number.)

19

Page 22: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Lecture I: Faces in polytopes and chains in posets

Lecture II: Enumeration algebra, quasisymmetric functions and

the peak algebra

Lecture III: Applications: arrangements, convex closures and

Coxeter groups

Page 23: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Lecture II: Enumeration algebra, quasisymmetric functions and

the peak algebra

• The enumeration algebra over Eulerian posets

• Quasisymmetric functions and P -partitions

• The quasisymmetric function of a graded poset

• Peak quasisymetric functions and enriched P -partitions

• Connection to the enumeration algebra via Hopf algebra du-

ality

20

Page 24: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Subsets ←→ Compositions

Let [n] := {1, . . . , n}. Then β = (β1, . . . , βk) |= n + 1 means eachβi > 0, and β1 + · · ·+ βk = n + 1.

β = (β1, . . . , βk) |= n + 1

l

S(β) := {β1, β1 + β2, . . . , β1 + · · ·+ βk−1} ⊂ [n]

and

S = {i1, i2, . . . , ik−1} ⊂ [n]

l

β(S) := (i1, i2 − i1, i3 − i2, . . . , n + 1− ik−1) |= n + 1

21

Page 25: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Enumeration algebras

Let A = Q〈y1, y2, . . . 〉 = A0 ⊕A1 ⊕A2 · · · be the free associativealgebra on noncommuting yi, deg(yi) = i.

Via the association

yβ := yβ1· · · yβk

β = (β1, . . . , βk) |= n + 1

l

fS(β) = fS S ⊂ [n]

multiplication in A is the analogue of Kalai’s convolution of flagf-vectors, in which

f(n)S ∗ f

(m)T = f

(n+m)S∪{n}∪(T+n)

This corresponds to summing over faces or links of a fixed rank.

Ex. f(3){1} = y1 y2 so

f(3){1} ∗ f

(3){1} = y1 y2 y1 y2 = f

(6){1,3,4}

22

Page 26: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Euler elements of An+1

F ∈ An ←→ functionals on graded posets

of rank n,

i.e., expressions of the form∑

S⊂[n−1] αSf(n)S .

Ex. As an element of A4

2y4 − y1y3 + y2y2 − y3y1 =

2f(4)∅ −f

(4){1} + f

(4){2} − f

(4){3}

the Euler relation for posets of rank 4.

For k ≥ 1 define in Ak

χk :=∑

i+j=k

(−1)iyiyj =k∑

i=0

(−1)if(k)i ,

the kth Euler relation, where y0 = 1 and f(k)0 = f

(k)k = f

(k)∅ .

23

Page 27: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Eulerian Enumeration Algebra

Ex. In A4

χ4 = y0y4 − y1y3 + y2y2 − y3y1 + y4y0

Let

IE = 〈χk : k ≥ 1〉 ⊂ A

2-sided ideal of all relations on Eulerian posets

AE = A/IE

algebra of functionals on Eulerian posets.

Theorem (B. & Liu): As graded algebras,

AE∼= Q〈y1, y3, y5, . . . 〉

(“odd jump” algebra), and so dimQ(AE)n is the nth Fibonacci

number.

24

Page 28: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Quasisymmetric functions

Let Q ⊂ Q[[x1, x2, . . . ]] the algebra of quasisymmetric functions

Q := Q0 ⊕Q1 ⊕ · · ·

where

Qn := span{Mβ | β = (β1, . . . , βk) |= n}

Mβ :=∑

i1<i2<···<ik

xβ1i1

xβ2i2· · ·xβk

ik.

Here M0 = 1 so Q0 = Q; otherwise k > 0, each βi > 0, and

β1 + · · ·+ βk = n.

Ex. (1,2,1) |= 4 and

M(1,2,1) =∑

i1<i2<i3

x1i1

x2i2

x1i3

25

Page 29: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Relabel Mβ: For S ⊂ [n], define

MS = M(n+1)S := Mβ(S)

Ex. If S = {1,3} ⊂ [3] then β = (1,2,1) |= 4 and so

M{1,3} = M(4){1,3} = M(1,2,1)

Note: Quasisymmetric functions arise naturally as weight enu-

merators of P -partitions of labeled posets (Gessel).

In this context, a more natural basis arises as weight enumerators

of labeled chains:

LS =∑

T⊃S

MT

Here S ⊂ T ⊂ [n] and S is the descent set of the labeling.

