18
POM-based Chiral Hybrids Synthesis via Organoimidization Covalent Modification of Achiral Precursors Chapter 1 Advances in Chemical Engineering Yifei Zhang 1,4 , Yichao Huang 2+ , Huan Wang 1+ , Jiangwei Zhang 1,2,3 *, Gao Li 1 *, and Yongge Wei 2* 1 State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China. 2 Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. 3 State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China. 4 College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, PR China. Equal Contribution Correspondence to: Jiangwei Zhang, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China. Email: [email protected] Gao Li, State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China. Email: [email protected] Yongge Wei, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China Email: [email protected]

Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

POM-based Chiral Hybrids Synthesis via Organoimidization Covalent Modification

of Achiral Precursors

Chapter 1

Advances in Chemical Engineering

Yifei Zhang 1,4†, Yichao Huang 2+, Huan Wang 1+, Jiangwei Zhang 1,2,3*, Gao Li1*, and Yongge

Wei2*

1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian Institute of Chemical

Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China.2Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department

of Chemistry, Tsinghua University, Beijing 100084, PR China.3State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005,

PR China.4College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034,

PR China.

† Equal Contribution

Correspondence to: Jiangwei Zhang, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen

University, Xiamen 361005, PR China.

Email: [email protected]

Gao Li, State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian Institute of Chemical

Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China.

Email: [email protected]

Yongge Wei, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education,

Department of Chemistry, Tsinghua University, Beijing 100084, PR China

Email: [email protected]

Page 2: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Overview on Gastric Cancer

2

ww

w.openaccessebooks.com

Zhan

g J,

Li G

, Wei

Y

In this chapter, covalent modification of POMs (polyoxometalates)clusters especially by organo imidization via the well-developed DCC(N,N′-dicyclohexylcarbodiimide)-dehydratingprotocolbyourgroupisbrieflyreviewed.ThefunctionalizationofPOMswithcovalentlyorganicmoietyisoneoftheeffec-tivewaystoincreasethediversePOMsfamilyandincorporateexceptionalproper-tiesthattheseorganicmoleculesattachtoPOMclustersinareliableandpredefinedmanner,whichisexpectedtobeappliedtothedesignofmolecularfunctionalizedmaterials.ThecombinationchiralitywithPOMsisacrucialbutchallengingissuesincePOMsusuallypossesshighsymmetry.Organoimidizationcovalentmodifi-cationofachiralprecursorsLindquist[Mo6O19]2−hasbeenprovedtobeaflexiblestrategyforapplyinginthegenerationofPOM-basedchiralhybrids.TheorganicligandsoffergreatopportunitiestoinstallstereogenicelementstoPOMsstructureasstructuredirecting-agentstoremovesymmetricelementsinPOMclusters,andsomespecialPOMclustersbearingaminogroupon itssurfaceservesasspecialimido ligands.This takes full advantage of the intrinsic hindrance of the bulkyandheavyPOMs,Whichwillgreatlyextendchiralityinpolyoxometalatechemis-trysincetheprimarychiralPOManionsarerare.InconsiderationofthefactthatthereexistplentyofchiralnaturalproductsL-aminoacidsandmanyPOMclustersanchoraminogroupasremotegrouponthesurface.ItcanforeseethatmoreandmorePOM-basedchiralhybridswillbegeneratedbyorganoimidizationcovalentmodificationofachiralprecursorsLindquist[Mo6O19]2−inthefuture.

Graphical abstract

1. Introduction Polyoxometalates (POMs) are an exceptional family of inorganic oxide anions con-sistingofearlytransitionmetalionssuchasMo,W,V,etc.attheirhighestoxidizationstatesbridgingbyoxideanionswithstructuralversatilityandawiderangeofpropertiesincludingcatalysis,medicineandmaterialsscience[1-3].SincethefirstsaltofPOM,ammonium12-molybdophosphate,(NH4)3[PMo12O40]wasreportedbyBerzelius in1826, thechemistryofPOMshasgaineddramaticdevelopment,withthedevelopmentofstructurecharacterizationtechnology,especiallysingleX-raydiffraction,thestructureofPOMsclustercanbeprecisely

Abstract

Page 3: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

3

confirmed.SinceKegginreportedthefamousKegginstructurein1934.Thetopologystruc-tureofKeggin[4],Anderson[5],Dawson[6],Waugh[7],Silverton[8],Lindqvist[9]werediscoveredsequentiallyandformedintothesixbasicstructureofPOMs.In1970s-1980s,sev-eralnovelstructuresincludingWeakley[10],Standberg[11],Finke[12],andPreyssler[13]werereported(Figure 1).POMs,asinorganicmultidentateligands,areprimecandidatesforthedesignandconstructionofdifferentdimensionalarchitectureswithjudiciousselectionofappropriatecationsandorganicmoleculesandPOMscanserveaselectroncontainersduetothepropertyofmulti-electronreductionwithoutlossofthearchitecture.TheseaspectsmakePOMsmorevaluablewithcharmingelectricalandopticalpropertiessuchaselectrochromism,photochromism,conductivity,andredoxactivitiesthatsuitableinawiderangeofpotentialapplication[14-21]suchasreversibleredoxactivitythatcanbeutilizedasefficientsolid-acidcatalystsandelectron-transfercatalystsfordiverseorganicreactions.

Figure 1: TenbasicstructuraltopologyofPOMclusters. Chiralityhasbecomeanincreasinglycrucialissueinmanyfields,rangingfromphar-maceuticalstoasymmetriccatalysisandclinicalanalysis[22-23].Thesynthesisandresolutionofchiralpolyoxometalates(POMs)isaninterestingbutchallengingareasincePOMsusuallypossesshighsymmetry.ChemistsareurgenttobreakthissymmetrysoastogetchiralPOMs.PreparationofPOMs’chiralstructureswouldprovideultimatecontrolofthesynthesisofthosenanosized objects.Generally speaking, chirality of POMs-based inorganic-organic hybrids

Figure 2: ClassicalintrinsicchiralPOMframeworks.

