33
Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford Universit Stanford Universit Stanford Universit A. C. MATIN

Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Embed Size (px)

Citation preview

Page 1: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Engineering combinatorial bacteria for superior

metal and radionuclide bioremediation

Stanford UniversityStanford UniversityStanford University

A. C. MATIN

Page 2: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Sources of Chromate [Cr(VI)] and U(VI)contamination

Metal plating

Steel making

Bricks in furnaces

Dyes and pigments

Chrome plating

Leather tanning

Wood preservation

Contaminating Industries

Nuclear weapons production

Page 3: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Cr (VI) (chromate) Cr(III)

Rapid cellular uptake Not taken up

Carcinogenic Non-carcinogenic

Soluble (can spread) Insoluble

Cr(VI) vs. Cr(III)

Bacteria can reduce Cr(VI); hence interest in bioremediation

U(VI) U(IV)

Page 4: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Activity (nmol/mg protein/h)

Grown without chromate

Grown with 0.4 mM chromate

Assayed in presence of 10 mM CuSO4

b.

P. putida KT2440 8.4 27.6 52.8

P. putida MKI 13.2 42.6 72.0

P. syringae 151.8 N.D.c. N.D.

P. fluorescens 114.6 N.D. N.D.

B. subtilis 15.6 33.0 40.8

V. harveyi 132.0 264.0 1440.0

E. coli AB117 49.8 32.4 156.0

S. putrefaciens 193.2 N.D. N.D.

D. radiodurans 186.6 N.D. N.D.

S. aureus 139.2 N.D. N.D.

Acinetobacter 133.8 N.D. N.D.

Several bacteria can reduce chromateusing soluble enzymes

Enterobactercloacae: anaerobicchromate respirer?

Keyhan, Ackerley, & Matin. 2003. Batelle Symposium Proc. Paper E06

Page 5: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Effect of chromate toxicity

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14

time (hr)

A66

0

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14

w ild type + Cr(VI) w ild type - Cr(VI)

AP. putida

0.01

0.1

1

10

0 2 4 6 8 10

Time (h)

OD

660 n

m0.01

0.1

1

10

0 1 2 3 4 5 6 7 8 9 10

LB control Non adapted

E. coli

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

Page 6: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Shi & Dalal, using ESR, showedthat many enzymes (e.g., lipoyl dehydrogenase, glutathione reductase, and cytochrome b5 reductase generate Cr(V) from Cr(VI), indicating one-electron reduction

Page 7: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Sulfate Transporter

CrVI

CrIII

CrVI

O2

Action of one electron reducers

CrV

ROS

Protein damage

Lipid peroxidation

DNA damage

Cr(V) redox cycling

Lipoyl dehydrogenaseGlutathione reductaseCytochrome b5 reductase

NAD(P)H

NAD(P)

Chromate redox cycling

Page 8: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

NAD(P)H ELECTRONS TRANSFERRED TOCHROMATE & H2O2 (M; 1 min)

Enzyme NAD(P)H

e- consumed

e- used in

chromate

reduction

e- used in H2O2

formation

LpDH 80 21 (26%) 59 (74%)

Single electron reducer

Ackerley, Gonzalez, Park, Blake II, Keyhan, & Matin. 2004. Environmenal Microbiology 6: 851-860

Lipoyl dehydrogenase

Page 9: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

In vivo oxidative stress detected using theROS-responsive dye H2 DCFDA

Page 10: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

2

1

2

1

8

9

10 11

12

13

14

15

16

Unchallenged Challenged non-adapted

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

Partial snap-shot of proteomics of chromate challenge

Page 11: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Partial snap-shot of proteins altered upon chromate challenge

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

spot # protein gene fold-change known or suspected function

3 h samples

1 Flagellin fliC 11-fold down Flagellar subunit

2 ADP-L-glycero-D-manno-heptose-6-epimerase hldD 4.1-fold down Lipopolysaccharide biosynthesis

5 h samples

3 Superoxide dismutase (ferric; chain B) sodB +++ Decomposition of O2.-

4 Sulfate adenylyl transferase cysN 6.3-fold up Cysteine biosynthesis

5 Cysteine synthase A cysK 4.1-fold up Cysteine biosynthesis

1 Flagellin fliC --- Flagellar subunit

2 ADP-L-glycero-D-manno-heptose-6-epimerase hldD 3.8-fold down Lipopolysaccharide biosynthesis

6 Cytoplasmic ferritin ftnA 3.8-fold down Iron storage

7 Putative formate acetyl transferase yfiD 3.3-fold down unknown

Induction also of sfiA gene, indicativeof activation of the SOS response

Depletion of cellular glutathione and Other free thiols

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

Page 12: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Strain

wild type 400

Wild type

400

cysK* 300

cysN* 400

sodA 450

sodB* 350

katE 300

katG 400

gshA 400

gshB 400

yieF 300

fliC* 400

ompW* 450

ftnA* 400

sspA* 400

ChromateMIC50 (µM)