26

Page 30: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

P -partitions

P = {1 < 2 < 3 < · · · } positive integers,

P an arbitrary poset and γ : P −→ [n] a 1-1 labeling of P , wheren = |P |.

A P -partition is an order preserving function

f : P −→ Pthat is nearly strict, i.e.,

p < q ⇒

f(p) < f(q) or

f(p) = f(q) and γ(p) < γ(q)

Ex. 1) P = n-element chain (naturally labeled): P -partitions arepartitions f(1) ≤ f(2) ≤ · · · ≤ f(n) of f(1) + f(2) + · · ·+ f(n).

Ex. 2) P = n-element antichain: P -partitions are compositions(f(1), f(2), . . . , f(n)) of f(1) + f(2) + · · ·+ f(n).

27

Page 31: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Weight Enumerators

Weight enumerator of all P -partitions

Γ(P, γ) =∑f

P−partition

∏p∈P

xf(p)

Proposition(Gessel):

1. If |P | = n, then

Γ(P, γ) ∈ Qn.

2. For P a chain labeled γ(1), γ(2), . . . , γ(n), Γ(P, γ) dependsonly on the descent set of γ, in fact,

Γ(P, γ) = LS,

where

S = {i | γ(i) > γ(i + 1)}.

28

Page 32: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Shuffle Product on Q

Poset sum P + Q: x ≤P+Q y ⇐⇒

x, y ∈ P, x ≤P y or x, y ∈ Q, x ≤Q y

Proposition:

Γ((P, γ) + (Q, δ)

)= Γ(P, γ) · Γ(Q, δ)

and so LS · LT =∑

R LR, where the sum is over all descent sets

of shuffles of a sequence with descent set S with one having

descent set T .

Ex.

L(2){1} · L

(2){1} = L

(4){1,2,3}+ 2L

(4){1,3}

+ L(4){1,2}+ L

(4){2}+ L

(4){2,3}

29

Page 33: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Shuffle Example: L(2){1} · L

(2){1}

Both 21 and 43 have descent set {1}, so consider the six shuffles

of these two sequences and their descent sets:

2143 {1,3}2413 {2}2431 {2,3}4231 {1,3}4213 {1,2}4321 {1,2,3}

Thus

L(2){1} · L

(2){1} = L

(4){1,2,3}+ 2L

(4){1,3}

+ L(4){1,2}+ L

(4){2}+ L

(4){2,3}

30

Page 34: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Connection to flag f-vectors

Given graded poset P with rank function ρ(·), we associate theformal quasisymmetric function

F (P ) =∑

0=t0≤t1≤···≤tk=1

xρ(t0,t1)1 x

ρ(t1,t2)2 · · ·xρ(tk−1,tk)

k

with the sum over all multichains in P and ρ(x, y) = ρ(y)− ρ(x).

F (P ) ∈ Qρ(P )

Ehrenborg: This association is multiplicative, in the sense that

F (P1 × P2) = F (P1) · F (P2).

In this context, changing invariants for P corresponds to chang-ing basis in Q:

F (P ) =∑S

fS(P )MS

=∑S

hS(P )LS

31

Page 35: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The algebra of Peak Functions

For a cd-word w of degree n,

w = cn1dcn2d · · · cnkdcm

(deg c = 1, degd = 2), let

Iw = {{i1 − 1, i1}, {i2 − 1, i2}, . . . , {ik − 1, ik}},

where ij = deg(cn1dcn2d · · · cnjd).

b[Iw] = {S ⊂ [n] | S ∩ I 6= ∅, ∀I ∈ Iw}

The peak algebra Π is defined to be the subalgebra of Q gener-

ated by the peak quasisymmetric functions

Θw =∑

T∈b[Iw]

2|T |+1MT ,

where w is any cd-word (including empty cd-word 1, for which

I1 = ∅). Fibonacci many!

32

Page 36: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Why Π?

Stembridge: Peak quasisymmetric functions arise naturally as

weight enumerators of enriched P -partitions of labeled posets,

where we associate

w = cn1dcn2d · · · cnkdcm

a cd-word of degree n (deg c = 1, degd = 2)

l

Sw = {i1, i2, . . . , ik} ⊂ [n]

where ij = deg(cn1dcn2d · · · cnjd).

Stembridge considers the basis for Π to be indexed by sets S

of the form Sw. In this context, his basis ΘS arises as weight

enumerators of labeled chains, where S is the peak set of the

labeling. (A peak is a descent preceded by an ascent.)

