36
Makoto Makoto Kuwata Kuwata - - Gonokami Gonokami Department of Applied Physics, University of Tokyo Department of Applied Physics, University of Tokyo CREST CREST , Japan Science and Technology Agency (JST) , Japan Science and Technology Agency (JST) http://www.gono.t.u http://www.gono.t.u - - tokyo.ac.jp tokyo.ac.jp JST-DFG workshop on Nanoelectronics, 05-07.03.2008 in Aachen Enhanced optical activity Enhanced optical activity in planar in planar chiral chiral nano nano - - gratings gratings

Enhanced optical activity in planar chiral nano-gratings...Optical activity with double-layered structures M. Decker et. al. Opt. Lett. 32, 856-858 (2007) MgF 2 Au Au 274nm E. Plum

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Makoto Makoto KuwataKuwata--GonokamiGonokami

    Department of Applied Physics, University of TokyoDepartment of Applied Physics, University of TokyoCRESTCREST, Japan Science and Technology Agency (JST), Japan Science and Technology Agency (JST)

    http://www.gono.t.uhttp://www.gono.t.u--tokyo.ac.jptokyo.ac.jp

    JST-DFG workshop on Nanoelectronics, 05-07.03.2008 in Aachen

    Enhanced optical activity Enhanced optical activity in planar in planar chiralchiral nanonano--gratingsgratings

  • Univ. of TokyoUniv. of TokyoKuniaki KonishiNatsuki KandaNobuyoshi SaitoTomohiro SugimotoYusuke Ino

    Univ. of Univ. of JoensuuJoensuuYuri SvirkoJari TurunenBenfeng BaiKonstantins JefimovsTuomas Vallius

    Tampere UniversityTampere UniversityMartti Kauranen

    CoCo--workersworkers

    Gonokami Lab.Gonokami Lab.

  • Optical property of materialsOptical property of materials

    ~1Å=10-8m

    Atom ・ Molecules

    0.5μm=500nmλ

    Artificial structures

    Gonokami Lab.Gonokami Lab.

    n : Refractive indexα: absorption coefficient

  • Control of optical property with artificial structuresControl of optical property with artificial structures

    Photonic crystal

    Ultra high-Q cavitySlow light

    Metamaterial

    Negative indexPerfect lens

    2D metal structure

    Extraordinary transmissionPolarization rotation with chirality

  • Polarization control withplanar chiral nano-gratings

    Chirality and Optical activityOptical activity with 2D metal gratings Mechanism of giant optical activityApplication for the THz regionFuture prospect ~Chiral photonic crystal

    OutlineOutline

    Gonokami Lab.Gonokami Lab.

  • Polarization rotation in Polarization rotation in chiralchiral mediamedia

    ChiralityChirality : The existence of the two forms with different handedness

    Optical activityOptical activity

  • D = ˜ ε E + ig' k × E( )First-order spatial dispersion effect

    Dependence of wave vector

    ,

    kj jk k jki

    k k i i

    ED Ex

    ε γ ∂= + + ⋅⋅⋅∂∑ ∑

    NonNon--locality of optical response locality of optical response

    Theorymicroscopic theory : Born (1915)

    second order term of dispersion arizing from retardation of radiationpair of anisotropic dispersion oscillators: Kuhn (1929)quantum-mechanical theory: Rosenfeld (1928)polarizability theory: Gray(1916), de Mallemann(1927), Boys(1934)

    Discovery1811 D.F. Arago quartz crystal1815 J. B. Biot Turpentine oil

    Optical activityOptical activity

  • Polarization control withplanar chiral nano-gratings

    Chirality and Optical activityOptical activity with 2D metal gratingsMechanism of giant optical activityApplication for the THz regionFuture prospect ~Chiral photonic crystal

    OutlineOutline

    Gonokami Lab.Gonokami Lab.

  • PolarizationPolarization--sensitive diffraction in a sensitive diffraction in a chiralchiral gratinggrating

    A. Papakostas et al, Phys. Rev. Lett. 90, 107404(2003)

    Nonreciprocalpolarization

    rotation?

    2D periodic grating of structures without mirror symmetry

    Diffracted reflection beam shows polarization rotation.

