61
Engineering Applications of POT, GeV and Compound Poisson Models : A Unified approach via Bayesian Thinking Eric Parent, Jacques Bernier & Jean-Jacques Boreux UMR 518 Math. Info. App. ENGREF/INRA/INAPG équipe MOdélisation, Risque, Statististique, Environnement Statistical Modeling of Extreme in Data Assimilation and Filtering Approaches Strasbourg , 23-26 June, 2008 [email protected] [email protected]

Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Engineering Applications of POT, GeV and Compound Poisson Models : A

Unified approach via Bayesian Thinking

Eric Parent, Jacques Bernier & Jean-Jacques Boreux

UMR 518 Math. Info. App. ENGREF/INRA/INAPG

équipe MOdélisation, Risque, Statististique, Environnement

Statistical Modeling of Extreme in Data Assimilation and Filtering ApproachesStrasbourg , 23-26 June, 2008

[email protected] [email protected]

Page 2: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Some nice things to do with Exponentially marked Poisson process

• Application 1 : Fully Observed , Pickands’ POT!

• Application 2 : Max Observed, GeV (Gumbel)

• Application 3 : SumObservedinsteadof max• Application 3 : SumObservedinsteadof max

• Application 4 : App3+Go Hierarchical

Page 3: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Two parameters only for the trajectory of a marked Poisson Process

u0

Xi

Xi+1

Xi+2

Xn

0 T

[ ] ( )| , exp( )

!

n

T

TN n T T

n

µµ µ= = −

[ ] ( )0 0| , 1 exp ( )i iX x X u x uρ ρ≤ > = − − −[ ]0 0| , 1 exp(( / ) log(1 ( )) si 0i iX x X u x uρ ρ β β β≤ > = − − − ≠

Page 4: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Application 1 : Rains at Bar/Seine

The point Poisson process with exponential marks is

completely observed

Page 5: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Nj

ρµ

The exponentially marked point Poisson process is completely observed

ρ et µ parameters

for(i in 1 : nj)

for(j in 1 : m)

X ij

j

N et X observables

θ

Y

parameters

observable

Page 6: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)
Page 7: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Histogram of The total number of rain events

Expected values for A Poisson dist. with Average number = 4

Number of rainy eventsat Bar/Seine(15 July-15 August)

Water quantities during rainy events

Starting date of rainy events

Page 8: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Bayesian inference easy!The conjugacy« miracle »

µ

0.06

0.08

0.1

0.12

0.14

0.16

0.18

prio

r [ η

]

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 50

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

α

prio

r [α

]

Poisson

Gamma prior

X

N

ρ

0 5 10 150

0.02

0.04

η

Gamma prior

Exponential

Quantity of water during each rainy event

Number of events

Page 9: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Application 2 : Max annual flow at Bar/Seineat Bar/Seine

The point Poisson processwith exponential marks is

incompletely observed

(only the max per year)

Page 10: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

0 2000 4000 6000 8000 10000 120000

500

1000

1500débits

jours

Daily flows of river SEINE at Bar/SEINE

0 2000 4000 6000 8000 10000 120000

500

1000

1500

jours

crues

Yearly Max of river SEINE at Bar/SEINE

Floods of river SEINE at Bar/SEINE

Page 11: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)
Page 12: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Nj

ρµ

The Exponentially marked Poisson process is only partially observed

ρ and µ parameters

for(i in 1 : nj)

for(j in 1 : m)

X ij

j

N and X latent variables

Y observed

Y j =Max(Xij)

Page 13: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

θ

Z

parameter

latent v.

[ ]θZ

Formulation

Hierarchical scheme

Z

Y

latent v.

observable

[ ]θ,ZY

[ ] [ ] [ ]∫ ×=z

dZZZYY θθθ ,

likelihood

Page 14: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Bayesian inference by Data Augmentation =« reconstruction »

[X|Y,N,ρ,µ] is a tuncated exp!