33

Page 37: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Enriched P -partitions

Z∗ = {−1 < 1 < −2 < 2 < −3 < 3 < · · · } nonzero integers,

P an arbitrary poset and γ : P −→ [n] a 1-1 labeling of P , wheren = |P |.

An enriched P -partition is an order preserving function

f : P −→ Z∗

that is nearly strict, i.e.,

p < q ⇒

f(p) < f(q) or

f(p) = f(q) > 0 and γ(p) < γ(q)

f(p) = f(q) < 0 and γ(p) > γ(q)

Weight enumerator of all enriched P -partitions

∆(P, γ) =∑

f enrichedP−partition

∏p∈P

x|f(p)|

34

Page 38: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Peak Sets

Proposition(Stembridge):

• If |P | = n, then

∆(P, γ) ∈ Πn.

• For P a chain labeled γ(1), γ(2), . . . , γ(n), ∆(P, γ) depends onlyon the peak set of γ, in fact,

∆(P, γ) = ΘS,

where

S = {i | γ(i− 1) < γ(i) > γ(i + 1)}.

• If Πn = Π∩Qn, then dimQ(Πn) = an, the nth Fibonacci number(indexed so a1 = a2 = 1).

• Multiplication of the ΘS has a shuffle interpretation, but thistime in terms of peaks.

35

Page 39: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Brief interlude on dual Hopf algebras

The product on an algebra A can be viewed as a linear map

A⊗A −→ A, a⊗ b 7→ a · b

A coalgebra C has instead a coproduct

C −→ C ⊗ C

A Hopf algebra H has both (and more).

In the dual vector space H∗ to a Hopf algebra H, the adjoint of

the product on H

H∗ ⊗H∗ ←− H∗

gives a coproduct on H∗, and the adjoint of the coproduct on H

H∗ ←− H∗ ⊗H∗

gives a product on H∗, making H∗ a Hopf algebra as well.

36

Page 40: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Coproducts on A and Q

Π and AE both have Fibonacci Hilbert series; not isomorphic (Π

commutative, AE not).

Bergeron, Mykytiuk, Sottile, van Willigenburg: coproducts on Qand A

∆(Mβ) =∑

β=β1·β2

Mβ1⊗Mβ2

∆(yk) =∑

i+j=k

yi ⊗ yj

extend to coproducts on Π and AE, resp.

Ex.

∆(M(2,1,1)

)= 1⊗M(2,1,1) + M(2) ⊗M(1,1)+ M(2,1) ⊗M(1) + M(2,1,1) ⊗ 1

∆(y2) = 1⊗ y2 + y1 ⊗ y1 + y2 ⊗ 1

37

Page 41: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Hopf Duality

Theorem (BMSV): These coproducts make Π and AE into a dual

pair of Hopf algebras.

For graded poset P , recall the formal quasisymmetric function

F (P ) =∑

0=t0≤t1≤···≤tk=1

xρ(t0,t1)1 x

ρ(t1,t2)2 · · ·xρ(tk−1,tk)

k =∑S

fS(P )MS

Corollary: If P is Eulerian, then F (P ) ∈ Π.

Question: How to represent F (P ) in terms of the basis of peak

functions {Θw} for Π?

Equivalently, what is the dual basis in AE to the basis {Θw}?

38

Page 42: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Theorem(B.,Hsiao & van Willigenburg): If P is any Eulerian

poset, then

F (P ) =∑w

1

2|w|d+1[w]P Θw,

where the [w]P are the coefficients of the cd-index of P and |w|dis the number of d’s in w.

Corollary: The elements

1

2|w|d+1[w] ∈ AE

form a dual basis to the basis Θw in Π.

As a consequence of a result of B., Ehrenborg and Readdy, we

get a slick way to see the relationship between enumerative in-

variants of hyperplane arrangements and zonotopes and those of

the associated geometric lattices.

