Engineering Calculations Template-White Cellar 2 5m

Embed Size (px)

DESCRIPTION

NICE

Citation preview

  • Installation of Spiral Wine Cellar

    Structural Calculations -TEMPLATE

    Client: . Site address:

    Job Ref no: 2010 SO/SC-

  • Contents: Site documentation Structural Calculations Appendix 1- Finite Element Analysis Appendix 2 Concrete Mixing Specification Appendix 3 - Damp Proof Membrane Technical Specification Appendix 4 CE Technical Specification

    Appendix 5 - Reinforced Synthetic Fibres STRUX 90/40 Engineering Bulletin

  • White Wine Cellar Visualisation

  • Site Photos

  • Design Criteria Summary for Wine Cellar. Project Description:

    The project involves the design and subsequent installation of a Spiral Wine cellar. From previous experience the dominant load case for the design of this type of cellar is from water uplift pressures (to accommodate existing and future ground water levels) and as a result governs the wall thickness of the cellar with a minimum of 150mm required to create enough total mass to counteract the water uplift pressure. A fibre additive (Strux) is used when mixing the 150mm wide concrete ring which controls cracking to the concrete and also creates inherent strength to the concrete ring (please refer to appendix for Strux certification, Strux is compliant with both the British Standards and Eurocode for fibres used in concrete design and specification covered by BS EN 14889-2 2006). With the 150mm minimum ring thickness already established we then analyse the cellar for the following load conditions. - Lateral loading from the existing structures foundations. - Loading from ground floor structure and its finishes. - Surface temporary surcharge loadings. - Vehicle Loadings if deemed necessary.

    Foundations close to the cellar produce a lateral load on the concrete ring which decrease the further away the foundation is from the cellar. We have analysed this for a worst case scenario of the foundations being placed 150mm from the edge of the cellar. This has also been analysed for combinations of walls placed on different sides. Loadings from ground floor structures, temporary surcharges and vehicle loadings have also been analysed, again for worst case scenarios. These worst case calculations have shown that the 150mm wide concrete ring required to avoid water uplift has, as a result of the Strux additive, excess lateral load carrying capacity. The following calculations demonstrate that the cellar can safely accommodate loading of up to 150 Kn/m2 from a foundation placed up to 150mm from the edge of the cellar. Several potential scenarios are checked for in the proceeding calculations which may differ from what is eventually built on site. This is done to ensure flexibility exists with our design for the cellar should certain alterations to the structure as currently proposed be carried out.

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 1I Check/App'd by: Date:I NJR 00/01/08I

    Total Ceiling Load R2 r3 r4+ C+ c2:= R2 810 m-2 newton=

    Roof 30deg Pitch Slate Tiling r1 0.5 103 newton m 2:=

    Roof Rafters r2 0.16 103 newton m 2:=

    Total Roof Load R1 r1 r2+ C+ c2:= R1 810 m-2 newton=

    Wall Loads Stud, Lathe and Plaster w1 0.76 103 newton m 2:=

    Brick 255mm cavity w2 3.76 103 newton m 2:=

    Brick 9" solid w3 5.33 103 newton m 2:=

    Brick 13" solid w4 7.69 103 newton m 2:=

    Foundation Wall Loads w5 2.54 103 newton m 2:=

    Impact Statement for Wine Cellar design and installation Design of the wine cellar has taken into account lateral loadings from adjacent soil and foundations, which proved that the proposed structure is capable of resisting the occurring forces without negative impact to the building structure. The installation process has to be undertaken according to the Method Statement provided by Spiral Cellars Ltd and followed by good building practice, which is essential to avoid harm to the existing building.For queries regarding the Method Statement please contact Spiral Cellars Ltd (Tel: 0845 241 2768).

    Structural Calculations - TEMPLATEReference should be made to Elite Designers Ltd sketches for structural details and layout drawings.

    Loadings from BS648 & BS6399 : Part 1 : 1984

    Dead Loads - please note: these are general loads which may not be directly shown in the following calculations.

    Ceiling Thermal Insulation c1 0.01 103 newton m 2:=

    Ceiling Joists c2 0.16 103 newton m 2:=

    Plaster Skim c3 0.03 103 newton m 2:=

    Plaster Board c4 0.11 103 newton m 2:=

    Total Ceiling Load C c1 c2+ c3+ c4+:= C 310 m-2 newton=

    Flat Roof Asphalt 2 layers 19mm r3 0.41 103 newton m 2:=

    Joists with decking r4 0.25 103 newton m 2:=

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 2I Check/App'd by: Date:I NJR 00/01/08I

    Uniform Load UL1 150 103 newton m 2:=Cellar Properties

    Height of circular wall in meters Dw 2.5:=External Radius of Circle in meters r 1.25:=

    List of Soil Properties & Vertical Pressures

    Soil pressure due to "Structural Foundation Designers" Manual by Curtins

    Internal angle of friction 30 deg:=Density of soil 20 103 newton m 3:=Density of water w 10 103 newton m 3:=Surcharge pressure from Live Load q1 1.5 10

    3 newton m 2:=

    Surcharge pressure from concrete floor q2 Qc 0.15 m:= q2 3.6 103 m-2 newton=

    Surcharge pressure from vehicles not exceeding 2.5 tons q3 10 103 newton m 2:=

    Coefficient of active earth pressure Ka1 sin ( )1 sin ( )+:= Ka 0.333=

    Floor Loads 200x50 Joists With Decking f1 0.25 103 newton m 2 c1+ c3+ c4+:=

    f1 400 m-2 newton=

    Foundation Depth&Breadth D 0.4m:= B 0.6m:=

    Concrete load Qc 24 103 newton m 3:=

    Imposed Loading - please note: these are general loads which may not be directly shown in the following calculations.

    Floor Load Table 5 BS6399 Ifl 1.5 103 newton m 2:=

    Floor Load Garage Iflg 2.5 103 newton m 2:=

    Roof Load Irl 0.6 103 newton m 2:=

    Safety Factors

    Live Load Safety Factor fl fl 1.6:=Dead Load Safety Factor fd fd 1.4:=

    Loads from FOUNDATION

    For the worst case loading scenario, pressure under foundations was assumed to be 150kN/m 2which is maximum that can occur in standard terrace house up to 4 storeys plus basement.

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 3I Check/App'd by: Date:I NJR 00/01/08I

    hw 9.375 103 m-2 newton=

    Lateral Soil pressure dependent on depth

    Amount of the 0.5m2 panels in height of the cellar - Ne and ratios for position of the centers of panels - he

    Ph 0.5:= NeDwPh

    := Ne 5= e 1 Ne..:= he

    e2

    Ph2

    Dw:=

    Lateral Soil pressure at the center of 0.5m2 panels in relation to depth

    e12

    3

    4

    5

    = he0.10.3

    0.5

    0.7

    0.9

    = Se hs he:= Se0.82.5

    4.2

    5.8

    7.5

    m-2 103newton

    =

    Lateral Water pressure at the center of of 0.5m2 panels in relation to depth

    We hw he:= 1.5 m Deep W1 hw 1.5Dw 0.75:= W1 7.5 103 m-2 newton=

    0.75 m Deep W1 hw 0.75Dw 0.75:= W1 3.8 103 m-2 newton=

    0.25 m Deep W1 hw 0.25Dw 0.75:= W1 1.3 103 m-2 newton=

    Lateral Surcharge pressures acting on the structure depending on position

    From Live Load ha1 Ka q1:= ha1 500 m-2 newton=

    From Floor ha2 Ka q2:= ha2 1.2 103 m-2 newton= From Vehicles ha3 Ka q3:= ha3 3.33 103 m-2 newton=

    Lateral Surcharge pressure from soil and water

    For finite element calculation purpose the loads were calculated as acting on 0.5 sqm areas of the structuredepending on the depth.