Page 4: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

4

canmanifest itself intwodistinctways[24-26]:(1)Theycanbeintrinsicallychiral intheframeworkofPOMsbybondlengthalteration,geometricaldistortion,theformationofstruc-turallacunaeandreplacementwithothermetals.ClassicalintrinsicchiralPOMframeworksare[MnMo9O32]

6−(Figure 2a),[PMo9O31(OH)3]3−(Figure 2b),α-[P2Mo18O62]

6−(Figure 2c),α1-[P2W17O61]

10− (Figure 2d)andβ2-[SiW11O39]8− (Figure 2e).However, suchenantiomers

areveryeasilyracemizedanddifficulttobeseparatedandisolated.Suchaproblemhasseri-ouslyhinderedtheapplicationofchiralPOM-basedmaterials.(2)POMsarechemicallymodi-fiedthroughcoordinationbonding,electrostaticinteractionandcovalentmodification.Sincemetalions,organiccationespeciallychiralorganiccationandsurfactants,organicligandscandramaticallyaffectthefinalarchitectures.SuchstrategymayleadtotherationaldesignandsynthesisofchiralPOM-basedmaterialsinenantiopureforms.

Organic–inorganicPOMshybridscanbecategorizedintotwoclassifications[20,27],classificationIandclassificationII (Figure 3),whicharewell-definedaccording to the in-teractionsbetweentheorganicand inorganicmoieties, tobeexact,non-covalentandcova-lentinteractions,respectively.ClassificationIorganic–inorganichybridscanbeassembledbyelectrostaticinteractions,hydrogenbonding,aswellas/orvanderWaalsinteractions.

Covalentmodification,bygraftingorganicmoietiesontoPOMsframework,namely,theorganicligandcansubstituteanoxogroupofthePOMandbedirectlylinkedtothemetalliccenter,resultingintheformationofclassificationIIhybrids.Thelaterhasgainedmuchatten-tionalthoughtheyarevastlydifferentinmolecularstructures,POMsandconjugatedorganicmoleculearebothelectricallyactivematerialswithsimilarelectricalandopticalpropertiessuchasphotochromism,electrochromism,andconductivity.Thefundamentalmechanismsofthesepropertiesare,however,differentforthesetwotypesofmaterials,withdπelectronsre-sponsiblefortheinorganicPOMclusters,anddelocalizedpπelectronsresponsiblefortheor-ganiccounterpart.Whilebothareashavebeenenjoyingconsiderablesuccess,therehasbeenonlyafewsuccessinbringingthesetwotypesofmaterialstogetherthroughcovalentbondstomakenovelPOM-basedorganic-inorganichybridsowingtothelacksofreliablestrategytofunctionalizePOMsandpreparetheirorganicderivativesinhighyield.Ascouldbeexpected,

Figure 3: Definitionofthetwoclassifications(IandII)oforganic/inorganichybridPOMs

Page 5: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

5

however,suchorganic-inorganichybridmaterialswillnotonlycombinetheadvantagesofor-ganicmaterials:suchasgoodprocessabilityandfine-regularstructureandelectronicproper-ties,withthoseofinorganicPOMclusters,suchasgoodchemicalstabilityandstrongelectronacceptability, to produce so-called ‘‘value-adding properties’’, but alsomay bring excitingsynergisticeffectsduetothecloseinteractionofdelocalizedorganicpπorbitswiththeinor-ganicPOMcluster’sdπorbits.

Comparedwithsuchorganic-inorganichybrids,POMsareconventionallypreparedbycoordination bonding or electrostatic interaction approaches,which lack predictability andcontrollability.However,theabilityofcovalentlymodifythePOMclustersinareliableandpredefinedmannerholdspromiseforthedevelopmentofmolecularmaterialsthatbridgethegapbetweenmolecularorganicandbulksemiconductingPOMscluster.Furthermore,givingexceptionalphysicalandstructuralpropertiesintrinsictoPOMsuperstructurescanbeachievedbypost-functionalizedthroughcommonorganicreactionsandapplyorganicallyfunctional-izedPOMclustersasbuildingblocks[28-29].

GraftingorganicmoietiesontoaPOMscluster requiresananchoragepointensuringthelinkbetweenthetwocomponents.ThislinkiscloselydependentonthechemicalstructurenatureandelectronicpropertiesofthePOMscluster.ThenucleophiliccharacteroftheoxygenatomslocalizedonthesurfaceofthePOMscanleadtocovalentinteractionswithelectrophilicgroupsbearingorganicgroups.ThepresenceofthenegativechargebornebythePOMsclusterisanimportantpointthatneedstobeconsideredforthegraftingoftheorganicmoieties.Neu-tralornegativelychargedorganicmoietieswillbechoseninordertofavorcovalentgraftingoverelectrostaticinteractions.ThefunctionalizationofPOMsthroughoxygenatomslocatedattheperipheryofthePOMstructureisthemostconventionalroute.OrganicligandwhichistheisoelectronicofO2-cansubstituteanoxogroupofthePOMandbedirectlylinkedtothemetalliccenter[30].

Basedon the coordinationmodes to covalently linkorganicmoietiesonto thePOMclustersurface.Thecommonlysyntheticstrategiescanbecategorizedintothefollowingmainclassifications: Organoimidization [28,31-34], Organoalkoxylation [35-48], Organotin [49-54],Organosilylation[55-63],Organophosphonylationandorganoarsonylation[64-72](Fig-ure 4).OrganicallyfunctionalizedPOMsapplyingspecificorganicligandsas linkersmakePOMs-basedinorganic-organicchiralhybridsmoreaccessibleandflexible.Inthisreview,wespeciallyfocusontheissuethatsuchPOMs-basedinorganic-organicchiralhybridswereob-tainedbythecovalentmodificationofachiralPOMclusterprecursorsapplyingorganicligandsasstructure-directingagentsbysymmetryreductionorbreakingtheachiralPOMcluster.