39

Page 43: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Lecture I: Faces in polytopes and chains in posets

Lecture II: Enumeration algebra, quasisymmetric functions and

the peak algebra

Lecture III: Applications: arrangements, convex closures and

Coxeter groups

Page 44: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Lecture III: Applications: arrangements, convex closures and

Coxeter groups

• The Stembridge map Q −→ Π

• Geometric lattices and arrangements

• Meet distributive lattices and convex closures

• Kazhdan-Lusztig polynomials of Coxeter groups

40

Page 45: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

From Descents to Peaks

Peaks

Descents

Ascents

41

Page 46: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The Stembridge map ϑ

Consider the (algebra) map

ϑ : Q −→ Π

defined by associating the weight enumerator of P -partitions to

that of enriched P -partitions for the same labeled poset (P, γ);

considering chains, we get

ϑ(LS) = ΘΛ(S),

where for S ⊆ [n],

Λ(S) = {i ∈ S | i 6= 1, i− 1 /∈ S}.

Note that if S is a descent set then Λ(S) is the associated peak

set.

Proposition: If poset P has a nonnegative flag h-vector (say,

if P is Cohen-Macaulay), then ϑ(F (P )) has a nonnegative “cd-

index”.42

Page 47: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Arrangements of hyperplanes

Six planes in general position in R3

A B C D

The number of i-gons in each:

i A B C D3 20 14 12 124 0 12 16 185 12 6 4 06 0 0 0 2

All different, yet each has 32 regions (in fact, each has same flag

f-vector).

43

Page 48: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The braid arrangement for S4

��� ��

� ��2

3

1

2413 2431

2341

23142134

2143

1243

1234

13243124

3214

3412

3421

314213421432

1423

3241

1-2

2-4

2-3

3-4

1-4

1-3

Planes:(42

)= 6 of the form xi = xj (i < j)

Regions: sortings of the coordinates and so correspond to oneof the 4! = 24 permutations

44

Page 49: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The cd-index of zonotopes and arrangements

Let z1, z2, . . . , zm ∈ Rn and let L be the geometric lattice of sub-spaces spanned by subsets of the z′is, ordered by inclusion.

L is graded, and so is L ∪ 0 (add a new 0 to L, increasing therank by one). Thus

F (L ∪ 0) ∈ Q.

Now consider the arrangement H of m hyperplanes {H1, H2, . . . , Hm}in Rn having normals

z1, z2, . . . , zm

Note that L can be seen as the lattice of all intersections of thehyperplanes Hi, ordered by reverse inclusion (the “intersectionlattice”).

H carves the (n − 1)-sphere in Rn into regions, that can beordered by inclusion (and so the resulting graded poset H has aflag f-vector).

45

Page 50: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

The dual zonotope

Dual to the arrangement H is a zonotope

Z = [−z1, z1] + [−z2, z2] + · · ·+ [−zm, zm]

z2

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc#

##

##

##

##

##

##

##

#cc

cc

cc

cc

cc

cc

cc

cc

##

##

##

##

##

##

##

##cc

cc

cc

cc

cc

cc

cc

cc #

##

##

##

##

##

##

##

#z3

−z2

−z1

−z3

z1

##

##

##

##

##

##

##

##

whose lattice of faces F(Z) is Eulerian. Thus

F (Z) := F (F(Z)) ∈ Π.

46

Page 51: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Geometric Lattice → Lattice of Regions

In the 70’s, Tom Zaslavsky showed how interesting enumerative

invariants of arrangements can be obtained from the simpler

underlying geometric lattice. For example, the Mobius function

of L determines the numbers of regions of H (the f-vector).

Later, Bayer-Sturmfels showed that L determines the flag f-

vector of H.

Recently B , Ehrenborg, Readdy + B , Hsiao, vanWilligenburg

made this determination explicit via the descents-to-peaks map

ϑ as

Theorem: ϑ(F (L ∪ 0)

)= 2 F (Z).

47

Page 52: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Labeling Chains in Geometric Lattices

L geometric lattice, of rank n, x <· y in L cover relation (∃ no

z ∈ L, x < z < y)

Then y = x ∨ a where a is an atom in L (a ·> 0)

Totally order the atoms in L:

z1 < z2 < · · · < zm or H1 < H2 < · · · < Hm

and label the cover relation x <· y by the least i such that the

atom ai satisfies y = x ∨ ai.

In L ∪ 0, label the additional cover relation 0 ·> 0 by a smallest

label 0.

As a result, every maximal chain C in L ∪ 0 has received a se-

quence `(C) = (a0, a1, . . . , an) of labels from the set {0, 1, 2, . . . ,m},with a0 = 0.

48

Page 53: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Descents and Peaks in `(C)

For each chain C in L∪ 0, the label sequence `(C) has a descentset and a peak set.