    Lateral Soil pressure at the bottom of the cellar

    hS Ka Dw 1 m:= hS 1.7 104 m-2 newton=

    Lateral Soil pressure @ 0.5m2 plate area

    hs hS 0.5:= hs 8.3 103 m-2 newton=

    Lateral Water pressure at the bottom of the cellarWater surface assumed @ 0.75 cellar depth

    hw w Dw 0.75( ) 1 m:= hw 1.875 104 m-2 newton=

    Lateral Water pressure @ 0.5m2 plate area

    hw hw 0.5:=

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 4I Check/App'd by: Date:I NJR 00/01/08I

    k22.5

    45

    67.5

    90

    deg=k

    01

    2

    3

    =

    k k8 22.5deg+:=Angle increment in quarter of cellar

    k 0 Y..:=Amount of 0.5m2 panels in quarter of cellarY 3:=

    zi0.250.75

    1.25

    1.75

    =i12

    3

    4

    =Depth zi measured from foundation level

    zii2

    Ph2

    :=

    i 1 Nd..:=

    Nd 4=

    NdDw Dl( )

    Ph:=Amount of 0.5m2 panels in height of the cellar - Nd

    and heights of the centers of panels - zi

    Dl 0.5=

    Uplift pressure - Concrete ring with 150mm thk, internal radius 1.09m, concrete base 200mm thk

    vc 1.25m( )2 Dw 1 m 1.09m( )2 Dw 1 m 1.25m( )2 0.20 m+ Qc:= vc 9.4 104 newton=Water weight assumed water level @ 0.75 cellar depth Wl 0.75Dw m:= Wl 1.875 m=

    vw 1.25m( )2 Wl 10 103 Nm3

    := vw 9.2 104 newton= vc vw> OK

    Uniform Strip Load CaseThe Lateral load from foundation at varying distances from the circular wall is given by the following.Calculations assume that foundation is position 0.5m below top of the cellar.

    Foundation outstand assumed as 150mm Bc 0.15:=

    Depth of 0.5m2 panels in meters Dl Ph:=

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 5I Check/App'd by: Date:I NJR 00/01/08I

    See attached Appendix for loads and design forces

    QUL1

    0

    1.2 1041.7 1041.1 1046.4 103

    0

    2.7 1041.7 1047.6 1033.6 103

    0

    4.2 1041.2 1043.9 1031.7 103

    0

    3.9 1048.9 1032.7 1031.1 103

    m-2 newton=

    QUL1i k, UL1 I1i k,:=UL1 1.5 105 m-2 newton=Uniform Load

    I1

    0

    0.08

    0.111

    0.073

    0.042

    0

    0.181

    0.117

    0.051

    0.024

    0

    0.279

    0.079

    0.026

    0.011

    0

    0.261

    0.06

    0.018

    0.007

    =I1i k,1i k, E1i k, F1i k,

    :=

    E1i k, sin 1i k,( ):=F1i k, cos 1i k, 2 1i k,+( ):=Influence factor

    1

    0

    0.133

    0.271

    0.279

    0.249

    0

    0.346

    0.457

    0.373

    0.298

    0

    0.862

    0.621

    0.432

    0.324

    0

    1.176

    0.675

    0.448

    0.33

    =1

    0

    1.257

    0.8

    0.553

    0.415

    0

    0.972

    0.454

    0.285

    0.206

    0

    0.364

    0.126

    0.076

    0.054

    0

    0

    0

    0

    0

    =

    1i k, atan H1i k,( ):=1i k, atan G1i k,( ) atan H1i k,( ):=H1i k,

    x1kzi

    :=G1i k,x1k B1+( )

    zi:=

    Stress Calculations due to uniform strip load according to 'Basic Soil Mechanics' R.Whitlow - p.190

    B1 0.6=B1 B1m

    :=Foundation breadth

    x1k0.7720.366

    0.095

    0

    =x1k a1 Bc r sin k( ):=Distance from foundation edge to 0.5m2 panel of cellara1 1.4:=Minimal horizontal perpendicular distance

    from foundation edge to the cellar center

    FOUNDATION - HORIZONTAL LOADS

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 6I Check/App'd by: Date:I NJR 00/01/08I

    Use 5 kg/m3 Strux 90/40 additive for C30 concrete mix

    OKMr 2.9 103 m newton=

    >

    Mres 3.75 103 m newton=

    Mresfe Wrf

    :=Moment of resistance

    Wr 0.00375 m3=

    Wrb hr

    26

    :=Modulus section

    f 1.5:=Safety factor

    hr 0.150m:=Thickness of ring wall

    b 1m:=Section from cellar ring

    See Appendix for finite element design

    Mr 2.9 103 newton m:=Maximum Moment for 1m run of ring

    fe 1.5 newton mm 2:=Tensile Flexural Strength for C20 concretewith 5 kg/m3 strux 90/40 as additive

    Design for concrete according to BS EN889-2:2006-Fibres for Concrete and CE Technical Specification in Appendix 5.

    Concrete design

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Elite Designers Ltd12 Princeton Court55 Felsham Road

    London SW15 1AZ

    020 8785 4499

    I Project:I addressI codeI Section:I Structural CalculationsI Calc by: AK Date: 00/01/08I

    I Job Ref:I 2008-00I Sheet No./Rev.I 7I Check/App'd by: Date:I NJR 00/01/08I

    Appendix 1

    Finite Element Analysis

    P:\Data Files\TEMPLATES-Spiral Cellars\CALCULATION TEMPLATES\us-pack\

  • Load 5X

    Y

    Z

    2.5m Deep Cellar

    -6.80 kN/m2 -6.80 kN/m2-6.80 kN/m2

    -6.80 kN/m2

    -5.30 kN/m2 -5.30 kN/m2-5.30 kN/m2

    -6.80 kN/m2

    -5.30 kN/m2

    -6.80 kN/m2

    -3.80 kN/m2 -3.80 kN/m2-3.80 kN/m2

    -5.30 kN/m2

    -3.80 kN/m2

    -6.80 kN/m2

    -5.30 kN/m2

    -2.30 kN/m2 -2.30 kN/m2

    -6.80 kN/m2

    -2.30 kN/m2

    -3.80 kN/m2

    -2.30 kN/m2

    -5.30 kN/m2

    -3.80 kN/m2

    -0.80 kN/m2 -0.80 kN/m2

    -5.30 kN/m2

    -6.80 kN/m2

    -0.80 kN/m2

    -2.30 kN/m2

    -0.80 kN/m2

    -6.80 kN/m2

    -3.80 kN/m2

    -2.30 kN/m2

    -3.80 kN/m2

    -5.30 kN/m2

    -0.80 kN/m2

    -6.80 kN/m2

    -5.30 kN/m2

    -2.30 kN/m2

    -0.80 kN/m2

    -6.80 kN/m2

    -2.30 kN/m2

    -3.80 kN/m2

    -5.30 kN/m2

    -3.80 kN/m2

    -0.80 kN/m2

    -6.80 kN/m2

    -5.30 kN/m2

    -6.80 kN/m2

    -0.80 kN/m2

    -2.30 kN/m2

    -6.80 kN/m2 -6.80 kN/m2

    -3.80 kN/m2

    -2.30 kN/m2

    -5.30 kN/m2

    -3.80 kN/m2

    -5.30 kN/m2

    -0.80 kN/m2

    -5.30 kN/m2 -5.30 kN/m2

    -2.30 kN/m2

    -0.80 kN/m2

    -3.80 kN/m2

    -2.30 kN/m2

    -3.80 kN/m2-3.80 kN/m2 -3.80 kN/m2

    -0.80 kN/m2

    -2.30 kN/m2

    -0.80 kN/m2

    -2.30 kN/m2-2.30 kN/m2 -2.30 kN/m2

    -0.80 kN/m2 -0.80 kN/m2-0.80 kN/m2 -0.80 kN/m2

    Load 1X

    Y

    Z

    2.5m Deep Cellar Soil Loads

  • -0.50 kN/m2 -0.50 kN/m2-0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2-0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2-0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2-0.50 kN/m2 -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2

