47
Engineering report Derivation of stiness matrix for a beam Nasser M. Abbasi July 7, 2016

Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Engineering report

Derivation of stiļæ½ness matrix for a beam

Nasser M. Abbasi

July 7, 2016

Page 2: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes
Page 3: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Contents

1 Introduction 1

2 Direct method 32.1 Examples using the direct beam stiļæ½ness matrix . . . . . . . . . . . . . . . . . 13

2.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Finite elements or adding more elements 253.1 Example 3 redone with 2 elements . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Generating shear and bending moments diagrams 35

5 Finding the stiļæ½ness matrix using methods other than direct method 375.1 Virtual work method for derivation of the stiļæ½ness matrix . . . . . . . . . . . 385.2 Potential energy (minimize a functional) method to derive the stiļæ½ness matrix 40

6 References 43

iii

Page 4: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Contents CONTENTS

iv

Page 5: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Chapter 1

Introduction

A short review for solving the beam problem in 2D is given. The deflection curve, bendingmoment and shear force diagrams are calculated for a beam subject to bending moment andshear force using direct stiļæ½ness method and then using finite elements method by addingmore elements. The problem is solved first by finding the stiļæ½ness matrix using the directmethod and then using the virtual work method.

1

Page 6: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 1. INTRODUCTION

2

Page 7: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Chapter 2

Direct method

Local contents2.1 Examples using the direct beam stiļæ½ness matrix . . . . . . . . . . . . . . . . . . . 13

3

Page 8: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

Starting with only one element beam which is subject to bending and shear forces. There are4 nodal degrees of freedom. Rotation at the left and right nodes of the beam and transversedisplacements at the left and right nodes. The following diagram shows the sign conventionused for external forces. Moments are always positive when anti-clockwise direction andvertical forces are positive when in the positive š‘¦ direction.

The two nodes are numbered 1 and 2 from left to right. š‘€1 is the moment at the left node(node 1), š‘€2 is the moment at the right node (node 2). š‘‰1 is the vertical force at the leftnode and š‘‰2 is the vertical force at the right node.

x

y

1 2

M1 M2

V1V2

The above diagram shows the signs used for the applied forces direction when acting inthe positive sense. Since this is a one dimensional problem, the displacement field (theunknown being solved for) will be a function of one independent variable which is the š‘„coordinate. The displacement field in the vertical direction is called š‘£ (š‘„). This is the verticaldisplacement of point š‘„ on the beam from the original š‘„āˆ’š‘Žš‘„š‘–š‘ . The following diagram showsthe notation used for the coordinates.

x,u

y,v

Angular displacement at distance š‘„ on the beam is found using šœƒ (š‘„) = š‘‘š‘£(š‘„)š‘‘š‘„ . At the left node,

the degrees of freedom or the displacements, are called š‘£1, šœƒ1 and at the right node they arecalled š‘£2, šœƒ2. At an arbitrary location š‘„ in the beam, the vertical displacement is š‘£ (š‘„) andthe rotation at that location is šœƒ (š‘„).

The following diagram shows the displacement field š‘£ (š‘„)

4

Page 9: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

1 21 2

main displacement field quantity we need to find

x dvx

dx

v 1 v 2

vx

x,u

y,v

In the direct method of finding the stiļæ½ness matrix, the forces at the ends of the beam arefound directly by the use of beam theory. In beam theory the signs are diļæ½erent from whatis given in the first diagram above. Therefore, the moment and shear forces obtained usingbeam theory (š‘€šµ and š‘‰šµ in the diagram below) will have diļæ½erent signs when comparedto the external forces. The signs are then adjusted to reflect the convention as shown in thediagram above using š‘€ and š‘‰.

For an example, the external moment š‘€1 is opposite in sign to š‘€šµ1 and the reaction š‘‰2is opposite to š‘‰šµ2. To illustrate this more, a diagram with both sign conventions is givenbelow.

Beam theory positive sign directions for bending moments and shear forces

Applied external moments and end forces shown in positive sense directions

M1 M2

V1V2

1 2

MB1 MB2

VB1 VB2

The goal now is to obtain expressions for external loads š‘€š‘– and š‘…š‘– in the above diagram as

5

Page 10: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

function of the displacements at the nodes {š‘‘} = {š‘£1, šœƒ1, š‘£2, šœƒ2}š‘‡.

In other words, the goal is to obtain an expression of the form ļ潚‘ļæ½ = [š¾] {š‘‘} where [š¾] is thestiļæ½ness matrix where ļ潚‘ļæ½ = {š‘‰1,š‘€1, š‘…2,š‘€2}

š‘‡ is the nodal forces or load vector, and {š‘‘} is thenodal displacement vector.

In this case [š¾] will be a 4 Ɨ 4 matrix and ļ潚‘ļæ½ is a 4 Ɨ 1 vector and {š‘‘} is a 4 Ɨ 1 vector.

Starting with š‘‰1. It is in the same direction as the shear force š‘‰šµ1. Since š‘‰šµ1 =š‘‘š‘€šµ1š‘‘š‘„ then

š‘‰1 =š‘‘š‘€šµ1š‘‘š‘„

Since from beam theory š‘€šµ1 = āˆ’šœŽ (š‘„) š¼š‘¦ , the above becomes

š‘‰1 = āˆ’š¼š‘¦š‘‘šœŽ (š‘„)š‘‘š‘„

But šœŽ (š‘„) = šøšœ€ (š‘„) and šœ€ (š‘„) = āˆ’š‘¦šœŒ where šœŒ is radius of curvature, therefore the above becomes

š‘‰1 = šøš¼š‘‘š‘‘š‘„ ļæ½

1šœŒļæ½

Since 1šœŒ =

ļ潚‘‘2š‘¢š‘‘š‘„2 ļæ½

ļæ½1+ļ潚‘‘š‘¢š‘‘š‘„ ļæ½

2ļæ½3/2 and for a small angle of deflection š‘‘š‘¢

š‘‘š‘„ ā‰Ŗ 1 then 1šœŒ = ļ潚‘‘

2š‘¢š‘‘š‘„2

ļæ½, and the above

now becomes

š‘‰1 = šøš¼š‘‘3š‘¢ (š‘„)š‘‘š‘„3

Before continuing, the following diagram illustrates the above derivation. This comes frombeam theory.

Deflection curve

x

x

Radius of curvature

vx

x dv

dx

1 d 2v

dx2

6

Page 11: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

Now š‘€1 is obtained. š‘€1 is in the opposite sense of the bending moment š‘€šµ1 hence anegative sign is added giving š‘€1 = āˆ’š‘€šµ1. But š‘€šµ1 = āˆ’šœŽ (š‘„) š¼

š‘¦ therefore

š‘€1 = šœŽ (š‘„)š¼š‘¦

= šøšœ€ (š‘„)š¼š‘¦

= šø ļæ½āˆ’š‘¦šœŒ ļæ½

š¼š‘¦

= āˆ’šøš¼ ļæ½1šœŒļæ½

= āˆ’šøš¼š‘‘2š‘¤š‘‘š‘„2

š‘‰2 is now found. It is in the opposite sense of the shear force š‘‰šµ2, hence a negative sign isadded giving

š‘‰2 = āˆ’š‘‰šµ2

= āˆ’š‘‘š‘€šµ2š‘‘š‘„

Since š‘€šµ2 = āˆ’šœŽ (š‘„) š¼š‘¦ , the above becomes

š‘‰2 =š¼š‘¦š‘‘šœŽ (š‘„)š‘‘š‘„

But šœŽ (š‘„) = šøšœ€ (š‘„) and šœ€ (š‘„) = āˆ’š‘¦šœŒ where šœŒ is radius of curvature. The above becomes

š‘‰2 = āˆ’šøš¼š‘‘š‘‘š‘„ ļæ½

1šœŒļæ½

But 1šœŒ =

ļ潚‘‘2š‘¤š‘‘š‘„2 ļæ½

ļæ½1+ļ潚‘‘š‘¤š‘‘š‘„ ļæ½

2ļæ½3/2 and for small angle of deflection š‘‘š‘¤

š‘‘š‘„ ā‰Ŗ 1 hence 1šœŒ = ļ潚‘‘

2š‘¢š‘‘š‘„2

ļæ½ then the above

becomes

š‘‰2 = āˆ’šøš¼š‘‘3š‘¢ (š‘„)š‘‘š‘„3

Finally š‘€2 is in the same direction as š‘€šµ2 so no sign change is needed. š‘€šµ2 = āˆ’šœŽ (š‘„) š¼š‘¦ ,

