46
Powertrain Control (1)/50 Anna G. Stefanopoulou, Powertrain Control Laboratory University of Michigan [email protected] National Science Foundation US Department of Energy, ARPA-E, US Army with Bosch, Daimler, Ford, Toyota Thanks to the Engine Control At the Rugged Edge of High Efficiency IFAC- AAC Advances in Automotive Control, Kolmarden, June 2016

Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (1)/50

Anna G. Stefanopoulou, Powertrain Control Laboratory

University of [email protected]

National Science FoundationUS Department of Energy, ARPA-E,

US Army with

Bosch, Daimler, Ford, Toyota

Thanks to the

Engine Control At the Rugged Edge of

High Efficiency

IFAC- AACAdvances in Automotive Control, Kolmarden, June 2016

Page 2: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (2)/50

1

2

4610

20

4060

100

200

400

1900 1920 1940 1960 1980 2000 2020 2040 2060

FUELECO

NOMY[m

pg]

YEAR

1921ModelT(CITYONLY) HybridsCarisetal.560010(ADJ) TCDiesel(GasolineEq.)AustinandHellman730790 TCGasolineEPAFETrends2013 FED.STDS.2017-2025

BASICCOMB.,(DESIGN,FUEL,OCTANE,CR)

EMISSIONS

CAFE– FE–CO2CATALYSTS

FED.STD.2017-2025

CITY/HWY(Unadjusted)3,750lb.TestWt.

G. Lavoie. "Reflections on the Evolution of Ideas and Technology in SI Engine Combustion" Oral Presentation - ICEF2014-5703. ASME 2014 Internal Combustion Engine Division Fall Technical Conference, October 19-22, 2014, Columbus, IN.

Light Duty Fuel Economy Trends Over the Last 100 Years

Page 3: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (3)/50

History Lessons (US-focused)Slow ..? Slender … ?

Page 4: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (4)/50

Slow ..?

No .., just better!

Slender … ?

Page 5: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control

12V BAS Micro-HEV

**

Cost effectiveness

TRBDS--1

GDIVVL

VVTFR

PHEV MPG

DIESEL

HEV

PHEV MPGeEV (estimated)

Data Sources: 1. Assessment of Fuel Economy Technologies for Light-Duty Vehicles (2011) National Research Council2. * www.fueleconomy.gov DOE & EPA website (MPGe : 1 Gallon of Gasoline = 33.7 kWh)3. **MPG baseline 2008 midsize cars. NHTSA stats (2014)

2025 Target

Page 6: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control

12V BAS Micro-HEV

**

Cost effectiveness

TRBDS--1

GDIVVL

VVTFR

DIESEL

HEV

Data Sources: 1. Assessment of Fuel Economy Technologies for Light-Duty Vehicles (2011) National Research Council2. * www.fueleconomy.gov DOE & EPA website (MPGe : 1 Gallon of Gasoline = 33.7 kWh)3. **MPG baseline 2008 midsize cars. NHTSA stats (2014)

2025 Target TWC

SCR+…$...$

Exhaust After-

Treatment

Page 7: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (7)/50

Efficiency Improvement: Turbo-Downsizing (TRBDS)

270

270

400

600

300

255

255

BSFC 3.6L V6 [g/kWh]

Engine Speed [RPM]

270

270

300

600

400

300

FTP−75

Engin

e L

oad

[N

m]

1000 1500 2000 2500 3000 3500

50

100

150

200

250

300

350

0−5

−15−20

−10−5

−25

−5

0

Engine Speed [RPM]

rel. BSFC 2.0L I4 − 3.6L V6 [%]

−25−25

−5

−5

0

5

−10−5

10

−5

−10

−20−15

0

−15

FTP−75

Engin

e L

oad

[N

m]

1000 1500 2000 2500 3000 3500

50

100

150

200

250

300

350

20%

10%

5%

Efficiency Improvements %

Worst

Controlling the Dynamics

Original 3.6L V6

Turbocharged2.0L I4

5. Cnv4. v/eTC3. thr/wg2. TC-Dnsz1. Dnsz

Page 8: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control

12V BAS Micro-HEV

**

Cost effectiveness

TRBDS--2

TRBDS--1

GDIVVL

VVTFR

2025 Target

PHEV MPG

DIESEL

HEV

PHEV MPGeEV (estimated)