    -0.50 kN/m2-0.50 kN/m2 -0.50 kN/m2

    -0.50 kN/m2-0.50 kN/m2

    -0.50 kN/m2 -0.50 kN/m2

    Load 2X

    Y

    Z

    2.5m Deep Cellar Live Loads 0.5 kN/m2

    6.60 kN/m2

    11.00 kN/m2

    4.10 kN/m2

    16.00 kN/m2

    8.40 kN/m2

    2.30 kN/m2

    11.00 kN/m2

    18.00 kN/m2

    5.20 kN/m2

    1.70 kN/m2

    23.00 kN/m2

    14.00 kN/m2

    4.00 kN/m2

    2.30 kN/m2

    39.00 kN/m2

    4.10 kN/m2 6.60 kN/m2

    12.00 kN/m2

    5.20 kN/m2

    8.40 kN/m2 11.00 kN/m2

    42.00 kN/m2

    14.00 kN/m2

    18.00 kN/m2 16.00 kN/m2

    39.00 kN/m223.00 kN/m2 11.00 kN/m2

    Load 4X

    Y

    Z

    2.5m Deep Cellar Wall 1 Horizontal Loads

  • 2.30 kN/m2 4.10 kN/m21.70 kN/m2 6.60 kN/m2

    5.20 kN/m2 8.40 kN/m24.00 kN/m2

    2.30 kN/m2

    11.00 kN/m2

    14.00 kN/m2 18.00 kN/m212.00 kN/m2

    5.20 kN/m2

    16.00 kN/m2

    4.10 kN/m2

    39.00 kN/m223.00 kN/m242.00 kN/m2

    14.00 kN/m2

    11.00 kN/m2

    8.40 kN/m2

    6.60 kN/m2

    39.00 kN/m2

    18.00 kN/m2

    11.00 kN/m2

    23.00 kN/m2

    16.00 kN/m2

    11.00 kN/m2

    Load 6X

    Y

    Z

    2.5m Deep Cellar Wall 2 Horizontal Loads

    -6.60 kN/m2 -4.10 kN/m2

    -2.30 kN/m2

    -11.00 kN/m2 -8.40 kN/m2

    -5.20 kN/m2

    -1.70 kN/m2

    -16.00 kN/m2 -18.00 kN/m2

    -14.00 kN/m2

    -4.00 kN/m2

    -11.00 kN/m2 -23.00 kN/m2

    -2.30 kN/m2

    -39.00 kN/m2

    -12.00 kN/m2

    -5.20 kN/m2

    -4.10 kN/m2

    -42.00 kN/m2

    -14.00 kN/m2

    -8.40 kN/m2

    -6.60 kN/m2

    -39.00 kN/m2

    -18.00 kN/m2

    -11.00 kN/m2

    -23.00 kN/m2

    -16.00 kN/m2

    -11.00 kN/m2

    Load 8X

    Y

    Z

    2.5m Deep Cellar Wall 3 Horizontal Loads

  • -6.60 kN/m2

    -11.00 kN/m2

    -4.10 kN/m2

    -16.00 kN/m2

    -8.40 kN/m2

    -2.30 kN/m2

    -11.00 kN/m2

    -18.00 kN/m2

    -6.60 kN/m2

    -5.20 kN/m2

    -1.70 kN/m2-4.10 kN/m2 -2.30 kN/m2

    -23.00 kN/m2

    -11.00 kN/m2

    -14.00 kN/m2

    -4.00 kN/m2-8.40 kN/m2 -5.20 kN/m2

    -16.00 kN/m2

    -39.00 kN/m2

    -12.00 kN/m2-18.00 kN/m2 -14.00 kN/m2

    -11.00 kN/m2

    -42.00 kN/m2-23.00 kN/m2-39.00 kN/m2

    Load 10X

    Y

    Z

    2.5m Deep Cellar alternative Horizontal Loads

    -1.20 kN/m2 -1.20 kN/m2-1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2-1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2-1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2-1.20 kN/m2 -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2

    -1.20 kN/m2-1.20 kN/m2 -1.20 kN/m2

    -1.20 kN/m2-1.20 kN/m2

    -1.20 kN/m2 -1.20 kN/m2

    Load 15X

    Y

    Z

    2.5m Deep Cellar Surcharge Concrete Floor

  • -8.10 kN/m2 -8.10 kN/m2-8.10 kN/m2

    -8.10 kN/m2

    -5.60 kN/m2 -5.60 kN/m2-5.60 kN/m2

    -8.10 kN/m2

    -5.60 kN/m2

    -8.10 kN/m2

    -3.40 kN/m2 -3.40 kN/m2-3.40 kN/m2

    -5.60 kN/m2

    -3.40 kN/m2

    -8.10 kN/m2

    -5.60 kN/m2

    -1.10 kN/m2 -1.10 kN/m2

    -8.10 kN/m2

    -1.10 kN/m2

    -3.40 kN/m2

    -1.10 kN/m2

    -5.60 kN/m2

    -3.40 kN/m2

    -5.60 kN/m2

    -8.10 kN/m2

    -1.10 kN/m2

    -8.10 kN/m2

    -3.40 kN/m2

    -1.10 kN/m2

    -3.40 kN/m2

    -5.60 kN/m2

    -8.10 kN/m2

    -5.60 kN/m2

    -1.10 kN/m2

    -8.10 kN/m2

    -1.10 kN/m2

    -3.40 kN/m2

    -5.60 kN/m2

    -3.40 kN/m2

    -8.10 kN/m2

    -5.60 kN/m2

    -8.10 kN/m2

    -1.10 kN/m2

    -8.10 kN/m2 -8.10 kN/m2

    -3.40 kN/m2

    -1.10 kN/m2

    -5.60 kN/m2

    -3.40 kN/m2

    -5.60 kN/m2-5.60 kN/m2 -5.60 kN/m2

    -1.10 kN/m2

    -3.40 kN/m2

    -1.10 kN/m2

    -3.40 kN/m2-3.40 kN/m2 -3.40 kN/m2

    -1.10 kN/m2-1.10 kN/m2

    -1.10 kN/m2 -1.10 kN/m2

    Load 16X

    Y

    Z

    2.5m Deep Cellar Lateral Water Loads

    Combination Load CasesComb. Combination L/C Name Primary Primary L/C Name Factor

    5 COMBINATION WALLS 1,3 1 SOIL 1.403 SELF WEIGHT 1.404 WALL 1 - LOADS 1.408 WALL 3 - LOADS 1.40

    15 SURCHARGE - CONCRETE FLOOR 1.4016 WATER 1.402 SURCHARGE - LIVE LOADS 1.60

    11 COMBINATION WALL 1 1 SOIL 1.403 SELF WEIGHT 1.404 WALL 1 - LOADS 1.40

    15 SURCHARGE - CONCRETE FLOOR 1.4016 WATER 1.402 SURCHARGE - LIVE LOADS 1.60

    12 COMBINATION - 1.0L+1.0D 1 SOIL 1.002 SURCHARGE - LIVE LOADS 1.003 SELF WEIGHT 1.004 WALL 1 - LOADS 1.006 WALL 2 - LOADS 1.008 WALL 3 - LOADS 1.00