Page 6: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

6

2. Organoimidization by the DCC-dehydrating protocol

AmongtheabovementionedsyntheticstrategiesconcerningcovalentmodificationofPOMclusters,organoimidizationhasattractedparticularinterest.Strictlyspeaking,thedirectcovalentmodificationofthePOMclusterwithoutthebridgingthroughthetransitionmetaltheorganoimidizationof[Mo6O19]

2−istheonlysystem.Varioussyntheticapproachestoprepareorganoimidoderivativesof[Mo6O19]

2−usingdifferentorganoimido-releasingreagentshave-beensummarizedinapreviousbookchapterbyus[31].Recently,alotofarylimidoderiva-tivesincludingpolymersoftheLindqvisthexamolybdatecluster,[Mo6O19]

2-,havebeensyn-thesizedcontinuously[28].SincetheπelectronsintheorganiccomponentofsuchderivativesmayextendtheirconjugationtotheinorganicPOMframeworkviatheNatomsoftheimidogroups,thusresultinstrongd–pπinteractionsanddramaticallymodifytheelectronicstructureandredoxpropertiesofthecorrespondingparentPOMs.

Inaddition,organoimidoderivativesofPOMswitharemoteactivefunctionalgroupcanbeexploitedasbuildingblockstoconvenientlyandcontrollablyfabricatethecomplicatedcovalently-linkedPOM-basedorganic-inorganichybrids,includingthenano-dumbbells,poly-mericchainsandevennetworksofPOMs[28].Thismodularbuildingblockapproachbringsrationaldesignandstructureregulationintothesynthesisoforganic-inorganichybridmolecu-lar materials.

Inthisreview,wewilljustfocusonorganoimidizationof[Mo6O19]2−bytheDCC-de-

hydratingprotocolinbriefwhichhasalsobeenwellreviewedbyourgroup[28,34]anddem-onstratedhowthisprotocolcanbeappliedinchiralPOMshybridssynthesisthroughcova-lentmodification.Asitcanbeexpected,thereactionchemistryoforganoimidoderivativesofPOMsstandsforthefascinatingfutureofthechemistryoforganoimidoderivativesofPOMssinceitopensnotonlyanewroadtothechemicalmodificationofPOMs,butalsoanexcitingresearcharenawhereavarietyofhybridmaterialscontainingcovalentlybondedPOMclusters

Figure 4:CurrentexistedsyntheticstrategiesandmaincoordinationmodestocovalentlylinkorganicmoietiesontosurfaceofthePOMclusters.

Page 7: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

7

andorganicconjugatedsegmentscanbepreparedinmorecontrollableandrationalmanner.

Thehexamolybdateion,[Mo6O19]2-,isamongstthemostwell-knownPOMclustersfor

itsthermalandchemicalrobustandeasytobeprepared,whichhastheso-calledLindqviststructure. As it is depicted in Figure 5,theLindqviststructureconsistsofacentraloxyanionsurroundedinanoctahedralcageformedbysixmetalatoms.Allthesixmetalatomsalsohavean octahedral environment.

Besides thecentraloxygenatom, theyeachcoordinate triply tooneterminaloxygenatom,formingaterminalmetal-oxogroup(M≡O),andshareanadditionalfourdouble-bridg-ingoxygenatoms(μ2-Oatoms)withneighboringmetalatoms.Generallyspeaking,aLindqvistionhasasuper-octahedralstructureapproachtoOhpointgroupandfeaturesitssixterminalmetal-oxogroupsalignedalongtheCartesianaxes.Forthehexamolybdate,thesemolybdylgroups(Mo≡O)arereactiveenoughfortheterminaloxygenatomstobedirectlyreplacedbyvariousnitrogenousspecies.Theorganoimidoderivativesof [Mo6O19]

2−isgeneratedby thesubstitutionofoneormoreMo=Otermbond(s)byoneormoreMo≡NRbond(s).Monosubsti-tutedderivativescanbeobtainedwithavarietyoforganoimidoligandsusingthehexamolyb-dateanion[Mo6O19]

2−directlyorstartingfromtheoctamolybdateanion[Mo8O26]4-involving

thePOMreconstructionboth in thepresenceof theN,N′-dicyclohexylcarbodiimide(DCC)dehydratingagent.

2.1. Monosubstituted Derivatives

In the presenceof one equivalent ofDCC, one equivalent of primary amines reactssmoothlywithstoichiometric(n-Bu4N)2

[Mo6O19]underdryN2gasandrefluxingacetonitrile,to give the correspondingmono-substituted imidoderivatives usually in excellent yield ofmorethan90%.Notonlyavarietyofprimaryaminesoccurthisreaction,butalsoitisusuallycompletedinlessthan12hours,andpurecrystallineproductscanbereadilyobtainedwithconvenientbenchmanipulations.Moreover, thisreactioncanbecarriedout in theopenairwithoutnitrogenprotectionifslightlyoveroneequivalentofDCC(1.2equivalent)isadded.(Scheme 1)

[Mo6O19]2-+RNH2+DCC→ [Mo6O18(NR)]

2-+DCU

Scheme 1.TheMonosubstitutedorganoimidoderivatives[Mo6O18(NR)]2−synthesisby[Mo6O19]

2−directlyfunctional-

ization.

Moreover,inourrecentattemptstofunctionalizetheoctamolybdtateswithorganoimidogroups,wediscovered that in thepresenceofDCC, aproton coulddramatically speedupthereactionofα-[Mo8O26]

4-withprimaryaminesundermuchmildercondition.Meanwhile,monofunctionalizedorganoimidoderivativesof[Mo6O19]

2-wereselectivelysynthesizedinhighpurityandmoderateyieldwitheasyworkup.Thisacid-assistingroutehasallowedthefacile

Page 8: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

8

synthesisofalargenumberofmono-imidohexamolybdates.Itisworthpointingoutthat,theprotonwascrucialtotheaboveroutefortheformationofmonofunctionalizedderivatives.Itwasobservedthatintheabsenceofhydrochloridesalt–whichoffertheprotons,aminesreactedwithα-[Mo8O26]

4-toyieldonlythebifunctionalizedarylimidoderivativesofhexamolybdate.(see Scheme 2)

3CH CNrefluxing4 4 8 26 2. 4 2 6 18 43(N-Bu ) [Mo O ]+4RNH HC1+6DCC 4(Bu N) [Mo O (NR)]+6DCU+4Bu NC1→

Scheme 2.TheMonosubstitutedorganoimidoderivatives[Mo6O18(NR)]2−synthesisby[Mo8O26]

4- reconstruction.