µ

0.06

0.08

0.1

0.12

0.14

0.16

0.18

prio

r [ η

]

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 50

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

α

prio

r [α

]

PoissonPrior Gamma

X

N

ρ

0 5 10 150

0.02

0.04

η

Prior Gamma

Exponentiel

Event number

Y Annual Max

Quantity of water during each rainy event

Page 15: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

µρ

Estimations on max of P.P. with Exp. marks (GUMBEL model)

µ

ρ

Corr(ρ,µ)=0.53

Estimations on max of P.P. with Exp. marks (GUMBEL model)

Page 16: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

0ne century return period flood

Probable number of floods during year 1955( given y1955=1163)

PREDICTIONS thanks to the latent P.P with Exponential marks

Observable latent V. !

What might have been the magnitudeof the second flood in 1955? ( given the max y1955=1163)

PREDICTIONS thanks to the latent P.P with Exponential marks

latent V. !

Page 17: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

ρ

Poisson pp with exp. marks123 events, 31 years, 21144 mm/10

accumulated above a threshold of 147 mm/10

Gumbel modelfor annual max

µ

Large events of 19553 floods

17 january: 1163 mm/10

11 february: 583 mm/10

28 february: 282 mm/10

Page 18: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Records historiques de la Garonne à Mas d ’Agenais

DATE HAUTEUR ( m ) DEBIT ESTIME (m3/s)Avril 1770 10.34 7000 à 7400Sept. 1772 6300Mars 1783 7000 à 7200Mai 1827 6500Mai 1835 6400Janv. 1843 6500Juin 1855 9.96 7000Juin 1855 9.96 7000Mai 1856 9.62 6200Juin 1856 9.88 6600Juin 1875 10.56 7000 à 7500 (peut-être 8000)Janv. 1879 9.62 6300Fev. 1879 10.02 7000Mai 1918 9.51 6000Mars 1927 9.97 6700Mars 1930 10.72 7000 à 7500 (peut-être 8000)Mars 1935 9.95 6700Fev. 1952 10.26 6000 à 7000Janv. 1955 9.32 5200 à 5700

Page 19: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

DEBIT q(i) ( m3/s )

4500

5000

5500

6000

6500

7000

Dépassements de la Garonne au delà de 2500m3/s

2500

3000

3500

4000

8 avri

l 191

3

28 m

ars 1

914

12 av

ril 19

15

16 m

ars 1

917

17 m

ars 1

920

5 fév

rier 1

922

30 dé

cem

bre 1

923

23 av

ril 19

2615

déce

mbr

e 193

0

22 m

ars 1

931

12 dé

cem

bre 1

932

24 m

ars 1

937

28 ja

nvier

1939

27 ju

in 19

40

14 no

vem

bre 1

941

19 av

ril 19

4414

janv

ier 19

5212

déce

mbr

e 195

9

5 fév

rier 1

961

18 fé

vrier

1966

31 m

ai 19

6824

mar

s 197

1

26 fé

vrier

1973

29 no

vem

bre 1

974

Page 20: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Flood and latent variables

Crues historiques

1900 2000

Valeurs manquantes Z Données systématiques

Page 21: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Data Augmentation algorithm

• Generate K , the number of missing data

• Draw Z for missing

• Poisson pdf withparameter µH

• Trucated GEV • Draw Z for missing flood data

• Compute posterior pdf of parameters θ on augmented sample

• Trucated GEV with parameter θ

• Same pdf structure as the already collected data

Page 22: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Bayesian Estimation with historical data

100

200

300

400

500

600k

100

200

300

400

500

600alpha

100

200

300

400

500

600

700mu

0 200 400 600 800 10003000

4000

5000

6000

7000

8000

9000QUANTILES MOYENS ET INTERVALLES DE CREDIBILITE A 70%

Période de retour

-0.5 0 0.50

0 1000 20000

0 2 40

Page 23: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Estimation sur données historiques