  • Right-twisted

    Left-twisted

    Sense of twist changes Sense of twist changes depending on the incident direction.depending on the incident direction.

    Gonokami Lab.Gonokami Lab.

    Optical activity with 2D Optical activity with 2D chiralitychirality ????

  • Giant Optical Activity in Metal Giant Optical Activity in Metal nanogratingsnanogratings

    Giant optical activity(~104deg/mm)

    T. Vallius et al., Appl. Phys. Lett. 83, 234 (2003)M.Kuwata-Gonokami et al., Phys. Rev. Lett. 95, 227401 (2005)

    chiral metal nanogratings500nm

    Cr:23nmAu :95nmCr:3nm

    Silica substrate

  • Experimental setupExperimental setup

    Intensity (transmissivity)Ellipticity anglePolarization azimuth angle

    0 0I( 2 p ) I( p )A , H BI(0 ) I(0 )

    Δ = =

    Polarization modulation technique* (modulation frequency: ~50kHz)

    Detection limit : ~0.002 degree*K. Sato,,” Jpn. J. Appl. Phys. 20, 2403 (1981)

  • θ

    Α⊿

    A sin( 2 B )Δ ΔΔ θ ϕ= + +

    H HH A sin( 2 B )η ϕ= + +

    Birefringencecaused by the non-equivalence

    of the X- and Y-axes

    Polarization effect due to the specific sense of twist(independent of ϕ)

    At normal incidence

    DDistinguishistinguish ooptical activity ptical activity fromfrom birefringencebirefringence at at normal incidencenormal incidence

  • Incident direction dependence

    Right

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Angl

    e [

    deg

    ]

    800700600Wavelength [nm]

    Light incidence from front side from back side

    From front side From back side

    Left(chiral)

    Right(chiral)

    Cross(achiral)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Pol

    ariz

    atio

    n az

    imut

    h ro

    tatio

    n θ

    [deg

    ]

    800700600500Wavelength [nm]

    θL θA θR

    Polarization rotation

    M.Kuwata-Gonokami et al., Phys. Rev. Lett. 95, 227401 (2005)

    Chirality-induced Giant optical activity

    Giant Optical Activity in Metal Giant Optical Activity in Metal nanogratingsnanogratings

    ~104 deg./mm

  • Polarization control withplanar chiral nano-gratings

    Chirality and Optical activityOptical activity with 2D metal gratingsMechanism of the giant optical activityApplication for the THz regionFuture prospect ~Chiral photonic crystal

    OutlineOutline

    Gonokami Lab.Gonokami Lab.

  • Optical activity with doubleOptical activity with double--layered structureslayered structures

    M. Decker et. al. Opt. Lett. 32, 856-858 (2007)

    MgF2Au

    Au

    274nm

    E. Plum et. al. Appl. Phys. Lett.90, 223113 (2007)

    Optical activity of single-layer structure

    is negligible?

  • ObjectiveObjective

    To clarify the mechanism of giant optical activity of

    single-layer chiral metal nanogratings

    *Calculation of the electric field distribution at the metal surface

    *Measurement of the transmission and polarization rotation spectra at oblique incidence

  • 1

    1

    mx x

    m

    k iGc

    ε εωε ε

    = ±+

    sω1

    1

    mx

    m

    kc

    ε εωε ε

    =+

    L

    2GLπ

    =

    sinckω θ=

    Metal

    x

    m

    y

    ε1ε

    Excitation of surface Excitation of surface plasmonplasmon

    Gonokami Lab.Gonokami Lab.

  • Calculation of the electric field Calculation of the electric field

    Y-polarization 752nm

    Metal-Substrate interface

    500nm

    Air-Metal interface

    X

    Y

    Calculation method: B. Bai and L. Li, J. Opt. A: Pure Appl. Opt. 7, 783 (2005)101×101 grid

  • ( ) ( ) ( ) ( )( ) χ γ= + ∇×⎡ ⎤⎣ ⎦P r r E r r E r

    LightLight--matter coupling in nonmatter coupling in non--local medialocal media

    Polarization with first-order spatial dispersion effect

    nonlocalU≡( ) ( ) [ ]( )

    0 0 0

    d d d

    U dz dz dzχ γ= = ⋅ + ∇×∫ ∫ ∫EP E E E ELight-matter coupling energy

    Electric field strength at the interfaces

    ( )( )

    /1 2

    /1 2

    0 d

    d

    z e

    z d e

    δ

    δ

    = = +

    = = +

    E E E

    E E E d MetalSub.