2.2. Disubstituted Derivatives

Acharacteristic featureof thederivatizationof [Mo6O19]2− with organoimido ligands

isthecapacityforpolyfunctionalization.Amongorganoimidoderivativesof[Mo6O19]2−, the

bifunctionalizedonesaretheeasiestandmostcommonpotentialbuildingblocksforconstruct-ingPOM-basedhybrids.

3CH CNrefluxing2 4 4 8 26 4 2 6 17 2 4 2 2 72RNH +(N-Bu ) [Mo O ]+2DCC (Bu N) [Mo O (NR) ]+2DCU+(Bu N) [Mo O ]→

Scheme 3:Thedisubstitutedorganoimidoderivatives[Mo6O17(NR)2]2−synthesisby[Mo8O26]

4- reconstruction.

Inthepastyears,wealsocheckedthepossibilityofourDCC-dehydratingprotocolinthepreparationofdi-organoimidoderivativesofthehexamolybdate.Inmostcases,attemptstousethesamerouteasforthemono-substitutedderivativesbutwithastoichiometricratiooftwoequivalentaromaticprimaryaminesfailedtoobtainthedisubstitutedderivativesinhighyields.Instead,mixtureofvariouspolysubstitutedhexamolybdatesweregeneratedsincetherearesixequallyreactivesitesonahexamolybdateion,andthusrepeatedrecrystallizationisneededforpurificationoftheanticipantproduct.

However,anattempttofunctionalizetheα-isomerofoctamolybdateionα-[Mo8O26]4-,

withthisreactionroutineresultedintheselectivesynthesisofdifunctionalizedarylimidoderiv-ativesofhexamolybdatewithgoodyieldandhighpurity.Thereactionof(n-Bu4N)2 [α-Mo8O26]withDCCandorganoimidoligandsattheratioof1:2:2inrefluxingdryacetonitrilefor6to12hoursaffordedthecorrespondingdisubstitutedorganoimidoderivatives[Mo6O17(NR)2]

2−. Thisnovelrouteallowedtheefficientandselectivesynthesisofanumberofdi-organoimidohexamolybdateswithmoreconvenientandsimplebenchoperationsingoodyieldandhighpurity[73](Scheme 3).

Consideringexclusivelysterichindrance,thetransstructureofthedisubstitutedhexa-molybdate isexpected tobe theprincipalproductcomparedwith thecis isomer.However,thetrans-disubstitutedhexamolybdateshavehardlybeendetectedintheabovereactionroute.Sucharesultisamazing,whichsuggeststhatthestericeffectislessimportanthereandthe

Page 9: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

9

presenceofanexcessiveimidosubstituentinducesanactivatingeffectontheadjacentmo-lybdylgroups.ADFTstudyonhexamolybdatederivativesrevealsthatthecis-disubstitutedderivativesaremorestableinenergythanthecorrespondingtrans-isomers[74].

Scheme 4: Thedisubstitutedorganoimidoderivatives[Mo6O17(NR)2]2−synthesisby[Mo6O19]

2−directlyfunctionaliza-

tion.

We conducted our DCC-dehydrating protocol for the direct functionalization of[Mo6O19]

2−withstoichiometricratiosof(n-Bu4N)2[Mo6O19]andthecorrespondingorganoimi-doligands[75-76].Boththecis-andtrans-disubstitutedimidoderivativescouldbeobtainedinreasonableyields,respectively,bycarefulcontroloftherefluxingtime,reactiontemperatureandconcentration.Itshouldbenotedthatthecis-isomerisbyfarthemostcommonstructureamongthedisubstitutedspeciesevenifthekineticallycontrolledtransisomerhasbeenrecent-lyisolated[75-77].Ingeneral,prolongedrefluxingtimeathighconcentrationandhightem-peraturepromotestheformationofthecis-isomer,whilethetrans-isomercanbeisolatedfromarelativeshort-timeatlowconcentrationandlowtemperaturereactionsystem(seeScheme 4 and Figure 5).

Figure 5: Thecis-andtrans-disubstitutedmodeimidoderivativesof[Mo6O19]2−.

Page 10: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

10

Thiscompoundhasafeaturethattheμ2-bridgingoxygenatomsharingbythetwoimido-bearingMoatomsinacis-diimidohexamolybdateissubstitutedwithaμ2-bridgingorganoim-idoligand.Itsuggeststhatsuchoxygenatomsinthecis-diimidohexamolybdateshavebeendoublyactivatedbytheneighboringimidogroupsandbecomemorenegative(nucleophilic)thanotheroxygenatoms,resultingintheeasyelectrophilicattackbyDCC.ItstandsforthefirstexampleofabridgingoxygenatominPOMsreplacedbythebridgingimidogroups.Itbreaksthemyththatonlytheterminaloxogroupscanbedirectlyreplacedwithimidoligandsbefore and brings us awonderful prospect in the chemistry of organoimido derivatives ofPOMs(Figure 7).

2.4. Organoimido Derivatives of other POMs

Whiletherearefruitfuldevelopmentsinthesyntheticchemistryofhexamolybdate,re-latedstudiesonotherPOMskeepscarcelywelldeveloped.Sofar,thereonlyhasbeenobtainedquitelimitedsuccessinextendingtheaboveapproachestotheotherLindqvistPOMs.

Attempts todirectly functionalize thehexatungstateanion, [W6O19]2-, another impor-

tantLidquvisthomopolyoxometalatebesidesthehexamolybdate,havefailedtoutilizealltheexistingapproaches,since[W6O19]

2-doesnotreactatallwithphosphinimines,isocyanatesoraromaticprimaryaminesunderthepresentdevelopedconditions.Itseemsthatcomparedto

Figure 7: Ball-and-stickmodelofthetrisubstitutedhexamolybdate.

Figure 6: Twosubstitutionmodesofterminalorbridgingoxygenbyorganoimidoligands.