Bjorner-Stanley (R-labeling): If hS denotes the number of max-imal chains C in L ∪ 0 with descent set S, then

F (L ∪ 0) =∑S

hS LS.

BER + BHvW: If tS denotes the number of maximal chains C

in L ∪ 0 with peak set S, then

F (Z) =1

2

∑S

tS ΘS.

This is, perhaps, the most explicit description of the relation

ϑ(F (L ∪ 0)

)= 2 F (Z).

However, a simple understanding of why this works is yet to be.

49

Page 54: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Example: Boolean lattice → Cube

If zi = ei, where e1, e2, e3 are the coordinate vectors in R3, then

L = B3, the Boolean algebra, and

Z = 3-cube (H = coordinate arrangement)

The labeling scheme assigns all π ∈ S3 to B3 and so to B3 ∪ 0the labels

0123, 0132, 0213, 0231, 0312, 0321.So

F (L ∪ 0) = L∅+ 2L{2}+ 2L{3}+ L{2,3}.

and

ϑ(F (L ∪ 0)

)= Θ∅+ 3Θ{2}+ 2Θ{3}

= 2(1

2Θc3 +

6

4Θdc +

4

4Θcd

)⇒ cd-index of the 3-cube is c3 + 6dc + 4cd and that of the

coordinate arrangement is (via w 7→ w∗, reversal of cd words)

c3 + 4dc + 6cd.

50

Page 55: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Other examples where ϑ (F (Q)) = 2 F (P )?

Hsiao: If L is a distributive lattice then

ϑ(F (L ∪ 0)

)= 2 F (L)

for some shellable Eulerian poset L.

This L is the face poset of a regular CW-sphere.

More generally (B , Hsiao & Provan), if L is meet-distributive,

(closed subsets of an anti-exchange closure [Edelman, et al.]),

e.g., the lattice of convex subsets of a finite subset of Euclidean

space:

ϑ(F (L∗ ∪ 0)

)= 2 F (L)

51

Page 56: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Order complex of a distributive lattice

Let L be a distributive lattice: L = J(P ), where J(P ) is the

lattice of order ideals in a poset P , ordered by inclusion.

The order complex ∆(L) is the simplicial complex on the ele-

ments of L with simplices being the chains of L.

Provan: ∆(L \ 0) can be obtained from a (|P | − 1)-simplex by a

sequence of stellar subdivisions:

∆<c>

<b> <a,c>

<b,c>

<a>Pca

b

<b>

<c>

<a>

<b,c><a,c>

L=J(P)< >

52

Page 57: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

To construct the sphere with face poset L:• Reflect the order complex into the boundary of the crosspoly-tope;• equivalently, do Provan construction over the boundary of the|P |-dimensional crosspolytope.

Resulting simplicial polytope is the barycentric subdivision ∆(L)of the regular CW-sphere with face poset L.

<b,−c>

<a>

<c>

<b>

<a,c>

<b,c>

<−a,c>

<−a,−c>

<−a>

<−c>

<a,−c>

F (L ∪ 0) = L∅+ L{2}+ L{3}ϑ(F (L ∪ 0)

)= Θ∅+ Θ{2}+ Θ{3}= 2F (L)

53

Page 58: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Example: convex subsets of three collinear points a < b < c.

{b,c}

{a,b,c}

{a,b}

{a} {c}

0

{b}

L L

F (L∗ ∪ 0) = L∅+ L{2}+ 2L{3}

ϑ(F (L∗ ∪ 0)

)= Θ∅+ Θ{2}+ 2Θ{3}= 2F (L∗)

54

Page 59: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Comments and possible extensions

• For any oriented matroid with geometric lattice L, ϑ(F (L ∪ 0)

)gives the cd-index of the associated pseudoplane arrange-

ment.

• Swartz: For nonorientable matroids L, there is an arrange-

ment of homotopy spheres having L as intersection lattice.

– Conjecture: F (L ∪ 0) gives a lower bound for the flag

f-vector in this case.

(Equality ⇔ L orientable??)

• Does ϑ(F (L ∪ 0)

)= 2 F (P ) hold for any semimodular lat-

tice?

55

Page 60: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Coxeter Groups (work with F. Brenti)

A Coxeter group is a group W generated by a set S with the

relations

• s2 = e for all s ∈ S (e = identity),

• and otherwise only relations of the form

(ss′)m(s,s′) = e,

for s 6= s′ ∈ S with m(s, s′) = m(s′, s) ≥ 2.