200

300

400

500

600

700QUANTILE Q10

200

400

600

800

1000QUANTILE Q100

200

400

600

800

1000QUANTILE Q1000

Moyenne Médiane Borne Sup 95% Borne Inf 95%mu 2.33 2.32 2.64 2.01k 0.22 0.22 0.32 0.11alpha 1477.63 1468.41 1739.05 1234.42Q10 5808.35 5807.08 6049.74 5564.52Q100 7205.26 7166.80 7759.84 6805.37Q1000 8060.79 7967.45 9101.08 7375.53

5000 6000 70000

100

5000 100000

200

5000 100000

200

Page 24: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Conclusions Mas d AgenaisMédiane Borne Sup 95% Borne Inf 95%

Q10 5520 5810 5990 6050 5190 5565Q100 7004 7170 8450 7760 6350 6805Q1000 8020 7970 10880 9100 6930 7375

Les données historiques ne changent guère l estimation de la valeur centrale, mais réduisent par 2 sur ce cas l ’incertitude d estimation des valeurs de projets

Estimation Borne sup 95% Borne inf 95%Q10 : 5510 5940 5090Q100 : 6810 7550 6070Q1000 : 7550 8730 6370

Max Vrais

Page 25: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Application 3 : Montly rains at Ghezala dam, TunisieGhezala dam, Tunisie

The point Poisson processwith exponential marks is

incompletely observed

(only the sum per period)

Page 26: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Nj

ρµ

The Exponentially marked Poisson process is only partially observed

for(i in 1 : nj)

for(j in 1 : m)

X ij

Nj

∑=

=jn

iijj XY

1

Page 27: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)
Page 28: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

θ

Z

parameter

latent v.

[ ]θZ

Formulation

Hierarchical scheme (again…)

Z

Y

latent v.

observable

[ ]θ,ZY

[ ] [ ] [ ]∫ ×=z

dZZZYY θθθ ,

likelihood

Page 29: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

La « loi des fuites »: Y~fuitepdf(ρ,µρ,µρ,µρ,µ)

• Def : Compound Poisson of exp. marks

)(~),exp(~; µρ PoisNXXY i

N

i∑=

• Other définition : Poisson convolution of gamma variates

)(~),exp(~;1

µρ PoisNXXY ii

i∑=

=

===

=

=>

−−

0-

10

1-

1e

1)!1(!

e],1y[Y

y

ky

ykk

ek

y

µ µµρ

Page 30: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

250

SimulationsN=poissrnd(mu,1,1000)for i=1:length(N)

if N(i)==0 y(i)=0;elsey(i)=gamrnd(N(i),1); end,

end

1

2

3

4

5

6

7

8

9

10

µ=1.2,ρ=1,50 données

0 5 10 150

50

100

150

200

250

µ=2,ρ=1,1000 données

0 1 2 3 4 5 6 7 80

0 5 10 15 20 25 30 35 400

5

10

15

20

25

30

35

40

µ=14,ρ=1,500 données

Page 31: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Real data: monthly rain- a bucket at Ghezala-dam : february, august

4

5

6

7

8distribution des Pluies mensuelles

GHEZALA – BARRAGEFEVRIER

20

25distribution des Pluies mensuelles

0 50 100 150 200 250 3000

1

2

3

pluie mensuelle en mm

0 10 20 30 40 50 600

5

10

15

20

pluie mensuelle en mm

GHEZALA - BARRAGE AOUT

Page 32: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Loi des fuites• Moments

22),(

),(

ρµµρ

ρµµρ

×=

×=

YVar

YE

• f.c.

−=

+=

=

∑∞

=

−−

is

iss

ek

y

kees

eEs

Y

k

ykk

isyY

isYY

1exp)(

)!1(!e)(

),()(

1

1-

µψ

µψ

µρψ

µµ

Page 33: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Bayesian inference not difficult!