2.3. Polysubstituted Derivatives

WearealsointerestedinthepreparationofthepolysubstitutedhexamolybdatesinthecontextofourDCC-dehydratingprotocolusingprimaryaminesastheimido-releasingagents.Inarecentattempttosynthesizethefac-tri-2,6-dimethylanilidohexamolybdate,contrarytoourexpectation,theas-resultedtri-imidoderivative,(Bu4N)2[cis-Mo6O16μ2-(NAr)(NAr)2],wasnotexclusivelyterminal-oxoreplacedcomplex,andinstead,oneofbridging-oxogroupswassubstituted.Thisindicatedaveryimportantfactthatnotonlytheterminaloxogroupcanbesubstituted,butalsothebridgingoxogroupscanbereplacedbyaminegroups[78](Figure 6).

Page 11: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

11

themolybdylgroupsinthehexamolybdate,thetungstylgroupsinthehexatungstateisratherunreactive.Theonlyoneexampleofimidosubstitutedhexatungstates,(Bu4N)2[W6O18(NAr)],Ar=2,6-diisopropyl-C6H3,wasobtainedabouttwentyyearsagobyMaatta[79].

Althoughthehexatungstateclusterislesslabile,replacementoftungstylgroupswithreactivemolybdylgroupswillexertanactivateeffectonthecluster.Surely,wediscoveredthatthepentatungstenmolybdateion,[MoW5O19]

2-,aLidquvistheteropolyoxometalate,couldbedirectlyfunctionalizedwithprimaryaminesusingtheDCC-dehydratingprotocol[80].

[MoW5O19]2-+RNH2+DCC→ [W5O18(MoNR)]2-+DCU

Scheme 5.TheMonosubstitutedorganoimidoderivatives[W5O18(MoNR)]2-synthesisby[MoW5O19]2-directlyfunc-

tionalization.

In additionofone and ahalf equivalentsofDCC, the reactionofone equivalentof2,6-dimethylanilinewithoneequivalentof(Bu4N)2[MoW5O19]doesoccurinhotacetonitrileundernitrogen,affording themono-imidoderivatives (Bu4N)2 [W5O18(MoNR)]2-. Indeed as expected,theterminaloxygenatombondedtothemolybdenumatomwasselectivelyreplacedbyanimidosubstituent.ThisresultopensageneralroadforthesynthesisoforganoimidoderivativesoflessreactivePOMclusters,namely,byreplacementoneoftheinertterminalmetal-oxogroupswithafunctionalizableMo-Ogroup.

3. POM-Based Chiral Hybrids Synthesis via Organo imidization

The organo imidization strategy is applying in POM-based chiral hybrids synthesisthroughcovalentmodificationofachiralprecursorsPOMcluster[Mo6O19]

2−mainlyfocusesontheconstructionofchiralaxlespecies.Thedeterminationcriterionofwhetherorganic-in-organicPOMhybridshavechiralityornotdependsontheoverlappingwiththeirmirrorstruc-ture.Eventheredoesnotexistachiralcarboninorganic-inorganicPOMhybridsstructure,theycanstillbechiralifthereisachiralaxleinthestructure.Chiralitythatresultsfromchiralaxlecanbecataloguedintothreetypes:propadiene-type,biphenyl-typeandhandle-type.

For thebiphenyl-typechiralaxlecontainingPOM-basedchiralhybridsdesign.PengdesignedtwopairsofenantiopureC2-symmetric1,1’-binaphthylunitsbasedorganicligand.Throughthepost-functionalization,achiralprecursorsmonosubstitutedorganoimidoderiva-tives[Mo6O18(NR)]

2−covalentlylinkedtosuchchiralorganicligandandthechiralitytransferfromorganicligandtothewholePOM-basedhybrids[81].Suchhybridsshowedmoderatechiropticalbehaviourinsolution,andCottoneffectsareobservedupto450nm,indicatingchiralextensionfromthebinaphthylcoreofthecluster-containingπ-conjugatedarms(Figure 8).

Page 12: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

12

Intheviewofapplyingchiralorganicligandsasstructure-directingagentstotransferchirality to thewholePOM-basedhybrids strategy, chiral species are still consumed.Thisorganoimidization covalentmodificationwouldbemorevaluable if applying intrinsichin-dranceofthebulkyandheavyPOMs.Thenwefurtherpromotedthisstrategy.POM–organichybridchiralmolecularnanorodswereobtainedthroughorganoimidizationofachiralprecur-sorsLindquist[Mo6O19]

2−applyingachiralprecursorsAndersontypePOMsasspecialimidoligands.Theyalsodisplayedbiphenyl-typechiralaxleandC2-symmetryduetothehindranceofthebulkyandheavyPOMstotherotationaroundtheN–Csinglebond,whichstabilizedachiralconformation[82](Figure 9).

Figure 9: Thechiralnanorodssynthesisthroughorganoimidizationof[Mo6O19]2−applyingAndersontypePOMsas

special imido ligands.

Suchchiralnanorodswereobtainedinenantioenrichedformsbyspontaneousresolu-tion.TheirchiralitywasconfirmedbythesinglecrystalX-raydiffractionanalysesandsolidCDspectroscopymeasurements.AlthoughsuchC2-symmetricframeworksdonotpossessste-reogenicmetalions,thesyntheticstrategyprovidesanoriginalrouteforthedevelopmentofnovelchiralPOMarchitectures.WealsoextendedthisstrategytodesignanothertypeofchiralaxlePOM-basedchiralhybridssuchashandle-typePOM-basedchiralhybrids.

We applied anthranilic alkyl ether as imidization reagent,which ismoderately flex-ibleandnon-planeorganicmolecule.ByremovingsymmetricplaneandsymmetriccentersinPOMclustersandtheformationofring,wecouldobtainchiralmetalmacro-cycliccompounds[Mo6O17(C18H20N2O2)]2(±) through organoimidizationcovalentmodification by reacting

Figure 8 : The1,1’-binaphthylunitsbasedchiralorganicligandcovalentmodificationofachiralprecursorsmonosub-stitutedorganoimidoderivatives[Mo6O18(NR)]

2−.