Examples include the symmetry groups of regular polytopes (and

so the symmetric groups) and much more (see Bjorner-Brenti,

Combinatorics of Coxeter Groups, Springer, 2005).

56

Page 61: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Bruhat order on (W, S)

Each v ∈W can be written v = s1s2 · · · sk with si ∈ S

If k is minimal among all such expressions for v, then

s1s2 · · · sk is called a reduced expression for v and

k = l(v) is called the length of v.

Bruhat order on (W, S): if v = s1s2 · · · sk is a reduced expression

for v, then u ≤ v for u ∈W if some reduced expression for u is a

subword u = si1si2 · · · si` of v.

Fact: for each u ≤ v ∈W the Bruhat interval [u, v] is an Eulerian

poset of rank l(v)− l(u)

57

Page 62: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

R-polynomials

H(W ) the Hecke algebra associated to W : the free Z[q, q−1]-

module having the set {Tv : v ∈W} as a basis and multiplication

such that for all v ∈W and s ∈ S:

TvTs =

{Tvs, if l(vs) > l(v)qTvs + (q − 1)Tv, if l(vs) < l(v)

H(W ) is an associative algebra having Te as unity. Each Tv is

invertible in H(W ): for v ∈W ,

(Tv−1)−1 = q−l(v) ∑u≤v

(−1)l(v)−l(u) Ru,v(q)Tu ,

where Ru,v(q) ∈ Z[q].

The polynomials Ru,v are called the R-polynomials of W . For

u, v ∈W , u ≤ v, deg(Ru,v) = l(v)− l(u) and Ru,u(q) = 1.

58

Page 63: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Kazhdan-Lusztig polynomials

There is a unique family of polynomials {Pu,v(q)}u,v∈W ⊆ Z[q],

such that, for all u, v ∈W ,

1. Pu,v(q) = 0 if u 6≤ v;

2. Pu,u(q) = 1;

3. deg(Pu,v(q)) ≤ b12 (l(v)− l(u)− 1)c, if u < v;

4.

ql(v)−l(u) Pu,v

(1

q

)=

∑u≤z≤v

Ru,z(q)Pz,v(q) ,

if u ≤ v.

59

Page 64: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Extended quasisymmetric function of a Bruhat interval

For u ≤ v ∈ W , there exists a (necessarily unique) polynomialRu,v(q) ∈ N[q] such that

Ru,v(q) = q12(l(v)−l(u)) Ru,v

(q12 − q−

12

)

For Bruhat interval [u, v], the extended quasisymmetric function

F ([u, v]) :=∑

u=t0≤t1≤···≤tk=v

Rt0t1(x1)Rt1t2(x2) · · · Rtk−1tk(xk),

where, again, the sum is over all multichains in [u, v].

Properties:

• F ([u1, v1]× [u2, v2]) = F ([u1, v1]) F ([u2, v2]),

• F ([u, v]) =∑

α cα(u, v)Mα =∑

α bα(u, v)Lα, where cα and bα

count paths in the Bruhat graph (related to Bruhat order [u, v])

60

Page 65: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

F ([u, v]) is a peak function

Brenti: The cα satisfy the generalized Dehn-Sommerville equa-

tions, so we may conclude:

• F ([u, v]) ∈ Π, in fact

F ([u, v]) ∈ Πl(u,v) ⊕Πl(u,v)−2 ⊕Πl(u,v)−4 ⊕ · · ·

Note: Bruhat order [u, v] is always Eulerian, so F ([u, v]) ∈ Π, but

usually F ([u, v]) 6= F ([u, v]). In fact

F ([u, v]) = F ([u, v]) + lower terms.

Since F ([u, v]) ∈ Π, we define the extended cd-index of [u, v] by

F ([u, v]) =∑w

[w]u,v

[1

2|w|d+1Θw

]=∑w

[w]u,v Θw

where the sum is over all cd-words w

(with deg(w) = `(u, v)− 1, l(u, v)− 3, . . . ).

61

Page 66: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Ballot polynomials and Kazhdan-Lusztig polynomials

Brenti gave an expresion for Pu,v, u < v, in terms of the cα(u, v),

q−l(v)−l(u)

2 Pu,v(q)− ql(v)−l(u)

2 Pu,v

(1

q

)=

∑β∈C

bβ(u, v)[q−|β|2 Υβ(q)

]where Υβ(q) enumerates certain implicitly defined lattice paths.