    10 WALL 4 - LOADS 1.0015 SURCHARGE - CONCRETE FLOOR 1.0016 WATER 1.00

    13 COMBINATION - 1.4D + 1.6L 1 SOIL 1.402 SURCHARGE - LIVE LOADS 1.603 SELF WEIGHT 1.404 WALL 1 - LOADS 1.406 WALL 2 - LOADS 1.408 WALL 3 - LOADS 1.40

    10 WALL 4 - LOADS 1.4015 SURCHARGE - CONCRETE FLOOR 1.40

  • Combination Load Cases Cont...Comb. Combination L/C Name Primary Primary L/C Name Factor

    16 WATER 1.40

    Load 5X

    Y

    Z

    MXkNm/m

    = 2.8

    2.5m Deep Cellar Maximum Bending Moment due to Load Combination No 5

    Plate Centre Stress SummaryShear Membrane Bending

    Plate L/C Qx(kN/m2)

    Qy(kN/m2)

    Sx(kN/m2)

    Sy(kN/m2)

    Sxy(kN/m2)

    Mx(kNm/m)

    My(kNm/m)

    Mxy(kNm/m)

    Max Qx 66 5:COMBINATIO 40.22 0.89 -74.43 2.48 -21.41 0.062 -0.034 -0.265Min Qx 70 5:COMBINATIO -40.24 0.92 -74.01 2.39 21.44 0.037 -0.035 0.265Max Qy 20 5:COMBINATIO -0.10 9.57 -192.34 -296.72 -0.61 1.106 -0.360 0.002Min Qy 40 5:COMBINATIO 0.07 -14.05 -256.94 118.88 1.36 -1.534 -0.102 -0.002Max Sx 72 4:WALL 1 - LO 0.04 0.21 17.86 -0.47 -0.01 -0.754 -0.008 -0.000Min Sx 44 13:COMBINAT -0.06 -10.71 -348.97 12.85 1.04 0.296 -0.008 -0.000Max Sy 8 5:COMBINATIO -0.02 0.92 -103.34 539.64 2.11 -0.229 0.035 -0.001Min Sy 4 5:COMBINATIO 0.00 -9.58 -85.26 -550.22 -0.87 0.402 -0.359 0.002

    Max Sxy 3 11:COMBINAT 0.37 -7.22 -88.24 -129.51 311.29 0.128 -0.271 -0.139Min Sxy 13 11:COMBINAT -0.36 -7.21 -88.46 -126.10 -311.03 0.127 -0.270 0.140Max Mx 68 5:COMBINATIO -0.17 -2.44 -105.50 6.47 0.09 2.804 0.092 0.001Min Mx 72 5:COMBINATIO 0.19 7.07 -34.24 -11.33 -0.12 -2.903 -0.265 -0.001Max My 24 5:COMBINATIO 0.02 4.74 -215.14 312.30 1.83 -0.751 0.247 -0.002Min My 56 5:COMBINATIO 0.13 1.32 -240.60 5.25 0.44 -2.351 -0.579 -0.002

    Max Mxy 38 5:COMBINATIO -20.33 -3.04 -213.83 -5.97 -192.16 -0.156 -0.067 0.500Min Mxy 42 5:COMBINATIO 20.39 -2.98 -213.22 -6.87 193.07 -0.140 -0.065 -0.499

  • Appendix 2

    Concrete Mixing Specification

  • 1. Large Batches1.1 Concrete: Use only common cement complying with SANS 50197Low-strength concrete suitable for: house foundations

    To make 1 cubic metre of concrete you will need:5, bags cement + 0,65 cubic metres sand + 0,65 cubic metres stone.

    Medium-strength concrete suitable for: house floors, footpaths and driveways

    To make 1 cubic metre of concrete you will need:7,7 bags cement + 0,62 cubic metres sand + 0,62 cubic metres stone.

    High-strength concrete suitable for: precast concrete, heavy-duty floors

    To make 1 cubic metre of concrete you will need:9,2 bags cement + 0,60 cubic metres sand + 0,60 cubic metres stone.

    1.2 Mortar and Plaster: Using common cement complying with SANS 50197Suitable for laying bricks and blocks in normal applications (SABS Class II)

    Mortar: To lay 1 000 bricks you will need: 3 bags cement + 0,6 cubic metres sand.Plaster: To plaster 100 square metres (15 millimeters thick) you will need: 12 bags cement + 2,3 cubic metres sand.

    mixes for buildersConcrete, mortar & plaster

    Cement Concrete Sand Stone

    1 Bag 13/4 Wheelbarrows 13/4 Wheelbarrows

    Cement Concrete Sand Stone

    1 Bag 11/4 Wheelbarrows 11/4 Wheelbarrows

    Cement Concrete Sand Stone

    1 Bag 1 Wheelbarrow 1 Wheelbarrow

    Cement Building Sand (for mortar) or Plaster Sand (for plaster)

    1 Bag 3 Wheelbarrows

  • 1.3 Mortar and Plaster: Using masonry cement complying with SANS 50413 class MC 22,5X or MC 12,5. Do not use grade MC 12,5X.Suitable for exterior and interior work

    Mortar: To lay 1000 bricks you will need: 3,5 bags cement + 0,55 cubic metres sand.Plaster: To plaster 100 square metres (15 millimetres thick) you will need: 14 bags cement + 2,25 cubic metres sand.

    2. Small BatchesUse containers such as buckets, drums or tins.Use the same size of container for measuring all the materials in a batch.

    2.1 Concrete: Using common cement complying with SANS 50197

    2.2 Mortar and Plaster: Using common cement complying with SANS 50197

    2.3 Mortar and Plaster: Using masonry cement complying with SANS 50413

    Published by the Cement & Concrete Institute, Midrand, 1996 reprinted 1998, 2000, 2004, 2006. Cement & Concrete Institute

    Notes1. The amount of water added to a mix must be enough to make the mix workable and plastic.

    2. Use cement that has the SABS mark showing that it complies with SANS 50197 for all applications or masonry cement that complies with SANS 50413 for mortar and plaster.

    3. Stone for concrete should be 19 mm or 26 mm size.

    4. If you use a wheelbarrow for measuring, it should be a builders wheelbarrow which has a capacity of 65 litres.

    Cement Building Sand (for mortar) or Plaster Sand (for plaster)

    1 41/2

    Cement Concrete Sand Stone

    1 31/2 31/2

    1 21/2 21/2

    1 2 2

    Cement Building Sand (for mortar) or Plaster Sand (for plaster)

    1 5

    Low-strength concrete

    Medium-strengthconcrete

    High-strength concrete

    Cement Building Sand (for mortatr) or Plaster Sand (for plaster)

    1 Bag 21/2 Wheelbarrows

    PO Box 168, Halfway House, 1685

    Tel (011) 315-0300 Fax (011) 315-0584

    e-mail [email protected] website http://www.cnci.org.za

    Cement & Concrete Institute

  • proportions & quantities for ordering

    Trial Concrete Mixes:

    Mass/bag 50 kg 238 kg 128 kg 50 kg 230 kg 196 kg

    Volume/bag 1 bag 0,175 m3 0,095 m3 1 bag 0,170 m3 0,145 m3

    Mass/m3 250 kg 1 190 kg 640 kg 225 kg 1 030 kg 890 kg

    Volume/m3 5,0 bag 0,88 m3 0,47 m3 4,5 bag 0,76 m3 0,66 m3

    Mass/bag 50 kg 175 kg 106 kg 50 kg 170 kg 164 kg

    Volume/bag 1 bag 0,130 m3 0,080 m3 1 bag 0,125 m3 0,120 m3

    Mass/m3 315 kg 1 100 kg 670 kg 280 kg 950 kg 920 kg

    Volume/m3 6,3 bag 0,82 m3 0,50 m3 5,6 bag 0,70 m3 0,68 m3

    Mass/bag 50 kg 138 kg 92 kg 50 kg 130 kg 138 kg

    Volume/bag 1 bag 0,100 m3 0,070 m3 1 bag 0,095 m3 0,100 m3

    Mass/m3 375 kg 1 030 kg 690 kg 340 kg 880 kg 940 kg

    Volume/m3 7,5 bag 0,76 m3 0,51 m3 6,8 bag 0,65 m3 0,70 m3

    Mass/bag 50 kg 114 kg 84 kg 50 kg 106 kg 125 kg

    Volume/bag 1 bag 0,085 m3 0,060 m3 1 bag 0,080 m3 0,090 m3

    Mass/m3 425 kg 970 kg 710 kg 385 kg 820 kg 960 kg

    Volume/m3 8,5 bag 0,72 m3 0,53 m3 7,7 bag 0,61 m3 0,71 m3

    Mass/bag 50 kg 95 kg 78 kg 50 kg 90 kg 114 kg

    Volume/bag 1 bag 0,070 m3 0,055 m3 1 bag 0,065 m3 0,085 m3

    Mass/m3 475 kg 910 kg 730 kg 430 kg 770 kg 980 kg

    Volume/m3 9,5 bag 0,67 m3 0,54 m3 8,6 bag 0,57 m3 0,73 m3

    Mass/bag 50 kg 80 kg 72 kg 50 kg 75 kg 105 kg

    Volume/bag 1 bag 0,060 m3 0,055 m3 1 bag 0,055 m3 0,080 m3

    Mass/m3 525 kg 850 kg 750 kg 475 kg 710 kg 1 000 kg

    Volume/m3 10,5 bag 0,63 m3 0,56 m3 9,5 bag 0,53 m3 0,74 m3

    Mass/bag 50 kg 68 kg 68 kg 50 kg 64 kg 98 kg

    Volume/bag 1 bag 0,050 m3 0,050 m3 1 bag 0,045 m3 0,075 m3

    Mass/m3 575 kg 780 kg 770 kg 520 kg 650 kg 1 020 kg

    Volume/m3 11,5 bag 0,58 m3 0,57 m3 10,4 bag 0,49 m3 0,76 m3

    For notes see over.

    10

    15

    20

    25

    30

    35

    40

    Cement Sand Stone Cement Sand Stone

    9,5 or 13,2 mm stone 19,0 or 26,5 mm stoneConcretestrength at28 days,

    MPa

    Mass orvolume

  • Notes Recommended concrete strengths for various uses are

    shown in the table below.

    Mix proportions in the table overleaf are based on theassumption that a CEM II/A 32,5 cement will be used.CEM I 42,5 or higher cements will give a strongerconcrete but may be less economical. Cements withhigher extender contents (eg CEM II/B or CEM III) willdevelop strength more slowly and will require particularcare with curing. Masonry cements complying withSABS ENV 413-1 are not recommended for use inconcrete.

    The amount of water required is not given in the table.The mix should contain enough water to achieve therequired consistence. Consistence may be assessed byeye or measured by carrying out the slump test (SABS Method 862-1:1994). Recommended slumps are:

    50100 mm for compaction by mechanical vibration100150 mm for compaction by hand

    0,001 m3 = 1 litreThe capacity of a builders wheelbarrow is 65 litres.

    A mix made according to this table, and to the requiredconsistence, should be assessed for stone contentbefore being used on a large scale. This can be doneby compacting some of the concrete in a container, eg a bucket, by the means (vibration or hand tamping)to be used on the job.If stones protrude from the surface, stone content is too high.

    If not, scratch the surface of the compacted concrete(before it hardens) with a nail or screwdriver. If the stonecontent is right, stones should be found two or threemillimetres below the surface. If they are deeper thanthis, the stone content is too low.

    If stone content is too high, reduce it by 10 % andincrease sand content by the same amount, ie volumeor mass. Then reassess.

    If stone content is too low, increase it by 10 % andreduce sand content by the same amount, ie volume ormass. Then reassess.

    The mix proportions given in the table overleaf areconservative. If the quantity of concrete to be madeexceeds about 100 m3, it is probably possible to savecosts by selecting materials and having a mix designed.For information on the choice of materials consult theC&CI.

    Published by the Cement & Concrete Institute, Midrand, 1997, reprinted 1998, 2001, 2003 Cement & Concrete Institute

    PO Box 168, Halfway House, 1685Portland Park, Old Pretoria Road, Halfway House, Midrand

    Tel (011) 315-0300 Fax (011) 315-0584e-mail [email protected] website http://www.cnci.org.za

    Cement & Concrete Institute

    10 Mass filling

    15 Foundations for houses

    20 Floors on the ground (surface beds) for housesReinforced concrete25 Home driveways

    Reinforced concrete30 Floors on the ground for heavy duty eg factories

    Farm roads

    Floors on the ground for heavy duty eg factories35 Precast concrete

    40 Precast concrete

    Use

    Concretestrength at28 days,

    MPa

  • Appendix 3

    Damp Proof Membrane Technical Specification

  • Butyl Products Ltd.11 Radford Crescent, Billericay, Essex CM12 0DW, England.Tel: +44 (0)1277 653281 Fax: +44 (0)1277 657921E-mail: [email protected] www.butylproducts.co.uk

    BUTYL RUBBER SPECIFICATION

    Typical Properties Test Method Specification(Typical Values)

    Minimum Values

    Tensile Strength BS 903 Part A2 8.0 MPa 7.0 MPa

    Modules at 300% BS 903 Part A2 5.5 MPa 4.5 MPa

    Elongation at Break BS 903 Part A2 350% 300%

    Tear Strength BS 903 Part A3 30 N/mm 25N/mm

    Ozone Resistance(7 days/50pphm/30 Deg C)

    BS 903 Part A43Procedure A

    50% extensionsNo cracks

    Heat Aging (Retentions)(7 days @ 100 .Deg. C)

    BS 903 Part A19 6.0 MPa250%

    5.6 MPa200%

    Flex Cracking BS 903 Part A10 200.000 cycles, no crack

    Specific Gravity BS 903 Part A1 1.24 +/- 0.03

    Nominal Weight @ 1mm thickness 1240 g/m2

    Dimensional Stability 1 Hr at 100 .Deg C +/- 1% Max

    Grade AA Agrement Board Certificate No 87/1884

    Thickness Available 0.75mm 1.0mm & 1.5mm, Reinforced materials 1.0mm thick

    Form 112 Rev. A

  • Butyl Products Ltd.11 Radford Crescent, Billericay, Essex CM12 0DW, England.Tel: +44 (0)1277 653281 Fax: +44 (0)1277 657921E-mail: [email protected] www.butylproducts.co.uk

    CHEMICAL RESISTANCE OF BUTYL RUBBER

    A Recommended B Minor Effect

    Acetaldehyde A Acetamide A Acetic Acid, 30% BAcetic Acid, Glacial B Acetic Anhydride B Acetone AAcetophenone A Acetylene A Aluminium Acetate AAluminium Chloride A Aluminium Fluoride A Aluminium Nitrate AAluminium Phosphate A Aluminium Sulphate A Ammonia Anhydrous AAmmonia Gas (Cold) A Ammonia Gas (Hot) B Ammonium Carbonate AAmmonium Chloride A Ammonium Hydroxide A Ammonium Persulphate AAmmonium Nitrate A Ammonium Phosphate A Ammonium Sulphate AAmyl Acetate A Amyl Alcohol A Aniline BAniline Dyes B Aniline Hydrochloride B Animal Fats BArsenic Acid A