Page 9: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (9)/50

9

Naturally Aspirated

TurbochargedTurbocharged+eEGR

Low-pressure Exhaust Gas

Recirculation (eEGR)

Technologies with Large Tradeoff between Fuel Efficiency & Transient Response

Turbo-Downsizing + Cooled Low Pressure EGR (TRBDS-2)

Page 10: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control

12V BAS Micro-HEV

**

Cost effectiveness

TRBDS--2

TRBDS--1

GDIVVL

VVTFR

2025 Target

PHEV MPG

DIESEL

HEV

PHEV MPGeEV (estimated)

?

Page 11: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (11)/50

Homogeneous Charge Compression Ignition (HCCI)

Figure: Adopted from Edwards, D. in Dynamics Days, 2008, Knoxville, TN

Spark Ignition (Gasoline)• Spark ignites premixed fuel-air• Propagating flame

HCCI (Gasoline)• Spontaneous autoignition• Uniform combustion

Compression Ignition (Diesel)• Fuel injected into compressed air• Diffusion flame

SI HCCI CIPeak Temperature (K) >2000 1600 1800

NOx emission High Low MediumCombustion Duration (CAD) 40 2-10 40

Car Makers Seek New Spark In Gas Engines The Wall Street Journal 09/28/04“… engineers call homogenous-charge compression-ignition, or HCCI and expected to provide

80% of the efficiency of a hybrid or a diesel for 20% of the cost, …”

Too high pressure riserate at high Load

Page 12: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (12)/50

Figure: Adopted from Edwards, D. in Dynamics Days, 2008, Knoxville, TN

Spark Ignition (Gasoline)• Spark ignites premixed fuel-air• Propagating flame

Auto-Ignition (HCCI-Gasoline)• Spontaneous autoignition• Uniform combustion

Compression Ignition (Diesel)• Fuel injected into compressed air• Diffusion flame

Fuel Injection

Gas

olin

e Diesel

Spark Ignition

Homogeneous Charge Compression Ignition (HCCI)

No DirectActuation

Controlled by Trapped Dilution

Page 13: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (13)/50

Gasoline Systems - HCCIHCCI Actuators & Sensors (Cost)

VariableValve

Injector

In-cylinderpressure sensor

Controllerθ50ref

θ50

Combustion phasing controlled through

trapped dilutionAnd

mixture reactivity

Page 14: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (14)/50

Homogeneous ChargeChemical Kinetics=Arrhenius Integral

-

Page 15: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (15)/50

The importance of the Thermal Coupling

from Cycle-to-Cycle

Page 16: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (16)/50

Stable, Unstable, and Limit Cycle Behavior

Automotive EngineeringSAE 2002-01-0111– LundRegions with Stable and Unstable operationASME ICE 2000– Caterpillar Limit cycle behaviorSAE 892068– Southwest Research InstituteVery Stable and Unstable behavior at different regions

Stability in auto-thermal reactors Heerden 1953, Liljenroth 1918

Breathing Combustion

Intake Temperature, Tivc (K)

Blow

Dow

nTe

mpe

ratu

re, T

bd(K

)

Early CombustionPhasing

Chiang, CDC 2004 Chiang, IEEE-TCST 2004

Page 17: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (17)/50

Drive around Stable Points!Breathing Combustion

Intake Temperature, Tivc (K)

Early CombustionPhasing

Chiang CDC 2004 & Chiang, IEEE-TCST 2004

Clean or Efficient? An Engine Goes for ‘Both of the Above’

By LINDSAY BROOKEAugust 19, 2007

SAE-2009-01-1131

Page 18: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (18)/50

Two Input Single Output (TISO) Controller

Page 19: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (19)/50

TISO Controller & Load Governor

Page 20: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (20)/50

Still a strange ringing

Page 21: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (21)/50

The importance of the Chemical (Fuel) Couplingfrom Cycle-to-Cycle

Page 22: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Heat Release Analysis

Observations from the high variability operation

Page 23: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Detailed Heat Release Observations

Key factors for describing CVNonlinear coupling betweenØ the recycled thermal energyØ the recycled chemical energy in the unburned fuel

Page 24: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (24)/50

Ø Period doubling bifurcations

Ø Thermal runaway

Ø Noisy simulations match the data

Model Predicts Global Behavior (2 nonlinear ODEs)

Page 25: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (25)/50

E. Hellström, et al., Cyclic variability and dynamical instabilities in autoignitionengines with high residuals. IEEE Trans on Control Systems Technology, 2013.