By expressing this in terms of the extended cd-index of [u, v], the

resulting paths are now explicit, and we can get

Pu,v(q) =bn/2c∑i=0

ai qi Bn−2i(−q)

where

ai = ai(u, v) = [cn−2i]u,v +∑w

(−1)|w|2 +|w|d Cwd [wdcn−2i]u,v

Bk(q) :=∑bk/2c

i=0k+1−2i

k+1

(k+1

i

)qi are the ballot polynomials and

Cw is a product of Catalan numbers (or 0 if w is not even).

62

Page 67: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

Bibliography

1. M.M. Bayer and L.J. Billera, Counting faces and chains in polytopes and posets, inCombinatorics and Algebra, C. Greene, ed., Contemporary Mathematics, vol. 34, Amer.Math. Soc., Providence, 1984.

2. M.M. Bayer and L.J. Billera, Generalized Dehn-Sommerville relations for polytopes,spheres and Eulerian partially ordered sets, Inventiones Math. 79 (1985) 143–157.

3. M.M. Bayer and A. Klapper, A new index for polytopes, Discrete Comput. Geometry 6(1991), 33–47.

4. M.M. Bayer and G. Hetyei, Flag vectors of Eulerian partially ordered sets, Europ. J.Combinatorics 22 (2001), 5–26.

5. N. Bergeron, S. Mykytiuk, F. Sottile and S. van Willigenburg, Non-commutative Pierioperators on posets, J. Comb. Theory Ser. A 91 (2000), 84-110.

6. L.J. Billera and A. Bjorner, Face numbers of polytopes and complexes, Handbook ofDiscrete and Computational Geometry, J.E. Goodman and J. O’Rourke, eds., CRCPress, Boca Raton and New York, 1997.

7. L.J. Billera and R. Ehrenborg, Monotonicity of the cd-index for polytopes, Math. Z.233 (2000), 421–441.

8. L.J. Billera, R. Ehrenborg and M. Readdy, The c2d-index of oriented matroids, J.Comb. Theory Ser. A 80 (1997), 79–105.

9. L.J. Billera and G. Hetyei, Linear inequalities for flags in graded posets, J. Comb.Theory Ser. A 89 (2000), 77–104.

63

Page 68: Enumeration of Flags in Eulerian Posetspi.math.cornell.edu/~billera/lectures/Billera-anogia.pdfAlgebraic and Geometric Combinatorics Anogia, Crete 20-26 August, 2005. Lecture I: Faces

10. L.J. Billera, S.K. Hsiao and J.S Provan, Enumeration in convex geometries and associ-ated polytopal subdivisions of spheres, http://www.arxiv.org/math.CO/0505576; alsoMittag-Leffler Institute, Technical Report, 2005.

11. L.J. Billera and N. Liu, Noncommutative enumeration in graded posets, J. Alg. Com-binatorics 12 (2000), 7–24.

12. A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Math-ematics 231, Springer, New York, 2005.

13. R. Ehrenborg, On posets and Hopf algebras, Adv. in Math. 119 (1996), 1–25.

14. I..M. Gessel, Multipartite P -partitions and inner products of Schur functions, in Combi-natorics and Algebra, C. Greene, ed., Contemporary Mathematics, vol. 34, Amer. Math.Soc., Providence, 1984.

15. S. K. Hsiao, A signed analog of the Birkhoff transform, J. Combin. Theory, Series A,to appear.

16. G. Kalai, A new basis of polytopes, J. Comb. Theory Ser. A 49 (1988), 191–208.

17. R. Stanley, Combinatorics and Commutative Algebra, Second Edition, Birkhauser,Boston, 1996.

18. R. Stanley, Flag f-vectors and the cd-index, Math. Z. 216 (1994), 483–499.

19. R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Math-ematics, Vol. 62, Cambridge University Press, Cambridge, UK, 1999.

20. J. Stembridge, Enriched P -partitions, Trans. Amer. Math. Soc. 349 (1997), 763–788.

21. E. Swartz, Topological representations of matroids, J. Amer. Math. Soc. 16 (2003),427–442.

22. T. Zaslavsky, Facing up to arrangements: Face count formulas for partitions of spaceby hyperplanes, Memiors Amer. Math. Soc., no. 154, American Mathematical Society,Providence, RI, 1975.