7

Page 12: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

therefore

š‘€2 = āˆ’šœŽ (š‘„)š¼š‘¦

= āˆ’šøšœ€ (š‘„)š¼š‘¦

= āˆ’šø ļæ½āˆ’š‘¦šœŒ ļæ½

š¼š‘¦

= šøš¼ ļæ½1šœŒļæ½

= šøš¼š‘‘2š‘¢š‘‘š‘„2

The following is a summary of what was found so far. Notice that the above expressions areevaluates at š‘„ = 0 and at š‘„ = šæ. Accordingly to obtain the nodal end forces vector ļ潚‘ļæ½

ļ潚‘ļæ½ =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘‰1

š‘€1

š‘‰2

š‘€2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

šøš¼ š‘‘3š‘¢(š‘„)š‘‘š‘„3 ļæ½

š‘„=0

āˆ’šøš¼ š‘‘2š‘¢š‘‘š‘„2 ļ潚‘„=0

āˆ’šøš¼ š‘‘3š‘¢(š‘„)š‘‘š‘„3 ļæ½

š‘„=šæ

šøš¼ š‘‘2š‘¢š‘‘š‘„2 ļ潚‘„=šæ

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

(1)

The RHS of the above is now expressed as function of the nodal displacements š‘£1, šœƒ1, š‘£2, šœƒ2.To do that, the field displacement š‘£ (š‘„) which is the transverse displacement of the beam isassumed to be a polynomial in š‘„ of degree 3 or

š‘£ (š‘„) = š‘Ž0 + š‘Ž1š‘„ + š‘Ž2š‘„2 + š‘Ž3š‘„3

šœƒ (š‘„) =š‘‘š‘£ (š‘„)š‘‘š‘„

= š‘Ž1 + 2š‘Ž2š‘„ + 3š‘Ž3š‘„2 (A)

Polynomial of degree 3 is used since there are 4 degrees of freedom, and a minimum of 4free parameters is needed. Hence

š‘£1 = š‘£ (š‘„)|š‘„=0 = š‘Ž0 (2)

And

šœƒ1 = šœƒ (š‘„)|š‘„=0 = š‘Ž1 (3)

Assuming the length of the beam is šæ, then

š‘£2 = š‘£ (š‘„)|š‘„=šæ = š‘Ž0 + š‘Ž1šæ + š‘Ž2šæ2 + š‘Ž3šæ3 (4)

And

šœƒ2 = šœƒ (š‘„)|š‘„=šæ = š‘Ž1 + 2š‘Ž2šæ + 3š‘Ž3šæ2 (5)

8

Page 13: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

Equations (2-5) gives

{š‘‘} =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘Ž0š‘Ž1

š‘Ž0 + š‘Ž1šæ + š‘Ž2šæ2 + š‘Ž3šæ3

š‘Ž1 + 2š‘Ž2šæ + 3š‘Ž3šæ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

1 0 0 00 1 0 01 šæ šæ2 šæ3

0 1 2šæ 3šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘Ž0š‘Ž1š‘Ž2š‘Ž3

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

Solving for š‘Žš‘– givesāŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘Ž0š‘Ž1š‘Ž2š‘Ž3

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

1 0 0 00 1 0 0

āˆ’ 3šæ2 āˆ’ 2

šæ3šæ2 āˆ’ 1

šæ2šæ3

1šæ2 āˆ’ 2

šæ31šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

š‘£1šœƒ1

3šæ2š‘£2 āˆ’

1šæšœƒ2 āˆ’

3šæ2š‘£1 āˆ’

2šæšœƒ1

1šæ2šœƒ1 +

1šæ2šœƒ2 +

2šæ3š‘£1 āˆ’

2šæ3š‘£2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

š‘£ (š‘„), the field displacement function from Eq. (A) can now be written as a function of thenodal displacements

š‘£ (š‘„) = š‘Ž0 + š‘Ž1š‘„ + š‘Ž2š‘„2 + š‘Ž3š‘„3

= š‘£1 + šœƒ1š‘„ + ļæ½3šæ2

š‘£2 āˆ’1šæšœƒ2 āˆ’

3šæ2

š‘£1 āˆ’2šæšœƒ1ļæ½ š‘„2 + ļæ½

1šæ2

šœƒ1 +1šæ2

šœƒ2 +2šæ3

š‘£1 āˆ’2šæ3

š‘£2ļæ½ š‘„3

= š‘£1 + š‘„šœƒ1 āˆ’ 2š‘„2

šæšœƒ1 +

š‘„3

šæ2šœƒ1 āˆ’

š‘„2

šæšœƒ2 +

š‘„3

šæ2šœƒ2 āˆ’ 3

š‘„2

šæ2š‘£1 + 2

š‘„3

šæ3š‘£1 + 3

š‘„2

šæ2š‘£2 āˆ’ 2

š‘„3

šæ3š‘£2

Or in matrix form

š‘£ (š‘„) = ļæ½1 āˆ’ 3 š‘„2

šæ2 + 2 š‘„3

šæ3 š‘„ āˆ’ 2š‘„2

šæ + š‘„3

šæ2 3 š‘„2

šæ2 āˆ’ 2 š‘„3

šæ3 āˆ’š‘„2

šæ + š‘„3

šæ2ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

= ļæ½ 1šæ3ļ潚æ3 āˆ’ 3šæš‘„2 + 2š‘„3ļæ½ 1

šæ2ļ潚æ2š‘„ āˆ’ 2šæš‘„2 + š‘„3ļæ½ 1

šæ3ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½ 1

šæ2ļæ½āˆ’šæš‘„2 + š‘„3ļæ½ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

The above can be written as

š‘£ (š‘„) = ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

(5A)

š‘£ (š‘„) = [š‘] {š‘‘}

9

Page 14: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

Where š‘š‘– are called the shape functions. The shape functions areāŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

š‘1 (š‘„)š‘2 (š‘„)š‘3 (š‘„)š‘4 (š‘„)

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

1šæ3ļ潚æ3 āˆ’ 3šæš‘„2 + 2š‘„3ļæ½

1šæ2ļ潚æ2š‘„ āˆ’ 2šæš‘„2 + š‘„3ļæ½1šæ3ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½

1šæ2ļæ½āˆ’šæš‘„2 + š‘„3ļæ½

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

We notice that š‘1 (0) = 1 and š‘1 (šæ) = 0 as expected. Alsoš‘‘š‘2 (š‘„)š‘‘š‘„

ļ潚‘„=0

=1šæ2

ļ潚æ2 āˆ’ 4šæš‘„ + 3š‘„2ļæ½ļ潚‘„=0

= 1

Andš‘‘š‘2 (š‘„)š‘‘š‘„

ļ潚‘„=šæ

=1šæ2

ļ潚æ2 āˆ’ 4šæš‘„ + 3š‘„2ļæ½ļ潚‘„=šæ

= 0

Also š‘3 (0) = 0 and š‘3 (šæ) = 1 andš‘‘š‘4 (š‘„)š‘‘š‘„

ļ潚‘„=0

=1šæ2

ļæ½āˆ’2šæš‘„ + 3š‘„2ļæ½ļ潚‘„=0

= 0

andš‘‘š‘4 (š‘„)š‘‘š‘„

ļ潚‘„=šæ

=1šæ2

ļæ½āˆ’2šæš‘„ + 3š‘„2ļæ½ļ潚‘„=šæ

= 1

The shape functions have thus been verified. The stiļæ½ness matrix is now found by substitutingEq. (5A) into Eq. (1), repeated below

ļ潚‘ļæ½ =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘‰1

š‘€1

š‘‰2

š‘€2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

šøš¼ š‘‘3š‘£(š‘„)š‘‘š‘„3 ļæ½

š‘„=0

āˆ’šøš¼ š‘‘2š‘£š‘‘š‘„2 ļ潚‘„=0

āˆ’šøš¼ š‘‘3š‘£(š‘„)š‘‘š‘„3 ļæ½

š‘„=šæ

šøš¼ š‘‘2š‘£š‘‘š‘„2 ļ潚‘„=šæ

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

Hence

ļ潚‘ļæ½ =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘‰1

š‘€1

š‘‰2

š‘€2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

šøš¼ š‘‘3

š‘‘š‘„3(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)

āˆ’šøš¼ š‘‘2

š‘‘š‘„2(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)

āˆ’šøš¼ š‘‘3

š‘‘š‘„3(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)

šøš¼ š‘‘2

š‘‘š‘„2(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

(6)