Model Validation: Predict the onset of CV

Page 26: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Controlling Combustion at its Limit

InjectionTiming (usoi)

CombustionPhasing (θ50)

Page 27: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

HCCI Control Toolbox~T

orqu

ePh

asin

g

Page 28: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (28)/50

Controls Overview

[1]Jade,Dissertation,2014[2]Larimore,Dissertation,2014[3]Ravietal.,JDSMC,2012[4]Gorzelic,Dissertation,2015[5]Zhangetal.,DSCC,2014[6]Nuesch,Dissertation,2015

SI/HCCI switching controlsObjective: • Short• Torque• Low penalty

HCCI controls:Objective:• Torque

SI controls:Objectives:• Torque• Stoich. air-fuel ratiofuel

spark

throttle

fuel

valve timing

fuel

spark

throttle

2-stage cams

valve timing

SI/HCCI supervisory controlObjective: • Fuel economy• Emissions• Driveability

[1], [2], [3]

[4], [5]

StandardSwitch:

Yes or no?

Page 29: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (29)/50

Mode TransitionsSignificant number of mode transitions during driving cycle!

During the 7-15 cycles of switching the efficiency is worst than SI.

Switch if you stay long enough in HCCI to pay for the switching penalty.

Page 30: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (30)/50

0 500 1000 1500 0 500 0 5000

20

40

60

80

Velocity[m

ph]

Time [s]

FTP75 HWFET US06

Vehicle Model

City with cold start Highway Aggressive

0

10

20

30

Velocity[m

ph]

500

1000

1500

2000

2500

Enginespeed[R

PM]

0 5 10 15

0

50

100

150

Enginetorque[N

m]

Time [s]0 5 10 15

0

1

2

3

Fuelflow

[g/s]

Time [s]

Reference

Tolerance

Brake pedal

Clutch pedal

Gear

vAccel.

pedal

DriverRef. velocity

Ref. gear

Vehicle

Clutchtorque

Brake pedalClutch pedalGear

vAccel.pedal

DriverRef. velocity

Ref. gear

Clutch state

Vehicle

TireforcesDrive-

trainClutchtorque

Brake pedalClutch pedalGear

vTeAccel.pedal

DriverRef. velocity

Ref. gear

Clutch state

Vehicle

TireforcesDrive-

trainEngine

M

ωe

Clutchtorque

Brake pedalClutch pedal

Tcmd

Gearv

ECU

TeAccel.pedal

DriverRef. velocity

Ref. gear

Clutch state

Vehicle

TireforcesDrive-

trainEngineuphase / uswitch

M

ωe

0

10

20

30

Velocity[m

ph]

500

1000

1500

2000

2500

Enginespeed[R

PM]

0 5 10 15

0

50

100

150

Enginetorque[N

m]

Time [s]0 5 10 15

0

1

2

3

Fuelflow

[g/s]

Time [s]

Measurement

Simulation

Reference

Tolerance

0

10

20

30

Velocity[m

ph]

500

1000

1500

2000

2500

Enginespeed[R

PM]

0 5 10 15

0

50

100

150

Enginetorque[N

m]

Time [s]0 5 10 15

0

1

2

3

Fuelflow

[g/s]

Time [s]

Measurement

Simulation

Reference

Tolerance

0

10

20

30

Velocity[m

ph]

500

1000

1500

2000

2500

Enginespeed[R

PM]

0 5 10 15

0

50

100

150

Enginetorque[N

m]

Time [s]0 5 10 15

0

1

2

3

Fuelflow

[g/s]

Time [s]

Measurement

Simulation

Reference

Tolerance

Matlab / Simulink / StateflowParameterized for Cadillac CTSCurb mass: 1725 kg

Page 31: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (31)/50

To Switch … or not to Switch

Page 32: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (32)/50

To Switch … or not to Switch

Page 33: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (33)/50

23.8

24

24.2

24.4

24.6

24.8

Fueleconomy[M

PG] FTP75

1) SI2) SI/HCCI inst.

