19

Ensiling phases Clostridia! anaerob!..but pH sensitive! L. monocytogenes gram-positive facultative anaerobic IN SPOILED SILAGES! E. coli Toxins! Yeast

Embed Size (px)

Citation preview

Ensiling phases

Clostridia!

anaerob!

..but pH sensitive!

L. monocytogenes gram-positive

facultative anaerobic

IN SPOILED SILAGES!

E. coli

Toxins!

Yeast

Aerobic insta-bility!

Moulds

Myco-toxins!

additives

Silage additives

Stimulants inhibitors

substrate suppliers anaerobic

Inoculant enzymes sugars aerobic acids others

Lactic acid cellulase molasses propionic acid formic Sulphur dioxydeBacteria amylasesucroses sulfates mineral formaldehyde

hemicellulases glucoses caproic acid lactic Sodium bisph proteases sorbic acid acetic

pectinases ammonia benzoic acetic acid acrylic propionatescytric

sorbic

Biomin® BioStabil

blend of different homofermentative and heterofermentative bacteria for optimal anaerobic and aerobic stability of silages

homofermentative heterofermentative

lactic acid acetic acid

anaerobic stability aerobic stability

Bacteria

Homofermentative heterofermentative

Lactobacillus acidophilus L. BrevisL.Casei L. BuchneriiL Coryniformis L. cellobiosiosL Planterum L fermentumL salivarius L viridescensPediococcus acidilaticticP damnosusEnterococcus Faeciume. Faeciumlactobacillus

Isolation and characterization of bacteria out of silages

Evaluation and selection of most effective strainsProduction of lactic acid (high amount / very fast)Production of acetic acid Ratio lactic/acetic acid (differentiation homo- and

heterofermentative)Good growth in a broad pH range Good efficacy in a broad range of forages and grains

SafetyRisk assessment

Stability Fermentation performance

Highest product quality

1. Selection of the best silage strains for the product

strain identityVirulence

activity

„GRAS“

statusAntibiotic resistance Risk

analysis

1. Evaluation and strain selection

Range of metabolic end products

Production of lactic acid (high amount / very fast)

Production of acetic acid

Ratio lactic/acetic acid

(differentiation homo- and heterofermentative)

Good growth in a broad pH range

Good efficacy in a broad range of forages and grains

Selected strains:

High production of lactic acid (LA)

High production of acetic acid (AA)

Optimal ratio between LA and AA

Appropriate for the registration

(GRAS status)

Enterococcus faecium

Lactobacilus plantarum

Lactobacillus brevis Criteria for selection

Multistrain• for different substrates

• for different energy sources

• more stable

Biomin® BioStabil

Enterococcus faecium

Lactobacillus plantarum

Lactobacillus brevis

Biomin® BioStabil

Energy lossesCause Evaluation Losses (%)

Respiration Unavoidable 1- 2

Fermentation Unavoidable 4- 10

Fluids Depending on technique

0- 7

Field losses Depending on technique

1- 5

Inadequate fermentation Avoidable 0- 10

Anaerobic changes (storage) Avoidable 0- 10

Aerobic changes (feed out) Avoidable 0- 40

Total losses 6- 84

Naturally ahead

Forage production

DM LOSSES

moisture% filling seepage gas Top-spoil Feedout Total

Based on Forages: The Science of Grassland Agriculture, 4th ed. See Bickert et al (1997

SilageAverage Dairy Farm: 500 cows + young stock.

Corn silage : 8300 t ( 2900 t DM) @ R500/tonHay : 700 t ( 570 t DM) @ R700/ton

Total costs/value:(8300 ton*R500/t)+(700 ton*R700/t)=4,6 mln R

Dry matter losses

Losses are; Best case: 17 %

4,6 mln R *17% = 782.000 R

or

Worst case: 30%4,6mln R* 30% = 1,38 mln R

Energy lossesCause Evaluation Losses (%)

Respiration Unavoidable 1- 2

Fermentation Unavoidable 4- 10

Fluids Depending on technique

0- 7

Field losses Depending on technique

1- 5

Inadequate fermentation Avoidable 0- 10

Anaerobic changes (storage) Avoidable 0- 10

Aerobic changes (feed out) Avoidable 0- 40

Total losses 6- 84

BioStabil effect on Energy and DM

Values that can be expected provided good management practises:

BioStabil Plus

BioStabil Mays

Expected Dry Matter recovery (%)

1,80% 2%

Expected Energy recovery (NEL/kg DM)

0,23 MJ(0,055 Mcal)

0,18 MJ(0,043 Mcal)

1 Mcal = 4,184 MJEnergy (NEL, Mcal)/kg milk: 0,72511

Energy lossesCorn silage 2900 t DM= 18.4 mMj recovery

Max Losses 30% = 5520000 MJ

Min Losses 5 % = 920000 MJ OR 540 T extra dry corn!

economicsCornsilage 2900 t DM:

Energy recovery: 0,18 Mj/kg dm

1500000 kg*0,18 Mj= 270.000 Mj.

Corn= 8,5 Mj = 61 t Corn=150.000 R

Without taking the protein quality in consideration

Questions?

[email protected]