Butš‘‘3

š‘‘š‘„3š‘1 (š‘„) =

1šæ3

š‘‘3

š‘‘š‘„3ļ潚æ3 āˆ’ 3šæš‘„2 + 2š‘„3ļæ½

=12šæ3

10

Page 15: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

Andš‘‘3

š‘‘š‘„3š‘2 (š‘„) =

1šæ2

š‘‘3

š‘‘š‘„3ļ潚æ2š‘„ āˆ’ 2šæš‘„2 + š‘„3ļæ½

=6šæ2

Andš‘‘3

š‘‘š‘„3š‘3 (š‘„) =

1šæ3

š‘‘3

š‘‘š‘„3ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½

=āˆ’12šæ3

Andš‘‘3

š‘‘š‘„3š‘4 (š‘„) =

1šæ2

š‘‘3

š‘‘š‘„3ļæ½āˆ’šæš‘„2 + š‘„3ļæ½

=6šæ2

For the second derivativesš‘‘2

š‘‘š‘„2š‘1 (š‘„) =

1šæ3

š‘‘2

š‘‘š‘„2ļ潚æ3 āˆ’ 3šæš‘„2 + 2š‘„3ļæ½

=1šæ3

(12š‘„ āˆ’ 6šæ)

Andš‘‘2

š‘‘š‘„2š‘2 (š‘„) =

1šæ2

š‘‘2

š‘‘š‘„2ļ潚æ2š‘„ āˆ’ 2šæš‘„2 + š‘„3ļæ½

=1šæ2

(6š‘„ āˆ’ 4šæ)

Andš‘‘2

š‘‘š‘„2š‘3 (š‘„) =

1šæ3

š‘‘2

š‘‘š‘„2ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½

=1šæ3

(6šæ āˆ’ 12š‘„)

Andš‘‘2

š‘‘š‘„2š‘4 (š‘„) =

1šæ2

š‘‘2

š‘‘š‘„2ļæ½āˆ’šæš‘„2 + š‘„3ļæ½

=1šæ2

(6š‘„ āˆ’ 2šæ)

11

Page 16: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 2. DIRECT METHOD

Hence Eq. (6) becomes

ļ潚‘ļæ½ =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘‰1

š‘€1

š‘‰2

š‘€2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

šøš¼ š‘‘3

š‘‘š‘„3(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)ļæ½

š‘„=0

āˆ’šøš¼ š‘‘2

š‘‘š‘„2(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)ļæ½

š‘„=0

āˆ’šøš¼ š‘‘3

š‘‘š‘„3(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)ļæ½

š‘„=šæ

šøš¼ š‘‘2

š‘‘š‘„2(š‘1š‘£1 + š‘2šœƒ1 + š‘3š‘£2 + š‘4šœƒ2)ļæ½

š‘„=šæ

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

šøš¼ ļæ½ 12šæ3š‘£1 +6šæ2šœƒ1 āˆ’

12šæ3š‘£2 +

6šæ2šœƒ2ļæ½

š‘„=0

āˆ’šøš¼ ļæ½ 1šæ3(12š‘„ āˆ’ 6šæ) š‘£1 +

1šæ2(6š‘„ āˆ’ 4šæ) šœƒ1 +

1šæ3(6šæ āˆ’ 12š‘„) š‘£2 +

1šæ2(6š‘„ āˆ’ 2šæ) šœƒ2ļæ½

š‘„=0

āˆ’šøš¼ ļæ½ 12šæ3š‘£1 +6šæ2šœƒ1 āˆ’

12šæ3š‘£2 +

6šæ2šœƒ2ļæ½

š‘„=šæ

šøš¼ ļæ½ 1šæ3(12š‘„ āˆ’ 6šæ) š‘£1 +

1šæ2(6š‘„ āˆ’ 4šæ) šœƒ1 +

1šæ3(6šæ āˆ’ 12š‘„) š‘£2 +

1šæ2(6š‘„ āˆ’ 2šæ) šœƒ2ļæ½

š‘„=šæ

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæāˆ’ (12š‘„ āˆ’ 6šæ)š‘„=0 āˆ’šæ (6š‘„ āˆ’ 4šæ)š‘„=0 āˆ’ (6šæ āˆ’ 12š‘„)š‘„=0 āˆ’šæ (6š‘„ āˆ’ 2šæ)š‘„=0

āˆ’12 āˆ’6šæ 12 āˆ’6šæ(12š‘„ āˆ’ 6šæ)š‘„=šæ šæ (6š‘„ āˆ’ 4šæ)š‘„=šæ (6šæ āˆ’ 12š‘„)š‘„=šæ šæ (6š‘„ āˆ’ 2šæ)š‘„=šæ

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

(7)

Or in matrix form, after evaluating the expressions above for š‘„ = šæ and š‘„ = 0 asāŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘‰1

š‘€1

š‘‰2

š‘€2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’ 12šæ3 āˆ’ 6

šæ212šæ3 āˆ’ 6

šæ2

(12šæ āˆ’ 6šæ) šæ (6šæ āˆ’ 4šæ) (6šæ āˆ’ 12šæ) šæ (6šæ āˆ’ 2šæ)

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

The above now is in the form

ļ潚‘ļæ½ = [š¾] {š‘‘}

Hence the stiļæ½ness matrix is

[š¾] =šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

Knowing the stiļæ½ness matrix means knowing the nodal displacements {š‘‘} when given theforces at the nodes. The power of the finite element method now comes after all the nodaldisplacements š‘£1, šœƒ1, š‘£2, šœƒ2 are calculated by solving ļ潚‘ļæ½ = [š¾] {š‘‘}. This is because the polyno-

12

Page 17: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

mial š‘£ (š‘„) is now completely determined and hence š‘£ (š‘„) and šœƒ (š‘„) can now be evaluated forany š‘„ along the beam and not just at its end nodes as the case with finite diļæ½erence method.Eq. 5A above can now be used to find the displacement š‘£ (š‘„) and šœƒ (š‘„) everywhere.

š‘£ (š‘„) = [š‘] {š‘‘}

š‘£ (š‘„) = ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

To summarise, these are the steps to obtain š‘£ (š‘„)

1. An expression for [š¾] is found.

2. ļ潚‘ļæ½ = [š¾] {š‘‘} is solved for {š‘‘}

3. š‘£ (š‘„) = [š‘] {š‘‘} is calculated by assuming š‘£ (š‘„) is a polynomial. This gives the displace-ment š‘£ (š‘„) to use to evaluate the transverse displacement anywhere on the beam andnot just at the end nodes.

4. šœƒ (š‘„) = š‘‘š‘£(š‘„)š‘‘š‘„ = š‘‘

š‘‘š‘„ [š‘] {š‘‘} is obtained to evaluate the rotation of the beam any where andnot just at the end nodes.

5. The strain šœ– (š‘„) = āˆ’š‘¦ [šµ] {š‘‘} is found, where [šµ] is the gradient matrix [šµ] = š‘‘2

š‘‘š‘„2 [š‘].

6. The stress from šœŽ = šøšœ– = āˆ’šøš‘¦ [šµ] {š‘‘} is found.

7. The bending moment diagram from š‘€(š‘„) = šøš¼ [šµ] {š‘‘} is found.

8. The shear force diagram from š‘‰ (š‘„) = š‘‘š‘‘š‘„š‘€(š‘„) is found.

2.1 Examples using the direct beam stiļæ½ness matrix

The beam stiļæ½ness matrix is now used to solve few beam problems. Starting with simpleone span beam

2.1.1 Example 1

A one span beam, a cantilever beam of length šæ, with point load š‘ƒ at the free end

L

P

13

Page 18: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

The first step is to make the free body diagram and show all moments and forces at thenodes

L

P

R

M1M2

š‘ƒ is the given force. š‘€2 = 0 since there is no external moment at the right end. Henceļ潚‘ļæ½ = [š¾] {š‘‘} for this system is

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘…š‘€1

āˆ’š‘ƒ0

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

Now is an important step. The known end displacements from boundary conditions issubstituted into {š‘‘}, and the corresponding row and columns from the above system ofequations are removed1. Boundary conditions indicates that there is no rotation on theleft end (since fixed). Hence š‘£1 = 0 and šœƒ1 = 0. Hence the only unknowns are š‘£2 and šœƒ2.Therefore the first and the second rows and columns are removed, giving

āŽ§āŽŖāŽŖāŽØāŽŖāŽŖāŽ©āˆ’š‘ƒ0

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­=

šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽ12 āˆ’6šæāˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽØāŽŖāŽŖāŽ©š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­

Now the above is solved for

āŽ§āŽŖāŽŖāŽØāŽŖāŽŖāŽ©š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­. Let šø = 30 Ɨ 106 psi (steel), š¼ = 57 š‘–š‘›4, šæ = 144 š‘–š‘›, and

š‘ƒ = 400 lb, henceļæ½ ļæ½1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[P;P*L;-P;0];11 x=A(3:end,3:end)\load(3:end)ļæ½ ļæ½

1Instead of removing rows/columns for known boundary conditions, we can also just put a 1 on the diagonalof the stiļæ½ness matrix for that boundary conditions. I will do this example again using this method

14

Page 19: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Ė™

which givesx =-0.2324-0.0024

Therefore the vertical displacement at the right end is š‘£2 = 0.2324 inches (downwards) andšœƒ2 = āˆ’0.0024 radians. Now that all nodal displacements are found, the field displacementfunction is completely determined.