µ

0.06

0.08

0.1

0.12

0.14

0.16

0.18

prio

r [ η

]

prior0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

α

prio

r [α

]

Poisson

Y

K

ρ

0 5 10 150

0.02

0.04

η

prior

Gamma

Page 34: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

GHEZALA :Posterior parameter Distributions (MCMC Gibbs )

0.05 0.1 0.15 0.2 0.250

10

20

30

40

ro0.05 0.1 0.15 0.2 0.250

5

10

15

20

ro

raoblackwell

30 2

GHEZALA- BARRAGE , AOUTDensités a posteriori des paramètres

0 0.05 0.1 0.15 0.20

10

20

30

40

ro0 0.05 0.1 0.15 0.2

0

5

10

15

20

25

ro

raoblackwell

40 0.25

GHEZALA - BARRAGEDensités de probabilités a posteriori des paramètres

0 0.5 1 1.5 20

10

20

mu0 0.5 1 1.5 2

0

0.5

1

1.5

mu

raoblackwell

0 5 10 150

10

20

30

mu0 5 10 15

0

0.05

0.1

0.15

0.2

mu

raoblackwell

mm

mm

3.8ˆ;12.0ˆ;9.0ˆ

4.15ˆ;065.0ˆ;7ˆ1

1

======

ρρµρρµ En February

En August

Page 35: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Modèle des fuites

• Various hydrological situations (zero inflated Ghezala summer dist.)

• Help of Tom Bayes (relying on conditional structure)structure)

• Convenient Interpretation of parameters + credibility bands

mm

mm

3.8ˆ;12.0ˆ;9.0ˆ

4.15ˆ;065.0ˆ;7ˆ1

1

======

ρρµρρµ In February

In August

Page 36: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Pedictive Validation of la “ loi des fuites ”

2

2.5

3Distributions prédictives modélisée et non paramétrique (+)

log1

0. d

e la

pro

b. d

e de

pass

emen

t

GHEZALA - BARRAGEAOUT

0 10 20 30 40 50 600

0.5

1

1.5

valeurs de la variable des fuites

-log1

0. d

e la

pro

b. d

e de

pass

emen

t

Page 37: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Distributions prédictives cumulées annuelles, sur 10 et 50 ans

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probabilitédenondépassement

GHEZALA - BARRAGE FEVRIER

Distribution prédictive :

- annuelle

- du minimum sur 10 ans

- du minimum sur 50 ans

1

0 50 100 150 200 250 3000

0.1

0.2

valeur annuelle P1 P10 P50

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

valeur annuelle P 1 P 10 P 50

pro

ba

bili

té d

e n

on

pa

ss

em

en

t

G HE ZA LA - B A RRA G E A O UT

Dis tribut ion prédic t ive annuelle

m inim um s ur 10 et 50 ans 0 avec probabilité 1

Page 38: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Application 4 : Trawl data in St-Laurence bay, CanadaSt-Laurence bay, Canada

