12
Engine Test using a Dynamometer Author: Galab Kausik Team members are as follows: Ajeesh Suresh Babu Alexandra Murray Michael Congelosi Mohammad Almekhyal Omkar Aradhye Pranav Krishna Medarametla Michael Kanupp

Engine Test on Dynamometer

Embed Size (px)

Citation preview

Page 1: Engine Test on Dynamometer

Engine Test using a Dynamometer

Author: Galab Kausik

Team members are as follows:

Ajeesh Suresh Babu

Alexandra Murray

Michael Congelosi

Mohammad Almekhyal

Omkar Aradhye

Pranav Krishna Medarametla

Michael Kanupp

Page 2: Engine Test on Dynamometer

All vehicles require horsepower. Without horsepower, a vehicle would go nowhere. A

dynamometer (dyno for short) is the only tool which is specifically designed to measure the

engine horsepower. It helps isolate and quantify a particular parameter from overall vehicle

performance. A dyno measures force, torque or power.

Testing a car only on a track might not pinpoint the where the problem lies when it comes

to increasing the output of the engine. A dyno helps by pointing us in the right direction

within just a couple of seconds by the pull of the acceleration toggle bar.

Fig 1: Basic Test setup of a test engine using a dynamometer.

Page 3: Engine Test on Dynamometer

Experimental Setup:

The experiment was carried out in the Kulwicki Lab on 19th November 2015. After warm up,

the engine was swept from 2500 rpm to 5000 rpm. This was the baseline. The following data

were collected at 500 rpm increments: engine speed, corrected power, corrected torque,

fuel flow.

The engine speed was controlled by constant throttle and varying the loads.

The data that was collected is shown below:

Baseline

RPM Power (HP) Torque (lbf-ft) Fuel Injected (lb/hr) BSFC (lb/hp-hr)

2500 166.2 349.2 50.4 0.463

2600 174.4 352.3 50.3 0.482

2700 180.7 351.6 50.3 0.495

2800 187.1 350.9 50.3 0.488

2900 193.8 351 50.3 0.485

3000 201.5 352.8 50.3 0.497

3100 209.2 354.4 50.3 0.491

3200 217.2 356.5 50.2 0.512

3300 225.1 358.2 50.2 0.502

3400 232.8 359.6 50.2 0.49

3500 240.3 360.6 50.2 0.482

3600 248.1 362 50.2 0.474

3700 255.9 363.3 50.2 0.477

3800 264.3 365.3 50.2 0.465

3900 271.4 365.5 50.1 0.469

4000 276 362.4 50.1 0.469

4100 282 361.3 50.1 0.472

4200 290.4 363.1 50.1 0.489

4300 296 361.6 50.1 0.486

4400 300.6 358.8 50 0.485

4500 303.7 354.5 50.1 0.473

4600 305.8 349.2 50 0.471

4700 308.2 344.5 50 0.478

4800 308.4 337.4 50 0.476

4900 309.1 331.3 50 0.497

5000 309 324.6 50 0.498

Page 4: Engine Test on Dynamometer

10% less AF

RPM Power (HP) Torque (lbf-ft) Fuel Injected (lb/hr) BSFC (lb/hp-hr)

2500 166.4 349.6 50.3 0.556

2600 174.8 353.2 50.3 0.583

2700 180.9 351.8 50.3 0.572

2800 186.4 349.7 50.2 0.57

2900 192.7 349.1 50.2 0.567

3000 200.9 351.8 50.2 0.549

3100 210.2 356.2 50.2 0.567

3200 218.3 358.3 50.2 0.562

3300 225.9 359.6 50.2 0.547

3400 233.3 360.4 50.1 0.548

3500 240.6 361.1 50.1 0.546

3600 249.9 364.6 50.1 0.533

3700 258.2 366.6 50.1 0.52

3800 265.7 367.3 50.1 0.537

3900 273.8 368.7 50 0.54

4000 278.4 365.6 50 0.535

4100 284.5 364.5 50 0.544

4200 290.3 363 50 0.548

4300 296.4 362.1 50 0.57

4400 300.1 358.2 50 0.535

4500 302.2 352.7 50 0.549

4600 304.2 347.3 49.9 0.577

4700 305.5 341.3 49.9 0.549

4800 304.9 333.6 49.9 0.552

4900 304 325.8 49.9 0.565

5000 304.1 319.4 49.9 0.579

Page 5: Engine Test on Dynamometer

10% more AF

RPM Power (HP) Torque (lbf-ft) Fuel Injected (lb/hr) BSFC (lb/hp-hr)