Page 13: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

13

[Bu4N]4[α-Mo8O26],binaryaromaticamines(1,4-bis(o-amino-phenoxy)-butane,1,6-bis(o-amino-phenoxy)hexane,1,8-bis(o-amino-phenoxy)-octane),theirhydrochlorideandDCCinanhydrousacetonitrile[83]. Theflexiblealkylchainswhichconnecttwobenzeneringsinorganicligandcanresultinthecreationofchirality.SincethetwoendsoforganicligandarefixedontheMo6O18

2-byMo-Ntriplebond,theflexiblechaincannotbewigglefreely,sothatanasymmetricchainisformedandthesymmetryoftheoriginalMo6O19

2-canbebroken.Inthisway,thewholemetalmacro-cycleturnstobechiral.ThisisanimportantbreakthroughinPOMmetalmacro-cycliccompoundssynthesis(Figure 10). Taking theadvantageofdisubstitutedorganoimidizationstrategy,wealsoattempt todesignmultifunctionalhybridmaterialsbyintroducingaromaticandaliphaticorganicaminemoietiessimultaneously,indeedinsuchcis-disubstitutedimidoderivativesthesymmetrywasreduced to CipointgroupfromreactantsMo6O19

2-clusterwhichhashighsymmetryOh point group.Unfortunatelyspontaneousresolutionandchiralseparationofsuchdisubstitutedimidoderivativeshavenotyetachieved,however this indicated the important issue thatdisubsti-tuted/polysubstitutedorganoimidizationstrategyshouldalsobeaneffectivestrategyinchiralPOM-basedmultifunctionalhybridmaterialsdesign[84](Figure 11).

Figure 10:Chiralmetalmacro-cycliccompounds[Mo6O17(C18H20N2O2)]2(±)throughorganoimidizationcovalentmodi-ficationandtheirsolidCDspectroscopy.

Figure 11: Thesymmetryreductionbymixdisubstitutedorganoimidization.

Recently,wealsoattemptedtosynthesizetrisubstitutedimidoderivativesbyintroducingthebioactiveaminemolecule-amantadine,andthisisthefirstreportedtrisubstitutedderiva-tivesusingaliphaticorganoimidoligands.Similarly,suchfac-trisubstitutedimidoderivativesthesymmetrywasreducedtoD3dpointgroupwhichcouldserveasapotentialchiralsynthon[85](Figure 12).

Page 14: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

14

Figure 12: Thesymmetryreductionbytrisubstitutedorganoimidization

Considering the polyfunctionalization capacity character of the derivatizational[Mo6O19]

2−, this strategy designing through the post-functionalization monosubstituted or-ganoimido derivatives as building block becomes more accessible and flexible.We haveprovedthattheremainingterminalreactiveoxygenatomsinsuchorganoimidoderivativescanbefurtherfunctionalizedbyotherimidoligands[86].SincethefactthatthereexistplentyofchiralnaturalproductsL-aminoacidsandremoteaminogroupsonthesurfaceinPOMclus-tersincluding{[NH2C(CH2O)3]2V6O13}

2-[87],δ-{[NH2CC(CH2O)3]Cr(OH)3Mo6O18}3-[88],

{[C2H5C(CH2O)3]MMo6O18[(OCH2)3CNH2]}3- [89], χ-{[NH2CC(CH2O)3]Cr(OH)3Mo6O18}

3-

[90],{[NH2C(CH2O)3]2P2V3W15O59}6-[43],{Ni6O12[NH2C(CH2O)3](a-PW9O34)}[91].(Figure

13)

Figure 13: TheperspectiveofPOM-basedchiralhybridssynthesisbyorganoimidizationcovalentmodificationofachi-ralprecursorsLindquist[Mo6O19]

2−strategy.

4. Conclusion and Outlook

OrganoimidizationcovalentmodificationofachiralprecursorsLindquist[Mo6O19]2−is

aflexiblestrategyapplyinginthegenerationofPOM-basedchiralhybrids.ItpossessessterichindrancetoremovesymmetricelementsinPOMclusters,byintroducingspecificcustomizedorganicligands,whichincludeschiralorganicligandsasstructure-directingagentsorPOMclustersthatbearaminogrouponthePOMsurfaceandserveasspecialimidoligandstaking-fulladvantageofintrinsichindranceofthebulkyandheavyPOMs.ItcanforeseethatmoreandmorePOM-basedchiralhybridswillbegeneratedbyorganoimidizationcovalentmodifi-

Page 15: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

15

cationinthefutureandsomerelatedinvestigationisbeingconductedinourlabnow

5. Acknowledgement

WethankthefinancialsupportbytheNationalNaturalScienceFoundationofChina(NSFCNo.21471087,21631007,21606220and21701168),thefundofthe“ThousandYouthTalents Plan”, LiaoningNatural Science Foundation (No. 20170540897) and open projectFoundationofStateKeyLaboratoryofPhysicalChemistryofSolidSurfaces,XiamenUniver-sity(No.201709).

6. References

1.M.T.PopeandA.Muller,Angew.Chem.Int.Ed.,1991,30,34.

2.A.MullerandP.Gouzerh,Chem.Soc.Rev.,2012,41,7431.

3.J.T.Rhule,C.L.HillandD.A.Judd,Chem.Rev.,1998,98,327.

4.J.F.Keggin,ProceedingsOftheRoyalSocietyOfLondonSeriesa-ContainingPapersOfaMathematicalAndPhysi-calCharacter,1934,144,0075.

5.J.S.Anderson,Nature,1937,140,850.

6.B.Dawson,ActaCrystallographica,1953,6,113.

7.G.BergmanandJ.L.T.Waugh,ActaCrystallographica,1953,6,93.

8.D.D.DexterandSilverto.Jv,J.Am.Chem.Soc.,1968,90,3589.

9.M.Che,M.FournierandJ.P.Launay,J.Chem.Phys.,1979,71,1954.

10.R.D.PeacockandT. J.R.Weakley, JournalOf theChemicalSociety a -InorganicPhysicalTheoretical, 1971,1836.

11.K.Y.Matsumoto,M.KatoandY.Sasaki,B.Chem.Soc.Jpn.,1976,49,106.

12.R.G.Finke,M.Droege,J.R.HutchinsonandO.Gansow,J.Am.Chem.Soc.,1981,103,1587.

13.Preyssle.C,BulletinDeLaSocieteChimiqueDeFrance,1970,30.

14.J.M.Clemente-Juan,E.CoronadoandA.Gaita-Arino,Chem.Soc.Rev.,2012,41,7464.

