ENLIL 3D-MHD Modeling Support of Heliospheric Missions European Space Weather Week, Liege, Belgium, 17-21 November 2014 Dusan Odstrcil (GMU & NASA/GSFC)

Embed Size (px)

Citation preview

  • Slide 1
  • ENLIL 3D-MHD Modeling Support of Heliospheric Missions European Space Weather Week, Liege, Belgium, 17-21 November 2014 Dusan Odstrcil (GMU & NASA/GSFC) in collaboration with UCSD/CASS and NASA/SWRC space weather teams. NASA/NSF Partnership For Collaborative Space Weather Modeling
  • Slide 2
  • WSA-ENLIL-Cone Modeling System Observationally driven, near-real time modeling system Routine simulation of corotating streams and CMEs, event-by event Much faster than real-time
  • Slide 3
  • ENLIL Solar Wind Prediction helioweather.net Experimental, real-time simulation of corotating and transient solar wind disturbances driven by various coronal models. Results are updated daily and are used for validation of a research ENLIL version. MODELS Daily updated results by various driving coronal models (1.7 AU): MISSIONS Daily updates results to support heliospheric missions (5.3 AU): ARCHIVE Animations and temporal profiles in 2011-2014 (in progress): EVENTS selected CME events simulated in higher resolution and presented with more details IPSBDIPSBD-SWRCWSAdub-SWRCWSAduz-SWRCWSAdtb-SWRC JUNOMAVENMESSENGERROSETTASPITZERSTEREO-ASTEREO-B
  • Slide 4
  • helioweather.net Models Prediction of the solar wind parameters in the inner heliosphere (1.7 AU): - various driving coronal models (left) - various visualization (right)
  • Slide 5
  • helioweather.net Missions Prediction in the mid-heliosphere (5.3 AU): - various planets/spacecraft (left) - various visualization (right) ROSETTA
  • Slide 6
  • Fitted Parameters of CMEs: 2014 Sep-Oct No.DateLatLonRadVel 012014-09-01T13:3015-1555215002014-09-01T11:24:00-CME-001 022014-09-01T20:33-8-10924 9002014-09-01T16:00:00-CME-001 032014-09-02T00:40-9-120-3414002014-09-01T22:24:00-CME-001 042014-09-02T05:40-10-1103311402014-09-02T02:36:00-CME-001 052014-09-02T20:37-25-5319442014-09-02T17:00:00-CME-001 092014-09-10T20:0015104514002014-09-10T18:18:00-CME-001 112014-09-13T04:50-7-70188302014-09-13T00:36:00-CME-001 202014-09-24T23:0010-1704514002014-09-24T21:54:00-CME-001 212014-09-26T08:054-1145910752014-09-26T04:38:00-CME-001 242014-10-10T20:58-1073448002014-10-10T16:31:00-CME-001 262014-10-13T07:3011-93189812014-10-13T04:30:00-CME-001 272014-10-14T23:32-16-109609502014-10-14T19:00:00-CME-001 282014-10-16T17:26-13-8898602014-10-16T13:26:00-CME-001 37 CMEs operationally fitted by SWRC (CMEs with Vel > 800 km/s listed here)
  • Slide 7
  • Solar Wind Velocity at Rosetta: 2014-09-04T09 Flank of broad CME, captured by strong CIR
  • Slide 8
  • Solar Wind Velocity at Rosetta: 2014-09-15T02 Flank of broad narrow CNE at weak CIR
  • Slide 9
  • Solar Wind Velocity at Rosetta: 2014-09-17T12 Broad multi-CMEs with moderate shock in rarefaction
  • Slide 10
  • Solar Wind Velocity at Rosetta: 2014-09-23T00 Narrow CME with weak shock
  • Slide 11
  • Solar Wind Velocity at Rosetta: 2014-09-29T06 Broad CME captured by strong CIR
  • Slide 12
  • Solar Wind Velocity at Rosetta: 2014-10-04T12 Broad CME with moderate shock in rarefaction
  • Slide 13
  • Solar Wind Velocity at Rosetta: 2014-10-09T15 Narrow CME, no shock, in rarefaction
  • Slide 14
  • Solar Wind Velocity at Rosetta: 2014-10-16T06 Narrow CME, no shock
  • Slide 15
  • Solar Wind Velocity at Rosetta: 2014-10-17T03 Narrow CME, weak shock
  • Slide 16
  • Solar Wind Velocity at Rosetta: 2014-10-17T21 Narrow CME, no shock
  • Slide 17
  • Solar Wind Velocity at Rosetta: 2014-10-21T16 Broad CME with strong shock within CIR
  • Slide 18
  • Shock IMF Connectivity at Rosetta: 2014-09-16T00 Slowly moving CMEs, weak velocity jump at IMF-connected shock
  • Slide 19
  • Shock IMF Connectivity at Rosetta: 2014-10-11T02 Moderate velocity jump at IMF-connected shock
  • Slide 20
  • Shock IMF Connectivity at Rosetta: 2014-09-01T19 Strong velocity jump at IMF-connected shock
  • Slide 21
  • Predicted ICMEs at Rosetta: 2014 Sep-Oct No.:Forward shockDriving ejectaComment 012014-09-04T09Flank of broad CME, captured by strong CIR 022014-09-15T03Flank of narrow CME at weak CIR 032014-09-17T122014-09-19T06Broad multi-CMEs, moderate shock, in rarefaction 042014-09-23T002014-09-23T06Narrow CME, weak shock 052014-09-29T06Broad CME, captured by strong CIR 062014-10-04T122014-10-04T21Broad CME, moderate shock, in rerefaction 072014-10-09T15Narrow CME, no shock, in rarefaction 082014-10-16T09Narrow CME, no shock 092014-10-16T122014-10-17T03Narrow CME, weak shock 102014-10-18T00Narrow CME, no shock 112014-10-21T062014-10-21T16Broad CME, strong shock, within CIR
  • Slide 22
  • Predicted SEP Events at Rosetta: 2014 Sep-Oct No.:BeginEndComment 012014-09-01T122014-09-03T12Strong 022014-10-10T212014-10-12T00Medium
  • Slide 23
  • Summary Routine simulations up to 5 AU are possible by 3D numerical MHD code ENLIL driven by either WSA-Cone or IPSBD coronal data at 0.1 AU NASA/GSFC Space Weather Research Center (SWRC) operationally fits geometric and kinematic parameters of all observed CMEs: - 37 CMEs in 2014 Sep (9 CMEs > 800 km/s) - 17 CMEs in 2014 Oct (4 CMEs > 800 km/s) HelioWeather testbed system provides results from various model variants at Earth and at various heliospheric missions. Predicted disturbances at Rosetta in 2014 Sep-Oct: - complex scenarios involves CMEs overtaken by CIRs - 11 ICMEs: 6 without shock, 5 with shocks (see Table) - 2 SEP events (Sep 1-3, Oct 10-11), other possible (see Figures) Actual state and predictions: http://helioweather.com/missions/rosettahttp://helioweather.com/missions/rosetta Further calibration and validation needed