2500 167.7 352.3 50.3 0.439

2600 175.6 354.8 50.4 0.44

2700 181.7 353.4 50.3 0.452

2800 187.4 351.6 50.3 0.451

2900 194 351.4 50.3 0.451

3000 201.5 352.7 50.2 0.506

3100 210.4 356.4 50.2 0.469

3200 218.2 358.2 50.2 0.443

3300 223.6 355.8 50.2 0.419

3400 229.4 354.3 50.2 0.442

3500 235.8 353.9 50.2 0.448

3600 243.2 354.8 50.2 0.427

3700 251.9 357.6 50.2 0.44

3800 257.7 356.2 50.2 0.422

3900 263.6 355 50.2 0.437

4000 270.7 355.5 50.1 0.468

4100 277.8 355.9 50.1 0.456

4200 287 358.9 50.1 0.473

4300 293.4 358.4 50.1 0.456

4400 298.4 356.2 50.1 0.459

4500 301.6 352.1 50.1 0.458

4600 304 347.1 50.1 0.457

4700 306.5 342.5 50 0.46

4800 306.2 335 50 0.468

4900 305.9 327.9 50 0.498

5000 307.5 323.1 50 0.511

Page 6: Engine Test on Dynamometer

10% less spark

RPM Power (HP) Torque (lbf-ft) Fuel Injected (lb/hr) BSFC (lb/hp-hr)

2500 166.7 350.2 50.3 0.52

2600 175.1 353.7 50.3 0.541

2700 181.6 353.3 50.3 0.532

2800 187.6 351.9 50.3 0.52

2900 194.2 351.7 50.3 0.517

3000 201.1 352.1 50.2 0.522

3100 209.5 354.9 50.2 0.501

3200 218 357.8 50.2 0.499

3300 225.8 359.4 50.2 0.503

3400 233 359.9 50.2 0.518

3500 240.7 361.3 50.2 0.508

3600 249.8 364.5 50.2 0.507

3700 257.9 366.1 50.1 0.509

3800 265.3 366.7 50.1 0.505

3900 271.6 365.7 50.1 0.498

4000 279 366.3 50.1 0.494

4100 286 366.3 50 0.499

4200 292 365.2 50.1 0.484

4300 296.2 361.8 50 0.494

4400 300.5 358.7 50 0.508

4500 302.9 353.5 50 0.503

4600 303.7 346.7 50 0.505

4700 304.4 340.1 50 0.508

4800 305.6 334.4 50 0.509

4900 305.5 327.4 50 0.511

5000 304.6 320 50 0.524

Page 7: Engine Test on Dynamometer

10% more spark

RPM Power (HP) Torque (lbf-ft) Fuel Injected (lb/hr) BSFC (lb/hp-hr)

2500 169.8 356.7 50.3 0.489

2600 177.5 358.6 50.3 0.519

2700 183.9 357.8 50.3 0.539

2800 190.8 358 50.2 0.52

2900 197.1 356.9 50.2 0.511

3000 204.7 358.3 50.2 0.53

3100 212.3 359.7 50.2 0.523

3200 219.9 361 50.2 0.53

3300 228.9 364.4 50.2 0.521

3400 237.3 366.6 50.1 0.508

3500 245.5 368.4 50.1 0.498

3600 253.2 369.4 50.1 0.507

3700 260.8 370.2 50.1 0.517

3800 268.4 371 50.1 0.514

3900 276.3 372 50.1 0.525

4000 283.9 372.7 50.1 0.503

4100 290.1 371.6 50 0.492

4200 294.8 368.7 50 0.498

4300 299.5 365.8 50 0.489

4400 303.6 362.4 50 0.504

4500 306.3 357.5 50 0.495

4600 308.9 352.7 50 0.499

4700 311.1 347.6 50 0.519

4800 311.1 340.4 49.9 0.532

4900 311.5 333.9 49.9 0.532

5000 312.2 327.9 49.9 0.525

Page 8: Engine Test on Dynamometer

The graphs were plotted and are shown as below:

Fig 2: Graph for the Baseline with RPM vs Corrected Power and Torque

From the graph above we can see that with the increase in RPM, the Corrected Torque

decreases whereas the Corrected Power increases.

Page 9: Engine Test on Dynamometer

Fig 3: Graph of RPM vs Corrected Power for all the runs

From the graph above we can see that there is not much difference between the baseline

from the other runs. All the values increase with the increase in RPM.

Page 10: Engine Test on Dynamometer

Fig 4: Graph of RPM vs Corrected Torque for all the runs

From the graph above we see that after a certain level, all the points decrease. But the 10%

more spark run goes to the highest level and then converges.

Page 11: Engine Test on Dynamometer

Fig 5: Graph of RPM vs Fuel Flow

From the graph we can see that the run with 10% more AF increases suddenly and then

drops with the others. But the 10% less AF and 10% more Spark goes to the lowest value.

Page 12: Engine Test on Dynamometer

Fig 6: Graph of RPM vs BSFC

From the graph above we can see that the run with 10% less AF has the highest value of

BSFC and the run with 10% more AF has the lowest value of BSFC.