    E1

    E2( ) ( ) ( ) ( ){ }

    [ ](0) ( )( , ) 0 0nonlocal y

    air sub

    x y xU f d E E d E d E

    d

    δ= −

    ∝ ⋅ ×n E E

    Eair

    Esub

  • [ ]{ }

    ( 0) ( )

    Reair sub

    air sub air subx y y x

    z z d

    E E E E

    ⋅ = × = =

    n E E

    Non-parallel electric field at both interface

    Calculation of the electric field Calculation of the electric field

  • Cross@752nmLeft@752nm

    IncidentPolarization

    ( )( ) (0) ( )air subr dξ = ⋅ ×n E E

    0.016

    0.016

    0.000

    0.000

    0.011

    0.011

    -0.011

    -0.011

    0≠total

    0=total

    DependencDependencee of of the the ChiralityChirality factor on the morphologyfactor on the morphology

  • Measurement at oblique Measurement at oblique incedenceincedence

    We measured the transmission and polarization azimuth rotation at oblique incidence

  • ( )( ) Asin 2 sin(4 )B C Dϕ θ ϕ ϕΔ = + + + +Fitting function

    @720nmIncident angle

    ψ=0°

    ψ=+3°

    ψ=+7°

    DDistinguishistinguish ooptical activity ptical activity fromfrom birefringencebirefringence at at oblique incidenceoblique incidence

  • 2

    4

    6

    8

    10

    12

    600700

    800900

    -8-6-4

    -20

    24

    68

    Tran

    smitt

    ance

    (%)

    Wavelength (nm)Inc

    ident

    angle

    (deg

    .)

    2468

    101214

    600700

    800900

    -8-6-4

    -20

    24 6

    8

    Tran

    smitt

    ance

    (%)

    Wavelength (nm) Incid

    ent a

    ngle

    (deg.)

    Transmission spectra Transmission spectra

    p-polarization s-polarization

    1sp

    1

    mx x y

    m

    i jc

    ε εωε ε

    = = ± ±+

    k k G G

    Surface plasmon resonance condition

    2 2 2i j+ =

    2 2 1i j+ =

    2 2 2i j+ =

    2 2 1i j+ =

  • 1sp

    1

    mx x y

    m

    i jc

    ε εωε ε

    = = ± ±+

    k k G G

    Surface plasmon resonance condition

    2

    4

    6

    8

    10

    12

    600700

    800900

    -8-6-4

    -20

    24

    68

    Tran

    smitt

    ance

    (%)

    Wavelength (nm)Inc

    ident

    angle

    (deg

    .)

    2468

    101214

    600700

    800900

    -8-6-4

    -20

    24 6

    8

    Tran

    smitt

    ance

    (%)

    Wavelength (nm) Incid

    ent a

    ngle

    (deg.)

    p-polarization s-polarization

    2

    1 2 2

    1 2

    ( )sin

    ( )

    s s

    saψ ψ

    ψ

    λ ε λ εψ

    ε λ ε⎛ ⎞

    = −⎜ ⎟⎜ ⎟ +⎝ ⎠

    1 2

    1 2

    ( )sin

    ( )

    p p

    paψ ψ

    ψ

    λ ε λ εψ

    ε λ ε= ±

    +E E

    Transmission spectra Transmission spectra

  • 2

    4

    6

    8

    10

    12

    600700

    800900

    -8-6-4

    -20

    24

    68

    Tran

    smitt

    ance

    (%)

    Wavelength (nm)Inc

    ident

    angle

    (deg

    .)

    -4

    -2

    0

    2

    600700

    800900

    -8-6

    -4-2

    02

    46

    8

    Pola

    rizat

    ion

    azim

    uth

    rota

    tin (d

    eg.)

    Wavelength (nm) Incide

    nt an

    gle (d

    eg.)