15.H.J.Lv,Y.V.Geletii,C.C.Zhao,J.W.Vickers,G.B.Zhu,Z.Luo,J.Song,T.Q.Lian,D.G.MusaevandC.L.Hill,Chem.Soc.Rev.,2012,41,7572.

16.M.NymanandP.C.Burns,Chem.Soc.Rev.,2012,41,7354.

17.X.Lopez,J.J.Carbo,C.BoandJ.M.Poblet,Chem.Soc.Rev.,2012,41,7537.

18.H.N.Miras,J.Yan,D.L.LongandL.Cronin,Chem.Soc.Rev.,2012,41,7403.

19.A.Proust,B.Matt,R.Villanneau,G.Guillemot,P.GouzerhandG.Izzet,Chem.Soc.Rev.,2012,41,7605.

20.Y.F.SongandR.Tsunashima,Chem.Soc.Rev.,2012,41,7384.

Page 16: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

16

21.P.C.Yin,D.LiandT.B.Liu,Chem.Soc.Rev.,2012,41,7368.

22.J.He,S.H.Li,Y.Q.Deng,H.Y.Fu,B.N.Laforteza,J.E.Spangler,A.HomsandJ.Q.Yu,Science,2014,343,1216.

23.S.N.Mlynarski,C.H.SchusterandJ.P.Morken,Nature,2014,505,386.

24.B.Hasenknopf,K.Micoine,E.Lacote,S.Thorimbert,M.MalacriaandR.Thouvenot,Eur.J.Inorg.Chem.,2008,5001.

25.W.-L.Chen,H.-Q.TanandE.-B.Wang,J.Coord.Chem.,2012,65,1.

26.D.Y.Du,L.K.Yan,Z.M.Su,S.L.Li,Y.Q.LanandE.B.Wang,Coord.Chem.Rev.,2013,257,702.

27.A.Dolbecq,E.Dumas,C.R.MayerandP.Mialane,Chem.Rev.,2010,110,6009.

28.Z.H.Peng,Angew.Chem.Int.Ed.,2004,43,930.

29.D.L.Long,R.TsunashimaandL.Cronin,Angew.Chem.Int.Ed.,2010,49,1736.

30.A.Proust,R.ThouvenotandP.Gouzerh,Chem.Commun.,2008,1837.

31.Y.Wei,P.Wu,Y.WangandM.Shao,NovaSciencePublishers,Inc.,2007,pp.97.

32.Y.G.Wei,B.B.Xu,C.L.BarnesandZ.H.Peng,J.Am.Chem.Soc.,2001,123,4083.

33.Q.Li,Y.G.Wei,J.Hao,Y.L.ZhuandL.S.Wang,J.Am.Chem.Soc.,2007,129,5810.

34.J.Zhang,F.P.Xiao,J.HaoandY.G.Wei,Dalton.Trans.,2012,41,3599.

35.S.C.Liu,S.N.ShaikhandJ.Zubieta,Inorg.Chem.,1987,26,4303.

36.H.K.Kang,S.C.Liu,S.N.Shaikh,T.NicholsonandJ.Zubieta,Inorg.Chem.,1989,28,920.

37.D.Hou,G.S.Kim,K.S.HagenandC.L.Hill,Inorg.Chim.Acta,1993,211,127.

38.M.I.Khan,Q.ChenandJ.Zubieta,Chem.Commun.,1992,305.

39.P.C.Yin,P.F.Wu,Z.C.Xiao,D.Li,E.Bitterlich,J.Zhang,P.Cheng,D.V.Vezenov,T.B.LiuandY.G.Wei,An-gew.Chem.Int.Ed.,2011,50,2521.

40.D.Li,J.Song,P.C.Yin,S.Simotwo,A.J.Bassler,Y.Y.Aung,J.E.Roberts,K.I.Hardcastle,C.L.HillandT.B.Liu,J.Am.Chem.Soc.,2011,133,14010.

41.H.D.Zeng,G.R.NewkomeandC.L.Hill,Angew.Chem.Int.Ed.,2000,39,1772.

42.C.P.Pradeep,M.F.Misdrahi,F.Y.Li,J.Zhang,L.Xu,D.L.Long,T.B.LiuandL.Cronin,Angew.Chem.Int.Ed.,2009,48,8309.

43.C.P.Pradeep,D.L.Long,G.N.Newton,Y.F.SongandL.Cronin,Angew.Chem.Int.Ed.,2008,47,4388.

44.C.Allain,S.Favette,L.M.Chamoreau,J.Vaissermann,L.RuhlmannandB.Hasenknopf,Eur.J.Inorg.Chem.,2008,3433.

45.B.Hasenknopf,R.Delmont,P.HersonandP.Gouzerh,Eur.J.Inorg.Chem.,2002,1081.

46.P.F.Wu,P.C.Yin,J.Zhang,J.Hao,Z.C.XiaoandY.G.Wei,Chem.-Eur.J.,2011,17,12002.

47.J.W.Zhang,Y.C.Huang,J.Zhang,S.She,J.HaoandY.G.Wei,Dalton.Trans.,2014,43,2722.

Page 17: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

17

48.C.Aronica,G.Chastanet,E.Zueva,S.A.Borshch,J.M.Clemente-JuanandD.Luneau,J.Am.Chem.Soc.,2008,130,2365.

49.S.Bareyt,S.Piligkos,B.Hasenknopf,P.Gouzerh,E.Lacote,S.ThorimbertandM.Malacria,J.Am.Chem.Soc.,2005,127,6788.

50.S.Bareyt,S.Piligkos,B.Hasenknopf,P.Gouzerh,E.Lacote,S.ThorimbertandM.Malacria,Angew.Chem.Int.Ed.,2003,42,3404.

51.I.Bar-Nahum,J.Ettedgui,L.Konstantinovski,V.KoganandR.Neumann,Inorg.Chem.,2007,46,5798.

52.K.Micoine,B.Hasenknopf,S.Thorimbert,E.LacoteandM.Malacria,Org.Lett.,2007,9,3981.

53.C.Boglio,K.Micoine,E.Derat,R.Thouvenot,B.Hasenknopf,S.Thorimbert,E.LacoteandM.Malacria,J.Am.Chem.Soc.,2008,130,4553.