    Barium Chloride A Barium Hydroxide A Barium Sulphate ABarium Sulphide A Beer A Beet Sugar Liquors ABenzaldehyde A Benzoic Acid A Benzyl Alcohol BBenzyl Benzoate B Bleach Solutions A Borax ABordeaux Mixture A Boric Acid A Brine AButter B Butyl Acetate B Butyl Acetyl Ricinoleate AButyl Alcohol B Butyl Benzoate A Butyl Carbitol AButyl Cellosolve A Butyl Oleate B Butyl Stearate BButyraldehyde B

    Calcium Acetate A Calcium Chloride A Calcium Hydroxide ACalcium Hypochlorite A Calcium Nitrate A Calcium Sulphide ACane Sugar Liquors A Carbamate B Carbitol BCarbolic Acid B Carbon Dioxide A Carbon Monoxide ACarbonic Acid A Caster Oil B Cellosolve BCellosolve Acetate B Cellulube A Chloroacetic Acid BChloroacetone B Chlorobromomethane B Citric Acid ACobalt Chloride A Coconut Oil A Cod Liver Oil ACopper Acetate A Copper Chloride A Copper Cyanide ACopper Sulphate A Corn Oil B Cyclohexanone B

    Denatured Alcohol A Detergent Solutions A Developing Fluids BDiacetone A Diacetone Alcohol A Dibenzyl Ether BDibenzyl Sebecate B Dibutyl Phthalate B Dibutyl Sebecate BDiethlamine B Diethyl Sebecate B Diethylene Glycol ADiisopropyl Ketone A Dimethyl Phthalate B Dioctyl Phthalate BDioctyl Sebecate B Dioxane B

    Epichlorohydrin B Ethanolamine B Ethyl Acetate BEthyl Acetoacetate B Ethyl Acrylate B Ethyl Alcohol AEthyl Benzoate B Ethyl Cellosolve B Ethyl Cellulose BEthyl Oxalate A Ethylene Diamine A Ethyl Chloride AEthyl Formate B Ethyl Silicate A Ethylene Glycol A

  • - 2 -

    Ferric Chloride A Ferric Nitrate A Ferric Sulphate AFluorinated Cyclic Ethers A Fluoroboric Acid A Fluorocarbon Oils AFluorolube A Fluosilicic Acid A Formaldehyde AFormic Acid A Freon 12 B Freon 13 AFreon 13B1 A Freon 22 A Freon 31 AFreon 32 A Freon 114 A Freon 115 AFreon 142b A Freon 152a A Freon 502 AFreon C316 A Freon C318 A Freon TA AFreon TC A Freon TMC B Freon T-P35 AFreon T-WD602 A Fufural B

    Gallic Acid B Gelatin A Glaubers Salt BGlycerin A Glycols A Glucose AGlue A Green Sulphate Liquor A

    n-Hexaldehyde B Hydrazine A Hydrobromic Acid AHydrochloric Acid (cold) A Hypochlorous Acid B Hydrocyanic Acid AHydrofluoric Acid-Anhydrous

    B Hydrofluoric Acid(Conc.) Cold

    B Hydrofluosilicic Acid A

    Hydrogen Gas A Hydrogen Suphide(wet)(Cold)

    A Hydrogen Suphide(wet)(Hot)

    A

    Iodoform A Isobutyl Alcohol A Isophorone AIsopropyl Acetate A Isopropyl Alcohol A

    Lactic Acid A Lead Acetate A Lead Nitrate ALead Sulphamate A Lime Bleach A Lime Sulphur ALindol A Linseed Oil B Lye A

    Magnesium Chloride A Magnesium Hydroxide A Mercuric Chloride AMercury A Mesityl Oxide B Methyl Acetate BMethyl Acrylate B Methyl Alcohol A Methyl Butyl Ketone AMethyl Cellosolve B Methyl Formate B Methyl Oleate BMethyl Salicylate B Methylacrylic Acid B Milk AMonoethanolamine B Monovinyl Acetylene A Mustard Gas A

    Neatsfoot Oil B Neville Acid B Nickel Acetate ANickel Chloride A Nickel Sulphate A Niter Cake ANitric Acid-Dilute B Nitroethane B Nitrogen ANitromethane B

    Octyl Alcohol A Oleic Acid B Olive Oil BOxalic Acid A Oxygen Cold A Ozone B

    Palmitic Acid B Perchloric Acid B Phenol BPhophorous Trichloride A Phorone B Phosphoric Acid 20% APhosphoric Acid 45% B Picric Acid B Plating Solution-

    ChromeA

    Plating Solution-Others A Polyvinyl Acetate Emulsion

    A Potassium Acetate A

    Potassium Chloride A Potassium Cupro Cyanide A Potassium Cyanide APotassium Dichromate A Potassium Hydroxide A Potassium Nitrate APotassium Sulphate A Propyl Acetate B n-Propyl Acetate APropyl Alcohol A Propyl Nitrate B Propylene Oxide BPydrauls B Pyridine B Pyroligneous Acid B

    Rapeseed Oil A

  • - 3 -

    Sal Ammoniac A Salicylic Acid A Salt Water ASewage B Silicone Greases A Silicone Oils ASilver Nitrate A Skydrol 500 B Skydrol 7000 ASoap Solutions A Soda Ash A Sodium Acetate ASodium Bicarbonate A Sodium Bisulphite A Sodium Borate ASodium Chloride A Sodium Cyanide A Sodium Hydroxide ASodium Hypochlorite B Sodium Metaphosphate A Sodium Nitrate ASodium Perborate A Sodium Peroxide A Sodium Phosphate ASodium Silicate A Sodium Sulphate A Sodium Thiosulphate AStannic(ous) Chloride B Steam Under 300F A Sucrose Solution ASulphite Liquors B Sulphur A Sulphur Dioxide BSulphur Hexafluoride A Sulphur Trioxide B Sulphuric Acid (Dilute) BSulphuric Acid (Conc) B Sulphurous Acid B

    Tannic Acid A Tartaric Acid B Tertiary Butyl Alcohol BTertiary Butyl Catechol B Tetrabutyl Titanate B Tetrhydrofuran BTriacetin A Triaryl Phosphate A Tributoxy Ethyl

    PhosphateA

    Tributyl Phosphate A Trichloroacetic Acid B Tricresyl Phosphate ATriethanol Amine B Trioctyl Phosphate A Toluene Diisocyanate A