    CComparisonomparison between Transmissionbetween Transmission and and PolarizaPolarizatiotion rotationn rotation spectraspectra

    Transmission Polarization rotationp-polarizationp-polarization

    kx (1/nm)

    -0.0015-0.00

    10-0.00

    050.00000.000

    50.001

    00.001

    5

    Ene

    rgy

    (eV

    )

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2.0

    2.1

    2.2

    kx (1/nm)

    -0.0015-0.00

    10-0.00

    050.00000.000

    50.001

    00.001

    5

    Ene

    rgy

    (eV

    )

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2.0

    2.1

    2.2

  • Polarization control withplanar chiral nano-gratings

    Chirality and Optical activityOptical activity with 2D metal gratingsMechanism of giant optical activityApplication for the THz regionFuture prospect ~Chiral photonic crystal

    OutlineOutline

    Gonokami Lab.Gonokami Lab.

  • 400 500 600 700nm

    THz

    1015

    1μm 1mm

    1012 109

    1m

    101010111014 1013

    10cm1cm100μm10μm100nm

    1016 frequency (Hz)

    Electronics

    wave length

    ElectronicsPhotonicsPhotonics

    The THz regionThe THz region

    Semiconductors, Dielectrics, Superconductivity, Bioscience, …

  • Application to the THz regionApplication to the THz region

    In the THz region, the metal thickness is much smaller than wavelength.

    ⇒ Field twist parameter is small.

    100μm

    side view Si substrate

    Au 100 nm

  • complimentary double-layered structure

    In complimentary structures,resonances are observed at same frequency(Babinet’s principle)

    THz polarization rotation THz polarization rotation with complimentary with complimentary chiralchiral metal gratingsmetal gratings

    0.6

    0.4

    0.2

    0.0

    Tran

    smitt

    ance

    2.01.51.00.5Frequency (THz)

    posi nega

  • Period: 100μm

    Exs

    am

    Ex component correspond to polarization rotation

    THz polarization rotation THz polarization rotation with complimentary with complimentary chiralchiral metal gratingsmetal gratings

  • permittivity polarization rotation

    THz polarization rotation THz polarization rotation with complimentary with complimentary chiralchiral metal gratingsmetal gratings

  • SummarySummary

    We visualized the relationship between surface plasmonresonance and the optical activity of chiral nanogratings.

    We demonstrated that the chirality can be quantitatively described with the field twist parameter:

    We demonstrated the polarization rotation of THz waves with complimentary double-layered chiral structures.

    micro printing techniques such as ink-jet printing

    ( )2unit cell

    1 air sub dxdyA

    ⋅ ×∫ n E EE

    ・K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami , Opt. Express 15, 9575-9583 (2007).Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings

    ・N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Opt. Ex. 15, 11117 (2007)Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns

  • Polarization control withplanar chiral nano-gratings

    Chirality and Optical activityOptical activity with 2D metal gratingsMechanism of giant optical activityApplication for the THz regionFuture prospect ~Chiral photonic crystal

    OutlineOutline

    Gonokami Lab.Gonokami Lab.

  • Future prospectFuture prospect

    larger rotation higher transmittancesmaller birefringence

    16

    14

    12

    10

    8

    6

    4

    Tran

    smis

    sion

    (%)

    900850800750700650600550

    Wavelength (nm)

    Right Left Achiral

    2.0

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    Pola

    riza

    tion

    rota

    tion [

    deg.

    ]

    150100500

    Input polarization azimuth [deg.]

    measurement point sincurve fitting offset

    Opticalactivity

    Left@575nm

    Transmittance

    Dielectric chiral nanograteng(2D chiral pthotonic crystal)

    birefringence

    Gonokami Lab.Gonokami Lab.

    Next challenges

    Polarization rotation in chiral mediaPolarization-sensitive diffraction in a chiral gratingGiant Optical Activity in Metal nanogratingsExperimental setupGiant Optical Activity in Metal nanogratingsOptical activity with double-layered structuresObjectiveMeasurement at oblique incedenceTransmission spectra Comparison between Transmission and Polarization rotation spectraApplication to the THz regionSummaryFuture prospect