A compound Poisson distribution for zero-inflated data

Page 39: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Context

Moncto

n

Yearly scientific catches

with a trawl in the bay

Page 40: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Data collection

49° 49

66° 65° 64° 63° 62° 61° 60°

415

416

417425

426

Every September since 1971

66° 65° 64° 63° 62° 61° 60°

46°

47°

48°

46

47

48

417

418419

420

421

422 423

424

426

427

428

429431

432

433

434

435

436

437

438

439

401

402

403

Sampling design

Standard trawl sweep of

3,24kms

Biomass weighted

Page 41: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

403

403

403

402

402

402

401

401

401

401

401

strate

0

0

0,024

0

0,001

0

0,002

0

0

0

0,456

starfish

26,5

18,5

28

15

17

19,5

19,5

30,5

19

25

26,5

depth

17,6

19,3

13,4

16,3

16,8

18,2

13,9

3,7

11,7

11,4

14,9

temperature

-61,621245,7772

-61,769845,7037

-61,845245,8712

-63,272545,8683

-63,457245,9542

-63,430346,0482

-62,7346,4845

-63,25346,5448

-63,723246,6475

-63,848246,8368

-61,99946,5003

longitudelatitude

2,11126564

1,31965306

0,69245353

0,05808044

0,01246536

0,09576385

0,5569532

0,15432443

0,13635805

0,19407908

totconsum

pelite

gravel with occasional sand patches

pelite

pelite

pelite

pelite

gravel with occasional sand patches

coarse sand

coarse sand

coarse sand

gravel with occasional sand patches

primary

416

416

416

416

416

415

415

415

415

415

415

403

403

0,074

0,026

0,021

0

0

0

0

0

0

0

0

0

0

140,5

135,5

128

100,5

125,5

200

228,5

190

313,5

251

207

24

26,5

2,6

3,2

2,8

1,9

3,4

4,4

4,6

4,1

5,4

5,1

4,7

14,8

17,6

-63,63148,653

-63,685748,6887

-63,929348,6447

-64,097748,5487

-63,361548,5197

-63,814348,851

-63,989248,8862

-64,25348,9933

-63,867748,9662

-63,646348,8453

-63,162748,5592

-61,603745,8392

-61,621245,7772

0,04041808

0,05543526

0,02925672

0,02270026

0,03399162

0,15000818

0,29882976

0,28090004

0,16415286

0,37630839

0,17525881

0,64985972

2,11126564

glacial drift

glacial drift

coarse sand

pelite

glacial drift

pelite

pelite

pelite

pelite

pelite

fine sand

gravel with occasional sand patches

pelite

Page 42: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

The Challenges…� Define a random structure to represent bottom-trawl surveys

data

�Find a parsimoneous alternative to a mixture model with

delta distribution

Page 43: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)
Page 44: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Hypotheses behind la « loi des fuites »

49° 49

66° 65° 64° 63° 62° 61° 60°

415

416

417

424

425426

49° 49

66° 65° 64° 63° 62° 61° 60°

415

416

417

424

425426 Case 1: Some biomass is collected

=

1 strata

=

1 homogeneous life zone

66° 65° 64° 63° 62° 61° 60°

46°

47°

48°

46

47

48418419

420

421

422 423

424 427

428

429431

432

433

434

435

436

437

438

439

401

402

403

66° 65° 64° 63° 62° 61° 60°

46°

47°

48°

46

47

48418419

420

421

422 423

424 427

428

429431

432

433

434

435

436

437

438

439

401

402

403

=a clump with a random

biomass quantity

=The sum in each clump

Case 2: No biomass is caught

Page 45: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

hyperparameter

s

49° 49

66° 65° 64° 63° 62° 61° 60°

415

Spatial Model 1 : Régionalisation

66° 65° 64° 63° 62° 61° 60°

46°

47°

48°

46

47

48

416

417

418419

420

421

422 423

424

425426

427

428

429431

432

433

434

435

436

437

438

439

401

402

403

Page 46: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Ni,k

µiρρρρi

a b c dBetween strata

variability

Within strata

variability : la

loi des fuites

Yi,k

i,k

Xi,k,j

loi des fuites

Page 47: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Inference of a mixed effect model with hierarchical submodels

µs

0 5 10 150

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

η

prio

r [ η

]

prior

prior0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

α

a,b c,d

Each strata s is a fishing zone (µ ρ )

Y

K

Poisson

Gamma

ρs

-Bayesian techniques

-EM algorithms

fishing zone (µs,ρs)

Page 48: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

µ

L

Urchins in 2002

Page 49: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Starfish in 2002

Page 50: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Adjacency Map

N

Spatial model 2: IAR on a lattice

Trend

Variabilité spatialeCAR Gaussien

Résidu Non spatialisé

0.002km

Neighboring cohérency between strata

CAR Gaussien

Page 51: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Inférence sur µi

Carte des moyennes a posteriori pour µi

Distributions a posteriori pour exp(-µi)

Page 52: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Latent field for localbiomass abundance

Latent field for localChance of a clump

Spatial model 3: A three stage hierarchical model

Page 53: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

++

++

++

++

++

++

+

+

++++

+++

++

+ +

++

+

++

+

++

+

47.5

48.0

48.5

49.0

y[z

== 0

]

urchin - 2000

+ ++

++

+++

+ +++++

+++

++

++

+

++++

+++++

+++++++

-64 -63 -62 -61

46.0

46.5

47.0

x[z == 0]

y[z

== 0

]