    Unsymmetrical DimethylHydrazine (udmh) A

    Vegetable Oils A Versilube A Vinegar A

    Wagner 21B Fluid B Water A Whisky, Wines A

    Zeolites A Zinc Acetate A Zinc Chloride AZinc Sulphate A

  • Appendix 4

    CE Technical Specification for Strux 90-40

  • UK

    DE

    FR

    ITE

    S

    Gra

    ce B

    au

    pro

    du

    kte

    Gm

    bH

    P

    yrm

    on

    ter

    Str

    ass

    e 5

    6

    32

    676

    Lu

    eg

    de

    - G

    erm

    an

    y

    Pla

    nt

    II

    Gra

    ce B

    au

    pro

    du

    kte

    Gm

    bH

    P

    yrm

    on

    ter

    Str

    ass

    e 5

    6

    32

    676

    Lu

    eg

    de

    - G

    erm

    an

    y

    We

    rk II

    Gra

    ce B

    au

    pro

    du

    kte

    Gm

    bH

    P

    yrm

    on

    ter

    Str

    ass

    e 5

    6

    32

    676

    Lu

    eg

    de

    - G

    erm

    an

    y

    Pla

    nt

    II

    Gra

    ce B

    au

    pro

    du

    kte

    Gm

    bH

    P

    yrm

    on

    ter

    Str

    ass

    e 5

    6

    32

    676

    Lu

    eg

    de

    - G

    erm

    an

    y

    Pla

    nt

    II

    Gra

    ce B

    au

    pro

    du

    kte

    Gm

    bH

    P

    yrm

    on

    ter

    Str

    ass

    e 5

    6

    32

    676

    Lu

    eg

    de

    - G

    erm

    an

    y

    Pla

    nt

    II

    Da

    te o

    f d

    eliv

    ery

    not

    eD

    atu

    m d

    es

    Lie

    fers

    chei

    ns

    Da

    te d

    e li

    vra

    iso

    n D

    ata

    bo

    lla d

    i co

    nse

    gn

    a

    Fe

    cha

    de

    l alb

    ar

    n d

    e e

    ntr

    eg

    a

    10

    77-C

    PD

    -U3

    93

    10

    77-B

    PR

    -U3

    93

    10

    77-D

    CP

    -U3

    93

    10

    77-C

    DP

    -U3

    93

    10

    77-C

    PD

    -U3

    93

    EN

    148

    89-

    2E

    N 1

    488

    9-2

    EN

    148

    89-

    2E

    N 1

    488

    9-2

    EN

    148

    89-

    2

    Po

    lym

    er

    fibre

    s fo

    r co

    ncre

    teP

    oly

    me

    rfa

    sern

    fr

    Bet

    on

    Fib

    res

    de

    po

    lym

    re

    po

    ur

    b

    ton

    F

    ibre

    po

    lime

    rich

    e p

    er

    calc

    estr

    uzz

    oF

    ibra

    s p

    olim

    ri

    cas

    pa

    ra h

    orm

    ig

    n

    Po

    lym

    er

    typ

    e: P

    olyp

    rop

    yle

    ne/P

    olye

    thyl

    en

    eP

    oly

    me

    rart

    : P

    olyp

    rop

    yle

    n/P

    oly

    eth

    ylen

    Na

    ture

    de

    po

    lym

    re

    : Po

    lyp

    rop

    yl

    ne/

    Po

    ly

    thyl

    ne

    Tip

    o d

    i P

    olim

    ero

    : P

    olip

    rop

    ilen

    e/P

    olie

    tile

    ne

    Tip

    o d

    e p

    olm

    ero

    : P

    olip

    rop

    ilen

    o/P

    olie

    tile

    no

    Cla

    ss II

    Kla

    sse

    IIC

    lass

    e II

    Cla

    sse

    IIC

    lase

    II

    Le

    ngth

    : 4

    0 m

    mL

    ng

    e: 4

    0 m

    mL

    ong

    ue

    ur:

    40

    mm

    Lu

    ngh

    ezz

    a: 4

    0 m

    mL

    ong

    itud

    : 4

    0 m

    m

    Eq

    uiv

    ale

    nt d

    iam

    ete

    r: 0

    ,433

    mm

    q

    uiv

    ale

    nte

    r D

    urc

    hm

    ess

    er: 0

    ,43

    3 m

    mD

    iam

    tr

    e

    qu

    ival

    en

    t: 0

    ,43

    3 m

    mD

    iam

    etr

    o e

    qu

    ival

    en

    te: 0

    ,43

    3 m

    mD

    im

    etr

    o (

    eq

    uiv

    ale

    nte

    ): 0

    ,433

    mm

    Sh

    ape

    : cr

    oss

    sec

    tion

    al a

    rea

    re

    cta

    ngu

    lar

    Fo

    rm: Q

    uer

    sch

    nitt

    re

    chte

    ckig

    Fo

    rme

    : S

    ectio

    n tr

    an

    sver

    sale

    re

    ctan

    gu

    lair

    eF

    orm

    a: se

    zion

    e tr

    asv

    ers

    ale

    : re

    ttan

    go

    lare

    Fo

    rma

    : se

    cci

    n tra

    nsve

    rsa

    l re

    ctn

    gu

    lar

    Te

    nsi

    le s

    tre

    ng

    th: 6

    20

    N/m

    m

    Zu

    gfe

    stig

    keit:

    62

    0 N

    /mm

    R

    si

    sta

    nce

    la

    tra

    ctio

    n: 6

    20

    N/m

    m

    Re

    sist

    enz

    a a

    lla T

    razi

    on

    e: 6

    20 N

    /mm

    R

    esi

    ste

    ncia

    a la

    tra

    cci

    n: 6

    20 N

    /mm

    Ela

    stic

    mo

    du

    lus:

    950

    0 N

    /mm

    E

    last

    izit

    tsm

    od

    ul:

    950

    0 N

    /mm

    M

    odu

    le d

    'la

    stic

    it: 9

    500

    N/m

    m

    Mod

    ulo

    di E

    last

    icit

    : 95

    00

    N/m

    m

    Md

    ulo

    el

    stic

    o: 95

    00

    N/m

    m

    Effec

    t o

    n co

    nsis

    ten

    ce w

    ith 3

    ,5 k

    g/m

    fib

    res:

    Ve

    be

    tim

    e: 1

    0s (

    Re

    fere

    nce

    con

    cre

    te: 7

    s)E

    influ

    ss a

    uf K

    ons

    iste

    nz

    mit

    3,5

    kg

    /m

    Fa

    sern

    :V

    eb

    e Z

    eit: 1

    0s (

    Re

    fere

    nzb

    eto

    n: 7

    s)C

    on

    sist

    ence

    ave

    c 3

    ,5 k

    g/m

    d

    es

    fibre

    s:te

    mp

    s V

    eb

    e: 10

    s (B

    eto

    n te

    mo

    ins:

    7s)

    Effet

    to s

    ulla

    con

    sist

    enz

    a c

    on 3

    ,5 k

    g/m

    d

    i fib

    re:

    Ve

    be

    tem

    po

    : 1

    0s (

    Ca

    lce

    stru

    zzo

    di r

    ife

    rim

    en

    to: 7

    s)C

    on

    sist

    enci

    a c

    on 3

    ,5 k

    g/m

    d

    e fib

    ras:

    tie

    mp

    o V

    eb

    e: 1

    0 s

    (h

    orm

    ig

    n d

    e r

    efe

    ren

    cia

    : 7 s

    )

    Effec

    t o

    n st

    ren

    gth

    of c

    on

    cre

    te:

    3,5

    kg

    /m

    to o

    bta

    in 1

    ,5 N

    /mm

    a

    t C

    MO

    D=

    0,5

    mm

    an

    d 1

    N/m

    m

    at C

    MO

    D=

    3,5

    mm

    .

    Ein

    fluss

    au

    f die

    Fe

    stig

    keit

    von

    Be

    ton

    : 3

    ,5 k

    g/m

    f

    r 1

    ,5 N

    /mm

    b

    ei C

    MO

    D=

    0,5

    mm

    u

    nd

    1 N

    /mm

    b

    ei C

    MO

    D=

    3,5

    mm

    Inci

    de

    nc

    sur

    la r

    si

    sta

    nce

    du

    b

    ton

    :

    3,5

    kg

    /m

    po

    ur

    obte

    nie

    r 1,

    5 N

    /mm

    p

    ou

    r C

    MO

    D=

    0,5

    mm

    et 1

    N/m

    m

    po

    ur

    CM

    OD

    =3

    ,5 m

    m

    Effet

    to s

    ulla

    re

    sist

    enze

    de

    l ca

    lce

    stru

    zzo:

    3,5

    kg

    /m

    pe

    r o

    tten

    ere

    1,5

    N/m

    m

    con

    CM

    OD

    =0

    ,5 m

    m e

    1 N

    /mm

    co

    n C

    MO

    D=

    3,5

    mm

    Efe

    cto

    sob

    re la

    re

    sist

    enc

    ia d

    el h

    orm

    ig

    n:

    3,5

    kg

    /m

    pa

    ra o

    bte

    ne

    r 1,

    5 N

    /mm

    a

    CM

    OD

    =0

    ,5 m

    m y

    1 N

    /mm

    a

    CM

    OD

    =3

    ,5 m

    m.