38.5

39

39.5

40

HWFET

25.5

26

26.5

US06

−1

0

1

2

3

4

ImprovementoverSI[%

]

0

5

10

15

20

HCCIresidence[%

]

0

5

10

15

20

0

5

10

15

20

1) 2) 0

0.5

1

1.5

TRM

S[N

m]

1) 2) 0

0.5

1

1.5

1) 2) 0

0.5

1

1.5

23.8

24

24.2

24.4

24.6

24.8

Fueleconomy[M

PG] FTP75

1) SI2) SI/HCCI inst.

38.5

39

39.5

40

HWFET

3) SI/HCCI NoP

4) SI/HCCI PeP

25.5

26

26.5

US06

−1

0

1

2

3

4

ImprovementoverSI[%

]

0

5

10

15

20

HCCIresidence[%

]

0

5

10

15

20

0

5

10

15

20

1) 2) 3) 4)0

0.5

1

1.5

TRM

S[N

m]

1) 2) 3) 4)0

0.5

1

1.5

1) 2) 3) 4)0

0.5

1

1.5

23.8

24

24.2

24.4

24.6

24.8

Fueleconomy[M

PG] FTP75

1) SI2) SI/HCCI Inst

38.5

39

39.5

40

HWFET

3) SI/HCCI NoP

4) SI/HCCI PeP

25.5

26

26.5

US06

−1

0

1

2

3

4

ImprovementoverSI[%

]

0

5

10

15

20

HCCIresidence[%

]

0

5

10

15

20

0

5

10

15

20

1) 2) 3) 4)0

0.5

1

1.5

TRM

S[N

m]

1) 2) 3) 4)0

0.5

1

1.5

1) 2) 3) 4)0

0.5

1

1.5

23.8

24

24.2

24.4

24.6

24.8

Fueleconomy[M

PG] FTP75

1) SI2) SI/HCCI inst.

38.5

39

39.5

40

HWFET

3) SI/HCCI NoP

4) SI/HCCI PeP

25.5

26

26.5

US06

−1

0

1

2

3

4

ImprovementoverSI[%

]

0

5

10

15

20

HCCIresidence[%

]

0

5

10

15

20

0

5

10

15

20

1) 2) 3) 4)0

0.5

1

1.5

TRM

S[N

m]

1) 2) 3) 4)0

0.5

1

1.5

1) 2) 3) 4)0

0.5

1

1.5

Drive Cycle Results: Penalty and Prediction

Penaltyleads tofueleconomyreduction

Prediction reducesuneccesary switches.

Reduction inHCCIresidencetime

Largereduction indrivertorqueviolations

*Nueschetal.,Isiteconomicalto ignorethedriver?Acasestudyonmultimodecombustion,DSCC2015

Page 34: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (34)/50

24

24.5

Fueleconomy[M

PG] FTP75

−1

0

1

2

3

4

ImprovementoverSI[%

]

1) SI

2) SI/HCCI inst.

3) SI/HCCI NoP

4) SI/HCCI PeP

0

10

20

HCCIresidence[%

]

1) 2) 3) 4) 0

1

2

TRM

S[N

m]

Ignore the Driver

34

24

24.5

Fueleconomy[M

PG] FTP75

−1

0

1

2

3

4

ImprovementoverSI[%

]

1) SI2) SI/HCCI inst.3) SI/HCCI NoP

4) SI/HCCI PeP

5) SI/HCCI ignore

0

10

20

HCCIresidence[%

]

1) 2) 3) 4) 5)0

1

2

TRM

S[N

m]

1000 1500 2000 2500 3000 3500

0

50

100

150

Engine speed [RPM]

Enginetorque[N

m]

Tim

e (

FT

P75)

[%]

0.0001

0.001

0.01

0.1

1

10

1000 1500 2000 2500 3000 3500

0

50

100

150

Engine speed [RPM]

Enginetorque[N

m]

Tim

e (

FT

P75)

[%]

0.0001

0.001

0.01

0.1

1

10

HCCI

Ignore excursions

Significant impact on driveability

Extended residence time

*Nueschetal.,Isiteconomicalto ignorethedriver?Acasestudyonmultimodecombustion,DSCC2015

Page 35: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control

An electric motor can extend HCCI residence time!