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

Chromate toxicity increases in mutants missing anti-oxidant defense genes

Page 13: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

HYPOTHESIS

Bacteria possess functional homologues of mammalian NQO1 enzyme (DT diaphorase) ________________

NQO1 is an obligatory two-electron reducer of its substratesA dimer of a bacterial homologue should be capable of one-step reduction of Cr(VI)to Cr(III), bypassing:Cr(V) generationRedox cyclingWill generate minimal possible ROS during Cr(VI) reduction

Page 14: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Sulfate transporter

CrVI

CrIII

CrVI

CrIII

1e-

ROS

3e-

Stoichiometric and minimal ROS generation

4 electrons donated simultaneously – dimer of an obliatory 2-e- tranferer

Chromate reduction involving one-stepconversion to Cr(III)

Page 15: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

1. Classical biochemical methods: P. putida chromate reductase purification

(Park, Keyhan, Wielinga, Fendorf, & Matin 2000, AEM 66: 1788-1795)

Step Volume

(ml)

Total protein

(mg)

Total

activity

(U)

Specific

activity

(Unit/mg)

Purification

factor

(fold)

1. Crude extract 302 8760 7446 0.85 -

2. Ultracentrifugation 407 6198 13016 2.1 2.5

3.Ammonium sulfate

(55-70%)

40 880 3168 3.6 4.2

4. DEAE Sepharose

CL-6B

3 6 948 158 186

5. Polyphosphate

buffer 94

1 0.2 65 325 382

6. Superose 12 HR

10/30

0.75 0.0075 4 533 627

3. In-silico approaches(Park et al., 2002, Remediation and beneficial use of Contaminated sediments, p, 103-111)

4. Gene cloning; homo-logues5. Pure proteins using molecular techniques

2. Serendipity

NO ASSIGNED FUNCTION

Page 16: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

NAD(P)H electrons transferred toChromate & H2O2 by simultaneous e- transfer

Enzyme NAD(P)H

e- consumed

e- used in

chromate

reduction

e- used in H2O2

formation

YieF 62 46 (74%) 16 (26%)

Simultaneous four electron transfer

Ackerley, Gonzalez, Park, Blake II, Keyhan, & Matin. 2004. Environmenal Microbiology 6: 851-860

Page 17: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Confirmation

Rapid scan spectrophotometry to detect enzyme intermediates - Ackerley, Gonzalez, Park, Blake II, Keyhan, & Matin. 2004. AEM 70: 873-882

Electron Spin resonance studies -Ackerley, Gonzalez, Park, Blake II, Keyhan, & Matin. 2004. Environmenal Microbiology 6: 851-860

Page 18: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Three “safe” enzyme pure proteinscharacterized in detail

ChrR of P. putida: semitightNfsA of E. coli – semitightYief of E. coli – tight

YieF is the safest (generates least possible amount of ROS)

ChrR and NfsA permit some redox cycling but are much safer than one-electron reducers, generating only a fraction of ROS compared to the latter.

Page 19: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Ackerley, Barak, Lynch, Curtin, and Matin. 2006. J. Bacteriol188 In press

In vivo oxidative stress detected using theROS-responsive dye H2 DCFDA

Page 20: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Sulfate transporter

CrVI

CrIII

CrVI

Two e- reducers

CrIII

One e- reducers,

LpDH and others

Decreased ROS

Strategy to detoxify chromate reduction

Increase activity and affinity of two e- reducers

Enhanced activity

Page 21: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

260

265

270

275

280

285

290

295

300

305

310

0 10 20 30 40 50 60 70

time (min)

uM

Cr(

VI)

260

265

270

275

280

285

290

295

300

305

310

0 10 20 30 40 50 60 70

P

Y

N

A.