Page 54: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Model Structure

Latent LogGaussian field for local chance of a clump

0 . 9 Log(µ)~N(β,Σ) Σ(i,i’)= σ2exp-φd(i,i’) κ

β σ2 φκ

Unif Prior range so that correlationat max dist <0.66and <0.99 at min dist

Unif(0.05,1.95

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 50

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

α

prio

r [α

]

0 5 1 0 1 50

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

η

prio

r [η

]

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 50

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

α

prio

r [α

]

Prior Gamma=ρ

Assume stationaryclump biomass abundance

Log(µ)~N(β,Σ) Σ(i,i’)= σ exp-φd(i,i’)

Page 55: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

47.5

48.0

48.5

49.0

latit

ude

o urs ins 2 0 0 0

++

++

++

++

++

++

+

+

+++

++++

++

+

++

+

++

+

+

++

Champ Gaussien latent Moyen

-6 5 -6 4 -6 3 -6 2 -6 1

46.0

46.5

47.0

lo ng i tud e

latit

ude

++

++

++++

+ +++++

+++

++

++

+

+

+++

+

++++

+++++++

Page 56: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

47.5

48.0

48.5

49.0

latit

ude

o urs ins 2 0 0 0

++

++

++

++

++

++

+

+

+++

++++

++

+

++

+

++

+

+

++

Mediane de la repartition spatiale predictive de la biomasse

-6 5 -6 4 -6 3 -6 2 -6 1

46.0

46.5

47.0

lo ng i tud e

latit

ude

++

++

++++

+ +++++

+++

++

++

+

+

+++

+

++++

+++++++

Page 57: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

La « loi des fuites »Conclusions

• Parsimonious

• Conceptual interpretation

• Inference benefits from conditional structure• Inference benefits from conditional structure

• Infinitely divisible

• Lego brick for various constructions

Page 58: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Further tracks

• Multivariate constructions• Spatio-dynamics modelling• Normal Convolutions

following Calder, Wickle,Craighmiles…following Calder, Wickle,Craighmiles…• Gamma Convolutions

following Wolpert, R.L. and Ickstadt, K. (1998). Poisson/Gamma random field models for spatial statistics. Biometrika, 85, 251-267.

• Markov Point Processes following Berliner

Page 59: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

θ1θ1

• Modelling : Capacity to accommodate complexity

Parameters, states process and observations process can be modelled independently

θ = (θ1,θ2)

Z: Latent Process

Parameters

[Z|θθθθ]

[θθθθ]

Conditionnal modelling strategy in Hierarchical Bay esian Models

θ2θ2

Modelling

Z: Latent Process

p(effect|cause)

Individuals, populations, time, space

Y: Observations

[Z|θθθθ]

Random process of states Z conditioned upon θθθθ

[y|X, θθθθ]

Random process of the observations conditioned upon Z and θθθθ

Page 60: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

General Comments

● Easy for modelling➢ Thinking conditionally breaks an uneasy problem into tractable pieces

➢ convenient to incorporate knowledge within the various layers of the structure

➢ easy to adapt/improve because locally defined

mind over-modelling...➢ mind over-modelling...

●Handy for inference➢ inputs similar to outputs and probability distributions

➢ probabilistic formalization by reverse conditionning

➢ software available (AppliBUGS ENGREF since 2007)

Page 61: Engineering Applications of POT, GeV and Compound Poisson ...irma.math.unistra.fr/~guillou/meeting/Parent.pdf · Fev. 1952 10.26 6000 à 7000 Janv. 1955 9.32 5200 à 5700. DEBIT q(i)

Quelques bonnes lectures• Redécouvrir la théorie du Risque en

Environnement . Revue de l ’AIGREF, n°spécial sur les risques en 2003 , pages 18 à 24.

• Bernier J., Parent E., Boreux. JJ. (2000), • Bernier J., Parent E., Boreux. JJ. (2000), Statistique pour l ’Environnement. LAVOISIER, Eds TEC et DOC.

• Bernier J., Parent E. (2007), Le Raisonnement Bayésien . Springer Verlag France