“Thegreaterthehybridization, thelowerthefuelconsumptionreductioninHCCIvehicles.”

[1]

[1]Delormeetal.,EvaluationofHCCIenginesforvariouselectricdriverpowertrains,EVS,2010[2]RickandSisk,Asimulationbasedanalysisof12Vand48Vmicrohybridsystemsacrossvehiclesegmentsanddrivecycles,SAE,2015

• ResidencetimeinHCCIlow• Manymodeswitches

48Vmildhybridelectricvehicleshowgreatpotentialatrelativelylowcost

[2]

HCCI mild-Hybrid

Page 36: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (36)/50

24

25

26

27

0%

5%

Fuel

economy[M

PG]

FTP75Conv.

1) SI

2) SI/HCCI inst.

39

40

41

42

43

44

45HWFET

Conv.

0%

2.5%

3) SI/HCCI

26

27

28

29

US06Conv.

0%

2.5%

1) 2) 3) 0

20

40

60

HCCIresiden

ce[%

]

1) 2) 3) 0

20

40

60

1) 2) 3) 0

20

40

60

24

25

26

27

0%

5%

0%

5%

Fuel

economy[M

PG]

FTP75Conv. HEV

1) SI

2) SI/HCCI inst.

39

40

41

42

43

44

45HWFET

Conv. HEV

0%

2.5%0%

2.5%

3) SI/HCCI

26

27

28

29

US06Conv. HEV

0%

2.5%

0%

2.5%

1) 2) 3) 1) 2) 3)0

20

40

60

HCCIresiden

ce[%

]

1) 2) 3) 1) 2) 3)0

20

40

60

1) 2) 3) 1) 2) 3)0

20

40

60

Drive Cycle Results: HEV

MildHEVoffersgreatsynergieswithHCCIduringFTP75dueto:• Severalregenerativebraking

periods(≠HWFET)• Frequentlowloaddemand

(≠US06)

• ElectrictorqueassistleadsinsignificantincreaseinHCCIresidencetime

Page 37: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (37)/50

24

25

26

27

0%

5%

0%

5%

Fuel

economy[M

PG]

FTP75Conv. HEV

1) SI

2) SI/HCCI inst.

39

40

41

42

43

44

45HWFET

Conv. HEV

0%

2.5%0%

2.5%

3) SI/HCCI No storage

26

27

28

29

US06Conv. HEV

0%

2.5%

0%

2.5%

1) 2) 3) 1) 2) 3) CS+0

+20

+40

+60

TailpipeNO

x[m

g/mi]

1) 2) 3) 1) 2) 3) 0

20

40

60

1) 2) 3) 1) 2) 3) 0

20

40

60

24

25

26

27

0%

5%

0%

5%

Fuel

economy[M

PG]

FTP75Conv. HEV

1) SI

2) SI/HCCI inst.

39

40

41

42

43

44

45HWFET

Conv. HEV

0%

2.5%0%

2.5%

3) SI/HCCI No storage

4) SI/HCCI Fil l & deplete

26

27

28

29

US06Conv. HEV

0%

2.5%

0%

2.5%

1) 2) 3) 4) 1) 2) 3) 4)CS+0

+20

+40

+60

TailpipeNO

x[m

g/mi]

1) 2) 3) 4) 1) 2) 3) 4)0

20

40

60

1) 2) 3) 4) 1) 2) 3) 4)0

20

40

60

Drive Cycle Results

• LongHCCIresidencetimeresultsinlargeNOxquantities

• SignificanttailpipeNOx

LEVIII SULEV20 & EPA Tier 3 Bin20: 20 mg/mi NOx + NMOG (incl. cold start)