Protection by over expression of

two-electron reducers

More chromate reduced per unit biomassAckerley, Gonzalez, Park, Blake II, Keyhan, & Matin. 2004. Environmenal Microbiology 6: 851-860

Page 22: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Schematic: Standard Shuffling

PCR

Reassembly

Shuffling

Fragmentation

Parent genes

Improved genes

Assay

Shuffled genes

Page 23: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN
Page 24: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

1.3X107 ± 3 X105521 ± 1841 ± 58,812 ± 611Y6

4.5X104 ± 3 X10330 ± 2376 ± 14295 ± 27YieF

Kcat/KmKcat* (S-1)Km (µM)Vmax (nmol Cr(VI) mg protein -1 min -1)

Strain

1.3X107 ± 3 X105521 ± 1841 ± 58,812 ± 611Y6

4.5X104 ± 3 X10330 ± 2376 ± 14295 ± 27YieF

Kcat/KmKcat* (S-1)Km (µM)Vmax (nmol Cr(VI) mg protein -1 min -1)

Strain

Cr(VI) reduction kinetics of YieF and the improved derivative Y6

Barak, Dodge, Francis a, nd Matin. In preparation

XANES Analysis showed quantative conversion to Cr(III)Direct demonstration that Y6 also does not generate redoxCyclinng

(30-fold)

Page 25: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Physiological role

Broad substrate range: Quinones, ferricyanide, DCPIP, Mo (IV), and V(V). Ackerley, Gonzalez, Park, Blake II, Keyhan, & Matin. 2004. AEM 70: 873-882

General role is to protect against electrophiles like the ones mentioned above, with predilection for one-electron reduction and redox cycling - Gonzalez, Ackerley, Lynch & Matin. 2005. Journal of Biological Chemistry 280: 22590-595

Page 26: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Recent results show that U(VI)reduction also subjects the bacterialcell to oxidative stress

YieF & Other “safe” enzymes could reduce also U(VI) – activity detected only when overproduced

Page 27: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

5X105 ± 2X104167 ± 39335 ± 402,511 ± 421Y6

1.6X104 ± 1.7X10320 ± 11373 ± 49194 ± 17YieF

Kcat/KmKcat* (S-1)Km (µM)Vmax (nmol U(VI) mg protein -1 min -1)Strain

5X105 ± 2X104167 ± 39335 ± 402,511 ± 421Y6

1.6X104 ± 1.7X10320 ± 11373 ± 49194 ± 17YieF

Kcat/KmKcat* (S-1)Km (µM)Vmax (nmol U(VI) mg protein -1 min -1)Strain

U(VI) reduction kinetics of YieF and the improved derivative Y6

Analysis showed quantitative conversion to U(IV)Direct demonstration that Y6 also does not generate redoxcyclingBarak, Dodge, Francis a, nd Matin. In preparation

(12-fold)

Page 28: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Surprise application incancer prodrug chemotherapy

Reductive prodrugs (e.g., CB 1954 and CNOB [discovered by us] become toxic only upon reduction

Y6 and other evolved enzymes are highly effective in this respect also -Barak, Thorne, Contag, and Matin. 2006 MolecularCancer Therapeutics.

Page 29: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

10 2 10 3 10 4 10 5 10 6-25

0

25

50

75

100

125

78387838 + CB1954

7838-Y6 + CB1954

7838-yieF + CB1954

7838-nfsA + CB1954

CFU/ml

Barak, Thorne, Contag, and Matin. 2006 MolecularCancer Therapeutics. Stanford Patent S067

Page 30: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

HeLa’s +CNOB HeLa’s +CNOB+SL 7838::Y6

Page 31: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Only one change, tyrosine128 to asparagine, responsible for all three improvements

Application of a stochastic model predicted other beneficial changes; one enzyme has >830-fold improvementBarak, , Nov & Matin,, In preparation

Page 32: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

Work in progress• Screening of shuffled libraries for other useful reductions, eg., Pu •Manipulate outer membrane porins to increase P. putida outer membrane permeability•Improve cytoplasmic for chromate transport•Combine activity with nitrate reduction• Batch and column studies of efficacy, survival and competitive ability in the presence of FRC material

Page 33: Engineering combinatorial bacteria for superior metal and radionuclide bioremediation Stanford University A. C. MATIN

ACKNOWLEDGMENT

C. H. Park B. Wielinga R. Blake (II)D. F. Ackerley S. Fendorf (Xavier)C. GonzalezM. KeyhanS. LynchY. BarakB. Salles

NABIR program of DOE for supporting the research