{š‘‘} =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00

āˆ’0.2324āˆ’0.0024

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

From Eq. 5A

š‘£ (š‘„) = [š‘] {š‘‘}

= ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00

āˆ’0.2324āˆ’0.0024

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

= ļæ½ 1šæ3ļ潚æ3 āˆ’ 3šæš‘„2 + 2š‘„3ļæ½ 1

šæ2ļ潚æ2š‘„ āˆ’ 2šæš‘„2 + š‘„3ļæ½ 1

šæ3ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½ 1

šæ2ļæ½āˆ’šæš‘„2 + š‘„3ļæ½ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00

āˆ’0.2324āˆ’0.0024

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=0.002 4šæ2

ļ潚æš‘„2 āˆ’ š‘„3ļæ½ +0.232 4šæ3

ļæ½2š‘„3 āˆ’ 3šæš‘„2ļæ½

But šæ = 144 inches, and the above becomes

š‘£ (š‘„) = 3.992 0 Ɨ 10āˆ’8š‘„3 āˆ’ 1.695 6 Ɨ 10āˆ’5š‘„2

To verify, let š‘„ = 144 in the above

š‘£ (š‘„ = 144) = 3.992 0 Ɨ 10āˆ’81443 āˆ’ 1.695 6 Ɨ 10āˆ’51442

= āˆ’0.232 40

The following is a plot of the deflection curve for the beamļæ½ ļæ½1 v=@(x) 3.992*10^-8*x.^3-1.6956*10^-5*x.^22 x=0:0.1:144;3 plot(x,v(x),'r-','LineWidth',2);4 ylim([-0.8 0.3]);5 title('beam deflection curve');6 xlabel('x inch'); ylabel('deflection inch');7 gridļæ½ ļæ½

15

Page 20: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Ė™

Now instead of removing rows/columns for the known boundary conditions, a 1 is put onthe diagonal. Starting again with

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘…š‘€1

āˆ’š‘ƒ0

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

Since š‘£1 = 0 and šœƒ1 = 0, thenāŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00āˆ’š‘ƒ0

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

1 0 0 00 1 0 00 0 12 āˆ’6šæ0 0 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

The above system is now solved as before. šø = 30 Ɨ 106 psi, š¼ = 57 š‘–š‘›4, šæ = 144 in, š‘ƒ = 400 lbļæ½ ļæ½1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[0;0;-P;0]; %put zeros for known B.C.11 A(:,1)=0; A(1,:)=0; A(1,1)=1; %put 1 on diagonal12 A(:,2)=0; A(2,:)=0; A(2,2)=1; %put 1 on diagonal13 Aļæ½ ļæ½

Ė™A =

16

Page 21: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

1.0e+07 *0.0000 0 0 00 0.0000 0 00 0 0.0007 -0.04960 0 -0.0496 4.7583ļæ½ ļæ½

1 sol=A\load %SOLVEļæ½ ļæ½Ė™sol =00-0.2324-0.0024

The same solution is obtained as before, but without the need to remove rows/column fromthe stiļæ½ness matrix. This method might be easier for programming than the first method ofremoving rows/columns.

The rest now is the same as was done earlier and will not be repeated.

2.1.2 Example 2

This is the same example as above, but the vertical load š‘ƒ is now placed in the middle ofthe beam

L

P

In using stiļæ½ness method, all loads must be on the nodes. The vector ļ潚‘ļæ½ is the nodal forcesvector. Hence equivalent nodal loads are found for the load in the middle of the beam. Theequivalent loading is the following

L

P/2P/2 PL/8PL/8

17

Page 22: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Therefore, the problem is as if it was the following problem

L

P/2P/2

PL/8PL/8

Now that equivalent loading is in place, we continue as before. Making a free body diagramshowing all loads (including reaction forces)

L

P/2

P/2

PL/8PL/8

M1

R

The stiļæ½ness equation is now written as

ļ潚‘ļæ½ = [š¾] {š‘‘}āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘… āˆ’ š‘ƒ/2š‘€1 āˆ’ š‘ƒšæ/8

āˆ’š‘ƒ/2š‘ƒšæ/8

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

There is no need to determine š‘… and š‘€1 at this point since these rows will be removed dueto boundary conditions š‘£1 = 0 and šœƒ1 = 0 and hence those quantities are not needed tosolve the equations. Note that the rows and columns are removed for the known boundarydisplacements before solving ļ潚‘ļæ½ = [š¾] {š‘‘}. Hence, after removing the first two rows andcolumns, the above system simplifies to

āŽ§āŽŖāŽŖāŽØāŽŖāŽŖāŽ©āˆ’š‘ƒ/2š‘ƒšæ/8

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­=

šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽ12 āˆ’6šæāˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽØāŽŖāŽŖāŽ©š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­

The above is now solved for

āŽ§āŽŖāŽŖāŽØāŽŖāŽŖāŽ©š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­using the same numerical values for š‘ƒ, šø, š¼, šæ as in the first

exampleļæ½ ļæ½1 P=400;2 L=144;

18

Page 23: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[-P/2;P*L/8];11 x=A(3:end,3:end)\loadļæ½ ļæ½

Ė™x =-0.072630472854641-0.000605253940455

Therefore

{š‘‘} =

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00

āˆ’0.072630472854641āˆ’0.000605253940455

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

This is enough to obtain š‘£ (š‘„) as before. Now the reactions š‘… and š‘€1 can be determined ifneeded. Going back to the full ļ潚‘ļæ½ = [š¾] {š‘‘}, results in

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘… āˆ’ š‘ƒ/2š‘€1 āˆ’ š‘ƒšæ/8

āˆ’š‘ƒ/2š‘ƒšæ/8

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00

āˆ’0.072630472854641āˆ’0.000605253940455

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

0.871 57 āˆ’ 3.631 5 Ɨ 10āˆ’3šæ0.435 78šæ āˆ’ 1.210 5 Ɨ 10āˆ’3šæ2

3.631 5 Ɨ 10āˆ’3šæ āˆ’ 0.871 570.435 78šæ āˆ’ 2.421 Ɨ 10āˆ’3šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

Hence the first equation becomes

š‘… āˆ’ š‘ƒ/2 =šøš¼šæ3

ļæ½0.871 57 āˆ’ 3.631 5 Ɨ 10āˆ’3šæļæ½

and since šø = 30 Ɨ 106 psi (steel) and š¼ = 57 š‘–š‘›4and šæ = 144 in and š‘ƒ = 400 lb, then

š‘… =ļæ½30Ɨ106ļæ½57

1443ļæ½0.871 57 āˆ’ 3.631 5 Ɨ 10āˆ’3 (144)ļæ½ + 400/2 . Therefore

š‘… = 400 lb

and š‘€1 āˆ’ š‘ƒšæ/8 = šøš¼šæ3ļæ½0.435 78šæ āˆ’ 1.210 5 Ɨ 10āˆ’3šæ2ļæ½ + š‘ƒšæ/8 , hence

š‘€1 = 28 762 lb-ft

Now that all nodal reactions are found, the displacement field is found and the deflection

19

Page 24: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

curve can be plotted.