    1077

  • Appendix 5

    Reinforced Synthetic Fibres STRUX 90/40 Engineering Bulletin

  • STRUX

    90/40FIBER REINFORCEMENT

    E N G I N E E R I N G B U L L E T I N

    C o n c r e t e

    The use of structural syntheticfibres as a replacement for steelreinforcement in flooring isbecoming more accepted due totheir various advantages: tightcrack control, easy use, safehandling, scheduling advances, andno corrosion.

    It is, however, important to ensurethat the level of reinforcementoffered by the structural syntheticfibres is in fact equivalent to that ofthe steel reinforcement that is beingreplaced. This document addressesthe calculation of recommendedSTRUX(r) 90/40 dosage ratesmatching the level of reinforcementby various types of welded wiremesh and light rebar in slab-on-ground (SOG) applications.

    It is well recognized that theaddition of fibres improves concreteproperties including ductility,fracture toughness and crackcontrol. The improvement in theresidual strength or the post-cracking strength of fibre reinforcedconcrete is presented as theequivalent flexural strength, fe3,which was initially developed bythe Japanese Concrete Institute(JCI-SF4). This approach laterbecame widely accepted by otherstandards such as the AmericanSociety for Testing and Materials(ASTM), RILEM, and the BritishStandards Institute (BSI). The fe3must be determined on a beam with

    a 150 mm x 150 mm cross-sectionand a length of at least 500 mm (6in. x 6 in. x 20 in.) tested accordingto ASTM C 1018-97 up to a beamdeflection of 3 mm (0.12 in.).

    ASTM C 1399, ASTM C 1018,JCI-SF4 and RILEM TC-162determine the post crackingstrength or residual strength offiber reinforced concrete assuminga linear elastic behavior. Thisimplies that the post-crackingstrength of fibre reinforced concretecan be easily calculated using theequivalent flexural strengthdetermined from the bending testspecified in standard tests. Theequivalent flexural strength isdetermined from a load-deflectioncurveobtained in bending of beams (See

    JCI-SF4). Figure 1 shows that theequivalent flexural strength, feq, iscalculated to have the same area asthe area under load deflection curveobtained from testing. Thisequivalent flexural strength is astrength parameter whichcharacterizes the post-crackingresistance. Therefore, it can be usedfor design and stress analysis offibre reinforced concrete structures.Table 1 shows the equivalentflexuralstrength of STRUX 90/40reinforced concrete at differentfibre dosage rates and differentconcrete strengths.

    Fibres control cracking in a muchbetter way than steel mesh orsecondary reinforcing bars(temperature and shrinkage steel)

    Patent Pending

    Strength-Based Analysis to Replace Steelwith STRUX 90/40 Synthetic Fibers inSOG Flooring - SI Units

    Figure 1Equivalent Flexural Strength

    ASTM C 1018-97JCI-SF4NBN B15-238

    Fct

    Beam Deflection

    Flex

    ura

    l Str

    ess

    Equivalent Strength: Indicated by the same toughness obtained fromexperiment to a deflection of L/150 (same area under load-deflection)

    f'eq

    (L/150)

  • because fibres interfere with thecracking phenomenon at itsinception and arrest microcracksand prevent them from becomingmacrocracks. Furthermore, thedistribution of fibres makes it moreefficient to control cracking. Inorder to replace the steel mesh withfibres while maintaining the sameperformance, fibre reinforcedconcrete must have the same post-cracking. Grace has developedconversion tables for STRUX 90/40based on experimental tests,engineering analysis andcalculations. The technicalapproach and some examples arepresented to illustrate thereplacement of steel reinforcementwith STRUX 90/40.

    The criterion used herein is thatboth the steel reinforced concretesection and the fibre reinforcedconcrete section must have equalpost-cracking strength. The post-cracking strength is defined as theflexural capacity of the concretesection after cracking. Using thestrain-compatibility method,ultimate post-cracking flexuralcapacity with steel mesh at mid

    depth, Mu, is given by thefollowing equation:

    Where As is the area of steel perunit length, fy is the yield stress ofthe steel, b is the unit width and his the thickness of the concretesection. The ultimate post-crackingflexural capacity of the fiberreinforced concrete wall is given by:

    Where feq is the equivalentflexural strength of the fibrereinforced concrete (testedaccording to ASTM C 1018-97 andcalculated as described before). Theequivalent flexural strengthdepends primarily on the type offibres and the dosage rates at whichthey are added to the concrete.Furthermore, Grace has found thatit also depends on the strength ofthe concrete. Grace has performedextensive laboratory testing tocover the compressive strengthrange of practical interest (i.e.concrete strength 15 to 50 MPa). Asummary of the equivalent flexuralstrength is presented in Table 1.

    To replace the steel reinforcementwith fibres, the fibres must beadded such that the momentcapacities for the steel reinforcedand for the fibre reinforcedconcrete are equal as follows:

    The equivalent flexural strength canthen be calculated to match therequired level of reinforcement.Having calculated the equivalentflexural strength, the fibre dosagerate is determined to produce therequired level of post-crackingstrength for the concrete classunder consideration. Thecalculation used to develop theconversion table assumed the yieldstress of the steel as 400 MPa.Some examples illustrating thecalculation are presented herein.

    Table 1Equivalent Flexural Strength, fe,3, for

    Different Dosage Rates and Concrete StrengthsSTRUX 90/40 Compressive Strength (MPa)

    kg/m3 20 25 30 35 40 502.0 0.74 0.82 0.90 0.99 1.07 1.242.5 0.87 0.96 1.04 1.12 1.21 1.373.0 1.01 1.09 1.17 1.26 1.34 1.513.5 1.14 1.23 1.31 1.39 1.48 1.644.0 1.28 1.36 1.45 1.53 1.61 1.784.5 1.41 1.50 1.58 1.66 1.75 1.925.0 1.55 1.63 1.72 1.80 1.88 2.055.5 1.68 1.77 1.85 1.94 2.02 2.19

    Mu = Asfy (0.45bh)

    0.5 h

    Ty = As fy0.5 h

    0.45 h

    Mu = f'eqbh2

    6

    h

    Mu = Asfy (0.45bh) = f'eqbh2

    6

  • Minimum DosageAs it is the case for any reinforcedconcrete section, a minimumreinforcement must be satisfiedeven if the strength calculation doesnot require reinforcement. For fibrereinforced concrete, the minimumfibre dosage rate shall controlcracking. The minimum dosage ratedepends on the strength of theconcrete. The higher the strength of

    the concrete, the higher therequired minimum dosage. This isdue to the fact that higher strengthconcrete stores more elastic energybefore cracking occurs. When thestored elastic energy is releasedupon cracking, the fibres must beable to absorb the released elasticenergy to keep the crack widthsmall.

    Therefore, the minimum dosagerate for STRUX 90/40 has beenspecified to satisfy this condition.The dosage rate for STRUX 90/40should not fall below the minimumspecified in the conversion tables iftight crack control has to beachieved.

    Grace Construction Products Limited 852 Birchwood Boulevard Warrington Cheshire, WA3 7QZADVA and STRUX are registered trademarks of W.R. Grace & Co.-Conn.

    We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users consideration, investigationand verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale,which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. GraceConstruction Products Limited, 852 Birchwood Boulevard, Birchwood, Warrington, Cheshire WA3 7QZ.

    This product may be covered by patents or patents pending. Copyright 2002. W.R. Grace & Co.-Conn. STRUX Printed in U.K. 12/02 EB

    Visit our web site at: www.graceconstruction.com

    Appendix 2-5.pdfCover sheet2009-105-STAADAppendix 2Appendix 3Appendix 4