54.K.Micoine,M.Malacria,E.Lacote,S.ThorimbertandB.Hasenknopf,Eur.J.Inorg.Chem.,2013,1737.

55.W.H.Knoth,J.Am.Chem.Soc.,1979,101,759.

56.P.Judeinstein,C.DeprunandL.Nadjo,J.Chem.Soc.Dalton.Trans.,1991,1991.

57.E.V.RadkovandR.H.Beer,Inorg.Chim.Acta,2000,297,191.

58.D.Agustin,C.Coelho,A.Mazeaud,P.Herson,A.ProustandR.Thouvenot,Z.Anorg.Allg.Chem.,2004,630,2049.

59.C.N.Kato,Y.Kasahara,K.Hayashi,A.Yamaguchi,T.HasegawaandK.Nomiya,Eur. J. Inorg.Chem.,2006,4834.

60.F.Bannani,R.ThouvenotandM.Debbabi,Eur.J.Inorg.Chem.,2007,4357.

61.T.Hasegawa,K.Shimizu,H.Seki,H.Murakami,S.Yoshida,K.YozaandK.Nomiya,Inorg.Chem.Commun.,2007,10,1140.

62.C.Cannizzo,C.R.Mayer,F.SecheresseandC.Larpent,Adv.Mater.,2005,17,2888.

63.D.Agustin,J.Dallery,C.Coelho,A.ProustandR.Thouvenot,J.Organomet.Chem.,2007,692,746.

64.W.Kwak,M.T.PopeandT.F.Scully,J.Am.Chem.Soc.,1975,97,5735.

65.J.K.StalickandC.O.Quicksall,Inorg.Chem.,1976,15,1577.

66.M.P.Lowe,J.C.Lockhart,G.A.Forsyth,W.CleggandK.A.Fraser,J.Chem.Soc.Dalton.Trans.,1995,145.

67.M.P.Lowe,J.C.Lockhart,W.CleggandK.A.Fraser,Angew.Chem.Int.Ed.,1994,33,451.

68.B.J.S.Johnson,R.C.Schroden,C.C.ZhuandA.Stein,Inorg.Chem.,2001,40,5972.

69.U.Kortz,M.G.Savelieff,F.Y.A.Ghali,L.M.Khalil,S.A.MaaloufandD.I.Sinno,Angew.Chem.Int.Ed.,2002,41,4070.

70.B.J.S.Johnson,R.C.Schroden,C.C.Zhu,V.G.YoungandA.Stein,Inorg.Chem.,2002,41,2213.

71.U.Kortz,J.Vaissermann,R.ThouvenotandP.Gouzerh,Inorg.Chem.,2003,42,1135.

72.U.Kortz,C.Marquer,R.ThouvenotandM.Nierlich,Inorg.Chem.,2003,42,1158.

73.L.Xu,M.Lu,B.B.Xu,Y.G.Wei,Z.H.PengandD.R.Powell,Angew.Chem.Int.Ed.,2002,41,4129.

Page 18: Engineering - Open Access eBooksopenaccessebooks.com/chemical-engineering/...via...achiral-precurs… · 1State Key Laboratory of Catalysis & Gold Catalysis Research Center, Dalian

Advances in Chemical Engineering

18

74.L.K.Yan,G.C.Yang,W.Guan,Z.M.SuandR.S.Wang,J.Phys.Chem.B,2005,109,22332.

75.Y.Xia,Y.G.Wei,Y.WangandH.Y.Guo,Inorg.Chem.,2005,44,9823.

76.Y.Xia,P.F.Wu,Y.G.Wei,Y.WangandH.Y.Guo,CrystalGrowth&Design,2006,6,253.

77.J.W.Zhang,J.Hao,R.N.N.Khan,J.ZhangandY.G.Wei,Eur.J.Inorg.Chem.,2013,1664.

78.J.Hao,Y.Xia,L.S.Wang,L.Ruhlmann,Y.L.Zhu,Q.Li,P.C.Yin,Y.G.WeiandH.Y.Guo,Angew.Chem.Int.Ed.,2008,47,2626.

79.T.R.Mohs,G.P.A.Yap,A.L.RheingoldandE.A.Maatta,Inorg.Chem.,1995,34,9.

80.Y.G.Wei,M.Lu,C.F.C.Cheung,C.L.BarnesandZ.H.Peng,Inorg.Chem.,2001,40,5489.

81.M.Lu,J.H.Kang,D.G.WangandZ.H.Peng,Inorg.Chem.,2005,44,7711.

82.J.Zhang,J.Hao,Y.Wei,F.Xiao,P.YinandL.Wang,J.Am.Chem.Soc.,2010,132,14.

83.F.P.Xiao,J.Hao,J.Zhang,C.L.Lv,P.C.Yin,L.S.WangandY.G.Wei,J.Am.Chem.Soc.,2010,132,5956.

84.C.L.Lv,R.N.N.Khan,J.Zhang,J.J.Hu,J.HaoandY.G.Wei,Chem.-Eur.J.,2013,19,1174.

85.S.She,S.Bian,J.Hao,J.Zhang,J.ZhangandY.Wei,Chem.-Eur.J.,2014,20,16987.

86.J.Zhang,P.C.Yin,J.Hao,F.P.Xiao,L.Y.ChenandY.G.Wei,Chem.-Eur.J.,2012,18,13596.

87.A.Bayaguud,J.Zhang,R.N.N.Khan,J.HaoandY.Wei,Chem.Commun.,2014,50,13150.

88.J.W.Zhang,Z.L.Zhao,J.Zhang,S.She,Y.C.HuangandY.G.Wei,Dalton.Trans.,2014,43,17296.

89.J.Zhang,J.Luo,P.Wang,B.Ding,Y.Huang,Z.Zhao,J.ZhangandY.Wei,Inorg.Chem.,2015,54,2551.

90.J.W.Zhang,Z.H.Liu,Y.C.Huang,J.Zhang,J.HaoandY.G.Wei,Chem.Commun.,2015,51,9097.

91.S.T.Zheng,J.Zhang,X.X.Li,W.H.FangandG.Y.Yang,J.Am.Chem.Soc.,2010,132,15102.