š‘£ (š‘„) = [š‘] {š‘‘}

š‘£ (š‘„) = ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

= ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00

āˆ’0.072630472854641āˆ’0.000605253940455

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

= ļæ½ 1šæ3ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½ 1

šæ2ļæ½āˆ’šæš‘„2 + š‘„3ļæ½ļæ½

āŽ›āŽœāŽœāŽœāŽœāŽāˆ’0.072630472854641āˆ’0.000605253940455

āŽžāŽŸāŽŸāŽŸāŽŸāŽ 

=6.052 5 Ɨ 10āˆ’4

šæ2ļ潚æš‘„2 āˆ’ š‘„3ļæ½ +

0.072 63šæ3

ļæ½2š‘„3 āˆ’ 3šæš‘„2ļæ½

Since šæ = 144 inches, the above becomes

š‘£ (š‘„) =6.052 5 Ɨ 10āˆ’4

(144)2ļæ½(144) š‘„2 āˆ’ š‘„3ļæ½ +

0.072 63(144)3

ļæ½2š‘„3 āˆ’ 3 (144) š‘„2ļæ½

= 1.945 9 Ɨ 10āˆ’8š‘„3 āˆ’ 6.304 7 Ɨ 10āˆ’6š‘„2

The following is the plot

2.1.3 Example 3

Assuming the beam is fixed on the left end as above, but simply supported on the right end,and the vertical load š‘ƒ now at distance š‘Ž from the left end and at distance š‘ from the rightend, and a uniform distributed load of density š‘š lb/in is on the beam.

20

Page 25: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Pm (lb/in

a b

M1

Using the following values: š‘Ž = 0.625šæ, š‘ = 0.375šæ, šø = 30 Ɨ 106 psi (steel), š¼ = 57 š‘–š‘›4, šæ =144 in, š‘ƒ = 1000 lb, š‘š = 200 lb/in.

In the above, the left end reaction forces are shown as š‘…1 and moment reaction as š‘€1 andthe reaction at the right end as š‘…2. Starting by finding equivalent loads for the point loadš‘ƒ and equivalent loads for for the uniform distributed load š‘š. All external loads must betransferred to the nodes for the stiļæ½ness method to work. Equivalent load for the abovepoint load is

Pb2L2a

L3Pa2L2b

L3

a b

Pab2

L2

Pa2b

L2

Equivalent load for the uniform distributed loading is

mL2

mL2

12mL2

mL2

12

21

Page 26: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Using free body diagram, with all the loads on it gives the following diagram (In this diagramš‘€ is the reaction moment and š‘…1, š‘…2 are the reaction forces)

Now that all loads are on the nodes, the stiļæ½ness equation is applied

ļ潚‘ļæ½ = [š¾] {š‘‘}āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘…1 āˆ’š‘ƒš‘2(šæ+2š‘Ž)

šæ3 āˆ’ š‘ššæ2

š‘€āˆ’ š‘ƒš‘Žš‘2

šæ2 āˆ’ š‘ššæ2

12

š‘…2 āˆ’š‘ƒš‘Ž2(šæ+2š‘)

šæ3 āˆ’ š‘ššæ2

š‘ƒš‘Ž2š‘šæ2 + š‘ššæ2

12

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

Boundary conditions are now applied. š‘£1 = 0, šœƒ1 = 0,š‘£2 = 0. Therefore the first, second andthird rows/columns are removed giving

š‘ƒš‘Ž2š‘šæ2

+š‘ššæ2

12=

šøš¼šæ3

4šæ2šœƒ2

Hence

šœƒ2 = ļ潚‘ƒš‘Ž2š‘šæ2

+š‘ššæ2

12 ļæ½ ļ潚æ4šøš¼ļæ½

Substituting numerical values for the above as given at the top of the problem results in

šœƒ2 =āŽ›āŽœāŽœāŽœāŽ(1000) (0.625 (144))2 (0.375 (144))

(144)2+(200) (144)2

12

āŽžāŽŸāŽŸāŽŸāŽ 

āŽ›āŽœāŽœāŽœāŽœāŽ

1444 ļæ½30 Ɨ 106ļæ½ (57)

āŽžāŽŸāŽŸāŽŸāŽŸāŽ 

= 7.719 9 Ɨ 10āˆ’3š‘Ÿš‘Žš‘‘

22

Page 27: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Hence the field displacement š‘¢ (š‘„) is now found

š‘£ (š‘„) = [š‘] {š‘‘}

š‘£ (š‘„) = ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

= ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

000

7.719 9 Ɨ 10āˆ’3

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=1šæ2

ļæ½āˆ’šæš‘„2 + š‘„3ļæ½ ļæ½7.719 9 Ɨ 10āˆ’3ļæ½

= 3.722 9 Ɨ 10āˆ’7š‘„3 āˆ’ 5.361 Ɨ 10āˆ’5š‘„2

And a plot of the deflection curve isļæ½ ļæ½1 clear all; close all;2 v=@(x) 3.7229*10^-7*x.^3-5.361*10^-5*x.^23 x=0:0.1:144;4 plot(x,v(x),'r-','LineWidth',2);5 ylim([-0.5 0.3]);6 title('beam deflection curve');7 xlabel('x inch'); ylabel('deflection inch');8 gridļæ½ ļæ½

Ė™

23

Page 28: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

24

Page 29: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Chapter 3

Finite elements or adding moreelements

Finite elements generated displacements are smaller in value than the actual analyticalvalues. To improve the accuracy, more elements are added. To add more elements, thebeam is divided into 2,3,4 and more beam elements. To show how this works, example 3above is solved again using two elements. It is found that displacement field š‘£ (š‘„) becomesmore accurate (By comparing the the result with the exact solution based on using the beam4th order diļæ½erential equation. It is found to be almost the same with only 2 elements)

3.1 Example 3 redone with 2 elements

The first step is to divide the beam into two elements and number the degrees of freedomand global nodes as follows

Pm (lb/inP

L

L/2 L/2

m (lb/in)Divide into 2 elements

There is 6 total degrees of freedom. two at each node. Hence the stiļæ½ness matrix for thewhole beam (including both elements) will be 6 by 6. For each element however, the samestiļæ½ness matrix will be used as above and that will remain as before 4 by 4.

25

Page 30: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

1 2 3

1 2 3

v 1 v 2 v 3

The stiļæ½ness matrix for each element is found and then the global stiļæ½ness matrix is assem-bled. Then ļ潚‘š‘”š‘™š‘œš‘š‘Žš‘™ļæ½ = ļ潚¾š‘”š‘™š‘œš‘š‘Žš‘™ļæ½ ļ潚‘‘š‘”š‘™š‘œš‘š‘Žš‘™ļæ½ is solved as before. The first step is to move all loads tothe nodes as was done before. This is done for each element. The formulas for equivalentloads remain the same, but now šæ becomes šæ/2. The following diagram show the equivalentloading for š‘ƒ

1 2 3

a b

L/2 L/2

Pb2L/22a

L/23Pa2L/22b

L/23Pab2

L/22Pa2b

L/22

a 0.125L

b 0.375L

Equivalent loading of point load P after moving to nodes

of second element

The equivalent loading for distributed load š‘š is

26

Page 31: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

1 2 3

L/2 L/2

mL/22

mL/22

mL/22

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Now the above two diagrams are put together to show all equivalent loads with the originalreaction forces to obtain the following diagram

1 2 3

L/2 L/2

mL/22

mL/22

mL/22

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Pb2L/22a

L/23

Pa2L/22b

L/23

Pab2

L/22

Pa2b

L/22

R1R3

M1

Nodal loading for 2 elements beam after performing equivalent loading

27

Page 32: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

ļ潚‘ļæ½ = [š¾] {š‘‘} for each element is now constructed. Starting with the first elementāŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

š‘…1 āˆ’š‘šļæ½ šæ2 ļæ½

2

š‘€1 āˆ’š‘šļæ½ šæ2 ļæ½

2

12

āˆ’š‘ƒš‘2ļæ½ šæ2+2š‘Žļæ½

(šæ/2)3āˆ’

š‘šļæ½ šæ2 ļæ½

2

š‘šļæ½ šæ2 ļæ½2

12 āˆ’š‘šļæ½ šæ2 ļæ½

2

12 āˆ’ š‘ƒš‘Žš‘2

ļæ½ šæ2 ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼

ļ潚æ2ļæ½3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6 ļ潚æ2ļæ½ āˆ’12 6 ļ潚æ2ļæ½

6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

āˆ’12 āˆ’6 ļ潚æ2ļæ½ 12 āˆ’6 ļ潚æ2ļæ½

6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

And for the second elementāŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

āˆ’š‘ƒš‘2ļæ½ šæ2+2š‘Žļæ½

(šæ/2)3āˆ’

š‘šļæ½ šæ2 ļæ½

2

š‘šļæ½ šæ2 ļæ½2

12 āˆ’š‘šļæ½ šæ2 ļæ½

2

12 āˆ’ š‘ƒš‘Žš‘2

ļæ½ šæ2 ļæ½2

š‘…3 āˆ’š‘ƒš‘Ž2ļæ½ šæ2+2š‘ļæ½

ļæ½ šæ2 ļæ½3 āˆ’

š‘šļæ½ šæ2 ļæ½

2

š‘šļæ½ šæ2 ļæ½2

12 + š‘ƒš‘Ž2š‘

ļæ½ šæ2 ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼

ļ潚æ2ļæ½3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6 ļ潚æ2ļæ½ āˆ’12 6 ļ潚æ2ļæ½

6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

āˆ’12 āˆ’6 ļ潚æ2ļæ½ 12 āˆ’6 ļ潚æ2ļæ½

6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£2šœƒ2

š‘£3šœƒ3

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

The 2 systems above are assembled to obtain the global stiļæ½ness matrix equation givingāŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

š‘…1 āˆ’š‘šļæ½ šæ2 ļæ½

2

š‘€1 āˆ’š‘šļæ½ šæ2 ļæ½

2

12

āˆ’2š‘ƒš‘2ļæ½ šæ2+2š‘Žļæ½

ļæ½ šæ2 ļæ½3 āˆ’ 2

š‘šļæ½ šæ2 ļæ½

2

āˆ’2š‘ƒš‘Žš‘2

ļæ½ šæ2 ļæ½2

š‘…3 āˆ’š‘ƒš‘Ž2ļæ½ šæ2+2š‘ļæ½

ļæ½ šæ2 ļæ½3 āˆ’

š‘šļæ½ šæ2 ļæ½

2

š‘šļæ½ šæ2 ļæ½2

12 + š‘ƒš‘Ž2š‘

ļæ½ šæ2 ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼

ļ潚æ2ļæ½3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6 ļ潚æ2ļæ½ āˆ’12 6 ļ潚æ2ļæ½ 0 0

6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

0 0

āˆ’12 āˆ’6 ļ潚æ2ļæ½ 12 + 12 āˆ’6 ļ潚æ2ļæ½ + 6 ļ潚æ2ļæ½ āˆ’12 6 ļ潚æ2ļæ½

6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ + 6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2+ 4 ļ潚æ2ļæ½

2āˆ’6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½

2

0 0 āˆ’12 āˆ’6 ļ潚æ2ļæ½ 12 āˆ’6 ļ潚æ2ļæ½

0 0 6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

āˆ’6 ļ潚æ2ļæ½ 4 ļ潚æ2ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

š‘£3šœƒ3

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

The boundary conditions are now applied giving š‘£1 = 0, šœƒ1 = 0 since the first node is fixed,and š‘£3 = 0. And putting 1 on the diagonal of the stiļæ½ness matrix corresponding to these

28

Page 33: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

known boundary conditions results ināŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

00

āˆ’2š‘ƒš‘2ļæ½ šæ2+2š‘Žļæ½

(šæ/2)3āˆ’ 2š‘š(šæ/2)2

āˆ’2 š‘ƒš‘Žš‘2

(šæ/2)2

0š‘šļæ½ šæ2 ļæ½

2

12 + š‘ƒš‘Ž2š‘

ļæ½ šæ2 ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼

ļ潚æ2ļæ½3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

1 0 0 0 0 00 1 0 0 0 0

0 0 24 0 0 6 ļ潚æ2ļæ½

0 0 0 8 ļ潚æ2ļæ½2

0 2 ļ潚æ2ļæ½2

0 0 0 0 1 0

0 0 6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

0 4 ļ潚æ2ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

00š‘£2šœƒ2

0šœƒ3

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

As was mentioned earlier, another method would be to remove the rows/columns whichresults in āŽ›

āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

āˆ’2š‘ƒš‘2ļæ½ šæ2+2š‘Žļæ½

(šæ/2)3āˆ’ 2

š‘šļæ½ šæ2 ļæ½

2

āˆ’2š‘ƒš‘Žš‘2

ļæ½ šæ2 ļæ½2

š‘šļæ½ šæ2 ļæ½2

12 + š‘ƒš‘Ž2š‘

ļæ½ šæ2 ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼

ļ潚æ2ļæ½3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

24 0 6 ļ潚æ2ļæ½

0 8 ļ潚æ2ļæ½2

2 ļ潚æ2ļæ½2

6 ļ潚æ2ļæ½ 2 ļ潚æ2ļæ½2

4 ļ潚æ2ļæ½2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

š‘£2šœƒ2

šœƒ3

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

Giving the same solution. There are 3 unknowns to solve for. Once these unknowns aresolved for, š‘£ (š‘„) for the first element and for the second element are fully determined. Thefollowing code displays the deflection curve for the above beamļæ½ ļæ½

1 clear all; close all;2 P=400;3 L=144;4 E=30*10^6;5 I=57.1;6 m=200;7 a=0.125*L;8 b=0.375*L;9 A=E*I/(L/2)^3*[1 0 0 0 0 0;10 0 1 0 0 0 0;11 0 0 24 0 0 6*L/2;12 0 0 0 8*(L/2)^2 0 2*(L/2)^2;13 0 0 0 0 1 0;14 0 0 6*L/2 2*(L/2)^2 0 4*(L/2)^2];15 A16 load = [0;17 0;18 -(m*L/2) - 2*P*b^2*(L/2+2*a)/(L/2)^3;19 -2*P*a*b^2/(L/2)^2;20 0;21 P*a^2*b/(L/2)^2+(m*(L/2)^2)/12]

29

Page 34: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

22 sol=A\loadļæ½ ļæ½Ė™A =1.0e+08 *0.0000 0 0 0 0 00 0.0000 0 0 0 00 0 0.0011 0 0 0.01980 0 0 1.9033 0 0.47580 0 0 0 0.0000 00 0 0.0198 0.4758 0 0.9517load =00-15075-8100087750sol =00-0.2735-0.001900.0076

The above solution gives š‘£2 = āˆ’0.2735 in (downwards displacement) and šœƒ2 = āˆ’0.0019radians and šœƒ3 = 0.0076 radians. š‘£ (š‘„) polynomial is now found for each element

š‘£š‘’š‘™š‘’š‘š1 (š‘„) = ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£1šœƒ1

š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

00š‘£2šœƒ2

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

=āŽ›āŽœāŽœāŽœāŽ

1

ļæ½ šæ2 ļæ½3 ļæ½3 ļæ½

šæ2ļæ½ š‘„2 āˆ’ 2š‘„3ļæ½ 1

ļæ½ šæ2 ļæ½2 ļæ½āˆ’ ļæ½

šæ2ļæ½ š‘„2 + š‘„3ļæ½

āŽžāŽŸāŽŸāŽŸāŽ 

āŽ›āŽœāŽœāŽœāŽœāŽāˆ’0.2735āˆ’0.0019

āŽžāŽŸāŽŸāŽŸāŽŸāŽ 

=2.188šæ3 ļæ½2š‘„3 āˆ’

32šæš‘„2ļæ½ āˆ’

0.007 6šæ2 ļ潚‘„3 āˆ’

12šæš‘„2ļæ½

The above polynomial is the transverse deflection of the beam for the region 0 ā‰¤ š‘„ ā‰¤ šæ/2.

30

Page 35: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

š‘£ (š‘„) for the second element is found in similar way

š‘£š‘’š‘™š‘’š‘š2 (š‘„) = ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

š‘£2šœƒ2

0šœƒ3

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

= ļ潚‘1 (š‘„) š‘2 (š‘„) š‘3 (š‘„) š‘4 (š‘„)ļæ½

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

āˆ’0.2735āˆ’0.0019

00.0076

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

= ļ潚‘1 (š‘„) š‘2 (š‘„) š‘4 (š‘„)ļæ½

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

āˆ’0.2735āˆ’0.00190.0076

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=āŽ›āŽœāŽœāŽœāŽœāŽ

1

ļæ½ šæ2 ļæ½3 ļæ½ļæ½

šæ2ļæ½3āˆ’ 3 ļ潚æ2ļæ½ š‘„

2 + 2š‘„3ļæ½1

ļæ½ šæ2 ļæ½2 ļæ½ļæ½

šæ2ļæ½2š‘„ āˆ’ 2 ļ潚æ2ļæ½ š‘„

2 + š‘„3ļæ½1

ļæ½ šæ2 ļæ½2 ļæ½āˆ’ ļæ½

šæ2ļæ½ š‘„2 + š‘„3ļæ½

āŽžāŽŸāŽŸāŽŸāŽŸāŽ 

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

āˆ’0.2735āˆ’0.00190.0076

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

Hence

š‘£š‘’š‘™š‘’š‘š2 (š‘„) =0.030 4šæ2 ļ潚‘„3 āˆ’

12šæš‘„2ļæ½ āˆ’

0.007 6šæ2 ļæ½

14šæ2š‘„ āˆ’ šæš‘„2 + š‘„3ļæ½ āˆ’

2.188šæ3 ļæ½

18šæ3 āˆ’

32šæš‘„2 + 2š‘„3ļæ½

Which is valid for šæ/2 ā‰¤ š‘„ ā‰¤ šæ. The following is a plot of the deflection curve using the above2 equations

When the above plot is compared to the case with one element, the deflection is seen to belarger now. Comparing the above to the analytical solution shows that the deflection nowis almost exactly the same as the analytical solution. Hence by using only two elementsinstead of one element, the solution has become more accurate and almost agrees with theanalytical solution.

The following diagram shows the deflection curve of problem three above when using oneelement and two elements on the same plot to help illustrate the diļæ½erence in the result

31

Page 36: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

more clearly.

The analytical deflection for the beam in problem three above (fixed on the left and simplysupported at the right end) when there is uniformly loaded with š‘¤ lbs per unit length isgiven by

š‘£ (š‘„) = āˆ’š‘¤š‘„2

48šøš¼ļæ½3šæ2 āˆ’ 5šæš‘„ + 2š‘„2ļæ½

While the analytical deflection for the same beam but when there is a point load P at distanceš‘Ž from the left end is given by

š‘£ (š‘„) = āˆ’š‘ƒ(āŸØšæ āˆ’ š‘ŽāŸ©3 (3šæ āˆ’ š‘„)š‘„2 + šæ2(3(šæ āˆ’ š‘Ž)(šæ āˆ’ š‘„)š‘„2 + 2šæ āŸØš‘„ āˆ’ š‘ŽāŸ©3))

Therefore, the analytical expression for deflection is given by the sum of the above expres-sions, giving

š‘£ (š‘„) = āˆ’š‘¤š‘„2

48šøš¼ļæ½3šæ2 āˆ’ 5šæš‘„ + 2š‘„2ļæ½ āˆ’ š‘ƒ(āŸØšæ āˆ’ š‘ŽāŸ©3 (3šæ āˆ’ š‘„)š‘„2 + šæ2(3(šæ āˆ’ š‘Ž)(šæ āˆ’ š‘„)š‘„2 + 2šæ āŸØš‘„ āˆ’ š‘ŽāŸ©3))

Where āŸØš‘„ āˆ’ š‘ŽāŸ©means it is zero when š‘„āˆ’š‘Ž is negative. In other words āŸØš‘„ āˆ’ š‘ŽāŸ© = (š‘„ āˆ’ š‘Ž)š‘ˆš‘›š‘–š‘”š‘†š‘”š‘’š‘ (š‘„ āˆ’ š‘Ž)

The following diagram is a plot of the analytical deflection with the two elements deflectioncalculated using Finite elements above.

32

Page 37: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

In the above, the blue dashed curve is the analytical solution, and the red curve is the finiteelements solution using 2 elements. It can be seen that the finite element solution for thedeflection is now in a very good agreement with the analytical solution.

33

Page 38: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

34

Page 39: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Chapter 4

Generating shear and bendingmoments diagrams

After solving the problem using finite elements and obtaining the field displacement functionš‘£ (š‘„) as was shown in the above examples, the shear force and bending moments along the

beam can be calculated. Since the bending moment is given by š‘€(š‘„) = āˆ’šøš¼š‘‘2š‘£(š‘„)š‘‘š‘„2 and shear

force is given by š‘‰ (š‘„) = š‘‘š‘€š‘‘š‘„ = āˆ’šøš¼š‘‘

3š‘£(š‘„)š‘‘š‘„3 then these diagrams are now readily plotted as shown

below for example three above using the result from the finite elements with 2 elements.Recalling from above that

š‘£ (š‘„) =2.188šæ3

ļæ½2š‘„3 āˆ’ 32šæš‘„

2ļæ½ āˆ’ 0.007 6šæ2

ļ潚‘„3 āˆ’ 12šæš‘„

2ļæ½0.030 4šæ2

ļ潚‘„3 āˆ’ 12šæš‘„

2ļæ½ āˆ’ 0.007 6šæ2

ļæ½14šæ

2š‘„ āˆ’ šæš‘„2 + š‘„3ļæ½ āˆ’ 2.188šæ3

ļæ½18šæ

3 āˆ’ 32šæš‘„

2 + 2š‘„3ļæ½

āŽ«āŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽ­

0 ā‰¤ š‘„ ā‰¤ šæ/2šæ/2 ā‰¤ š‘„ ā‰¤ šæ

Hence

š‘€(š‘„) = āˆ’šøš¼āˆ’0.0076(6š‘„āˆ’šæ)

šæ2 + 2.188(12š‘„āˆ’3šæ)šæ3

āˆ’0.0076(6š‘„āˆ’2šæ)šæ2 + 0.0304(6š‘„āˆ’šæ)

šæ2 āˆ’ 2.188(12š‘„āˆ’3šæ)šæ3

āŽ«āŽŖāŽŖāŽ¬āŽŖāŽŖāŽ­

0 ā‰¤ š‘„ ā‰¤ šæ/2šæ/2 ā‰¤ š‘„ ā‰¤ šæ

using šø = 30 Ɨ 106 psi and š¼ = 57 in4 and šæ = 144 in, the bending moment diagram plot is

35

Page 40: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

CHAPTER 4. GENERATING SHEAR . . .

The bending moment diagram clearly does not agree with the bending moment diagramthat can be generated from the analytical solution given below (generated using my otherprogram which solves this problem analytically)

The reason for this is because the solution š‘£ (š‘„) obtained using the finite elements methodis a third degree polynomial and after diļæ½erentiating twice to obtain the bending moment

(š‘€(š‘„) = āˆ’šøš¼š‘‘2š‘£š‘‘š‘„2 ) the result becomes a linear function in š‘„ while in the analytical solution

case, when the load is distributed, the solution š‘£ (š‘„) is a fourth degree polynomial. Hencethe bending moment will be quadratic function in š‘„ in the analytical case.

Therefore, in order to obtain good approximation for the bending moment and shear forcediagrams using finite elements, more elements will be needed.

36

Page 41: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Chapter 5

Finding the stiļæ½ness matrix usingmethods other than direct method

Local contents5.1 Virtual work method for derivation of the stiļæ½ness matrix . . . . . . . . . . . . . 385.2 Potential energy (minimize a functional) method to derive the stiļæ½ness matrix . 40

37

Page 42: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

5.1. Virtual work method for derivation of . . . CHAPTER 5. FINDING THE . . .

There are three main methods to obtain the stiļæ½ness matrix

1. Variational method (minimizing a functional). This functional is the potential energyof the structure and loads.

2. Weighted residual. Requires the diļæ½erential equation as a starting point. Approximatedin weighted average. Galerkin weighted residual method is the most common methodfor implementation.

3. Virtual work method. Making the virtual work zero for an arbitrary allowed displace-ment.

5.1 Virtual work method for derivation of the stiļæ½nessmatrix

In virtual work method, a small displacement is assumed to occur. Looking at small volumeelement, the amount of work done by external loads to cause the small displacement is setequal to amount of increased internal strain energy. Assuming the field of displacement isgiven by š’– = {š‘¢, š‘£, š‘¤} and assuming the external loads are given by ļ潚‘ļæ½ acting on the nodes,

hence these point loads will do work given by {š›æš‘‘}š‘‡ ļ潚‘ļæ½ on that unit volume where {š‘‘} is thenodal displacements. In all these derivations, only loads acting directly on the nodes areconsidered for now. In other words, body forces and traction forces are not considered inorder to simplify the derivations.

The increase of strain energy is {š›æšœ€}š‘‡ {šœŽ} in that same unit volume.

This area is the Strain energy per

unit volume

Hence, for a unit volume

{š›æš‘‘}š‘‡ ļ潚‘ļæ½ = {š›æšœ€}š‘‡ {šœŽ}

And for the whole volume

{š›æš‘‘}š‘‡ ļ潚‘ļæ½ = ļ潚‘‰{š›æšœ€}š‘‡ {šœŽ} š‘‘š‘‰ (1)

Assuming that displacement can be written as a function of the nodal displacements of the

38

Page 43: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

5.1. Virtual work method for derivation of . . . CHAPTER 5. FINDING THE . . .

element results in

š’– = [š‘] {š‘‘}

Therefore

š›æš’– = [š‘] {š›æš‘‘}

{š›æš’–}š‘‡ = {š›æš‘‘}š‘‡ [š‘]š‘‡ (2)

Since {šœ€} = šœ• {š’–} then {šœ€} = šœ• [š‘] {š‘‘} = [šµ] {š‘‘} where šµ is the strain displacement matrix[šµ] = šœ• [š‘], hence

{šœ€} = [šµ] {š‘‘}{š›æšœ€} = [šµ] {š›æš‘‘}

{š›æšœ€}š‘‡ = {š›æš‘‘}š‘‡ [šµ]š‘‡ (3)

Now from the stress-strain relation {šœŽ} = [šø] {šœ€}, hence

{šœŽ} = [šø] [šµ] {š‘‘} (4)

Substituting Eqs. (2,3,4) into (1) results in

{š›æš‘‘}š‘‡ ļ潚‘ļæ½ āˆ’ļ潚‘‰{š›æš‘‘}š‘‡ [šµ]š‘‡ [šø] [šµ] {š‘‘} š‘‘š‘‰ = 0

Since {š›æš‘‘} and {š‘‘} do not depend on the integration variables they can be moved outsidethe integral, giving

{š›æš‘‘}š‘‡ ļæ½ļ潚‘ļæ½ āˆ’ {š‘‘}ļ潚‘‰[šµ]š‘‡ [šø] [šµ] š‘‘š‘‰ļæ½ = 0

Since the above is true for any admissible š›æš‘‘ then the only condition is that

ļ潚‘ļæ½ = {š‘‘}ļ潚‘‰[šµ]š‘‡ [šø] [šµ] š‘‘š‘‰

This is in the form š‘ƒ = š¾Ī”, therefore

[š¾] = ļ潚‘‰[šµ]š‘‡ [šø] [šµ] š‘‘š‘‰

knowing [šµ] allows finding [š‘˜] by integrating over the volume. For the beam element though,

š’– = š‘£ (š‘„) the transverse displacement. This means [šµ] = š‘‘2

š‘‘š‘„2 [š‘]. Recalling from the abovethat for the beam element,

[š‘] = ļæ½ 1šæ3ļ潚æ3 āˆ’ 3šæš‘„2 + 2š‘„3ļæ½ 1

šæ2ļ潚æ2š‘„ āˆ’ 2šæš‘„2 + š‘„3ļæ½ 1

šæ3ļæ½3šæš‘„2 āˆ’ 2š‘„3ļæ½ 1

šæ2ļæ½āˆ’šæš‘„2 + š‘„3ļæ½ļæ½

Hence

[šµ] =š‘‘2

š‘‘š‘„2[š‘] = ļæ½ 1

šæ3(āˆ’6šæ + 12š‘„) 1

šæ2(āˆ’4šæ + 6š‘„) 1

šæ3(6šæ āˆ’ 12š‘„) 1

šæ2(āˆ’2šæ + 6š‘„)ļæ½

39

Page 44: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

Hence

[š¾] = ļ潚‘‰[šµ]š‘‡ [šø] [šµ] š‘‘š‘‰

= ļ潚‘‰

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

1šæ3(āˆ’6šæ + 12š‘„)

1šæ2(āˆ’4šæ + 6š‘„)

1šæ3(6šæ āˆ’ 12š‘„)

1šæ2(āˆ’2šæ + 6š‘„)

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

šø ļæ½ 1šæ3(āˆ’6šæ + 12š‘„) 1

šæ2(āˆ’4šæ + 6š‘„) 1

šæ3(6šæ āˆ’ 12š‘„) 1

šæ2(āˆ’2šæ + 6š‘„)ļæ½ š‘‘š‘‰

= šøš¼ļ潚æ

0

āŽ§āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽØāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ©

1šæ3(āˆ’6šæ + 12š‘„)

1šæ2(āˆ’4šæ + 6š‘„)

1šæ3(6šæ āˆ’ 12š‘„)

1šæ2(āˆ’2šæ + 6š‘„)

āŽ«āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ¬āŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽŖāŽ­

ļæ½ 1šæ3(āˆ’6šæ + 12š‘„) 1

šæ2(āˆ’4šæ + 6š‘„) 1

šæ3(6šæ āˆ’ 12š‘„) 1

šæ2(āˆ’2šæ + 6š‘„)ļæ½ š‘‘š‘„

= šøš¼ļ潚æ

0

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

1šæ6(6šæ āˆ’ 12š‘„)2 1

šæ5(4šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„) āˆ’ 1

šæ6(6šæ āˆ’ 12š‘„)2 1

šæ5(2šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„)

1šæ5(4šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„) 1

šæ4(4šæ āˆ’ 6š‘„)2 āˆ’ 1

šæ5(4šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„) 1

šæ4(2šæ āˆ’ 6š‘„) (4šæ āˆ’ 6š‘„)

āˆ’ 1šæ6(6šæ āˆ’ 12š‘„)2 āˆ’ 1

šæ5(4šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„) 1

šæ6(6šæ āˆ’ 12š‘„)2 āˆ’ 1

šæ5(2šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„)

1šæ5(2šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„) 1

šæ4(2šæ āˆ’ 6š‘„) (4šæ āˆ’ 6š‘„) āˆ’ 1

šæ5(2šæ āˆ’ 6š‘„) (6šæ āˆ’ 12š‘„) 1

šæ4(2šæ āˆ’ 6š‘„)2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

š‘‘š‘„

= šøš¼

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12šæ3

6šæ2 āˆ’ 12

šæ36šæ2

6šæ2

4šæ āˆ’ 6

šæ22šæ

āˆ’ 12šæ3 āˆ’ 6

šæ212šæ3 āˆ’ 6

šæ26šæ2

2šæ āˆ’ 6

šæ24šæ

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

=šøš¼šæ3

āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ

12 6šæ āˆ’12 6šæ6šæ 4šæ2 āˆ’6šæ 2šæ2

āˆ’12 āˆ’6šæ 12 āˆ’6šæ6šæ 2šæ2 āˆ’6šæ 4šæ2

āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 

Which is the stiļæ½ness matrix found earlier.

5.2 Potential energy (minimize a functional) method toderive the stiļæ½ness matrix

This method is very similar to the first method actually. It all comes down to finding afunctional, which is the potential energy of the system, and minimizing this with respect tothe nodal displacements. The result gives the stiļæ½ness matrix.

Let the system total potential energy by called Ī  and let the total internal energy in thesystem be š‘ˆ and let the work done by external loads acting on the nodes be Ī©, then

Ī  = š‘ˆ āˆ’Ī©

Work done by external loads have a negative sign since they are an external agent to thesystem and work is being done onto the system. The internal strain energy is given by

40

Page 45: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

12āˆ«š‘‰{šœŽ}š‘‡ {šœ€} š‘‘š‘‰ and the work done by external loads is {š‘‘}š‘‡ ļ潚‘ļæ½, hence

Ī  =12 ļ潚‘‰

{šœŽ}š‘‡ {šœ€} š‘‘š‘‰ āˆ’ {š‘‘}š‘‡ ļ潚‘ļæ½ (1)

Now the rest follows as before. Assuming that displacement can be written as a function ofthe nodal displacements {š‘‘}, hence

š’– = [š‘] {š‘‘}

Since {šœ€} = šœ• {š’–} then {šœ€} = šœ• [š‘] {š‘‘} = [šµ] {š‘‘} where šµ is the strain displacement matrix[šµ] = šœ• [š‘], hence

{šœ€} = [šµ] {š‘‘}

Now from the stress-strain relation {šœŽ} = [šø] {šœ€}, hence

{šœŽ}š‘‡ = {š‘‘}š‘‡ [šµ]š‘‡ [šø] (4)

Substituting Eqs. (2,3,4) into (1) results in

Ī  =12 ļ潚‘‰

{š‘‘}š‘‡ [šµ]š‘‡ [šø] [šµ] {š‘‘} š‘‘š‘‰ āˆ’ {š‘‘}š‘‡ ļ潚‘ļæ½

Setting šœ•Ī šœ•{š‘‘} = 0 gives

0 = {š‘‘}ļ潚‘‰[šµ]š‘‡ [šø] [šµ] š‘‘š‘‰ āˆ’ ļ潚‘ļæ½

Which is on the form š‘ƒ = [š¾]š· which means that

[š¾] = ļ潚‘‰[šµ]š‘‡ [šø] [šµ] š‘‘š‘‰

As was found by the virtual work method.

41

Page 46: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

42

Page 47: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive š‘¦direction. The two nodes

Chapter 6

References

1. A first course in Finite element method, 3rd edition, by Daryl L. Logan

2. Matrix analysis of framed structures, 2nd edition, by William Weaver, James Gere

43