Page 38: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (38)/50

HCCI Operation with mild-HEV

1000 1500 2000 2500 3000

0

5

10

15

HCCI

Conventional SI/HCCI I

Engine Speed ωe [RPM]

SI min

SI max

BMEP

[bar]

1000 1500 2000 2500 3000

HEV SI/HCCI IV

Engine Speed ωe [RPM]

Tim

e [%

]

0.0001

0.001

0.01

0.1

1

10

FTP75

• ReductioninengineoperationrightaboveandbelowHCCIregime

Page 39: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (39)/50

We…Ø AFRislowØ EfficiencybenefitsdiminishØ NOx is“high”

Ø BreakthroughsoccuranywayØ Depletionisexpensive

• usedaTWCwithgenerousO2-storagetopreventNOxbreakthroughs

• pushedHCCItohigherloads

Ø Reduceregimetolowload

Ø ReducesizeofO2-storage

Bigger always better?

*Nueschetal.,Mild HEV with Multimode Combustion:Benefits of a Small Oxygen Storage,IFAC-AAC2016

Page 40: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (40)/50

FRVVT

VVLGDI TRBDS-1

TRBDS-2

TRBDS-3

DIESEL

HEV

xEV MPGe(estimated)

2025 Target

Technology Cost Effectiveness

?

-- Highly Diluted e/iEGR-- Stoichiometric (TWC)-- Spark Assisted HCCI (SACI)

High CV and misfires areChallenges!!

Page 41: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (41)/50

SparkAssistedCompression Ignition

Page 42: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (42)/50

SACI combustion: Random High CV

Page 43: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (43)/50

Spark Ignition at High DilutionRandom High CV

The Cyclic Variability (CV) in spark ignition was fitted (brute force) but

it can also be modeled using kernel initiation physics!!

(ASME-ICEF2016)

H.Lian, et al: “Prediction of Early Flame Burning Velocity with High Exhaust Gas Recirculation (EGR) and Spark Advance, ASME-ICEF2016-9476

Implication:Control SI combustion at the limits of high EGR dilution (misfires).

Page 44: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (44)/50

Several factors reduce previously stated SI/HCCI fuel economy benefits. Many opportunities ahead:1. Spark Assisted HCCI (Stoichiometric extension at high load)2. Mode switches with two valve lifts3. Some NOx aftertreatment

Results• Highlighted in 2014 DOE Merit Review and 2015 NRC Report

Highlights the importance of comprehensive system analysis when evaluating advanced engine concepts.

Contributions & Lessons Learnt

Page 45: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control (45)/50

[41] P. Gorzelic, et al, “A low-order adaptive engine model for SI-HCCI mode transition controlapplications with cam switching strategies”, International Journal of Engine Research, June 2015. DOI: 10.1177/1468087415585016[40] S. Nüesch, et al, “Accounting for Combustion Mode Switch Dynamics andFuel Penalties in Drive Cycle Fuel Economy”, International Journal of Engine Research, May 2015. [39] J. Larimore, et al, “Adaptive Control of a Recompression Four-Cylinder Engine”, IEEE Trans on Control Systems Technology, Mar 2015, DOI: 10.1109/ TCST.2015.2402235[38] S. Nüesch, et al, "Fuel Economy of a Multimode Combustion Engine with Three-Way Catalytic Converter", ASME Journal of Dynamic Systems, Measurement, and Control, v 137, i 5, p 051007, [37] S. Jade, et al. Controlled load and speed transitions in a multicylinder recompression hcci engine. IEEE Trans on Control Systems Techn, September 2014. [36] E. Hellström at al. Reducing cyclic variability while regulating combustion phasing in a four-cylinder hcciengine. IEEE Trans on Control Systems Tech, May 2014. [34] P. Gorzelic et alA low-order hcci model extended to capture si-hcci mode transition data with two-stage cam switching. In ASME Dynamic Systems and Control Conference (DSCC), San Antonio, October [33] E. Hellström et al. A linear least-squares algorithm for double-wiebe functions applied to spark-assisted compression ignition. Journal of Engineering for Gas Turbines and Power, 136(9), 2014. [ bi[32] J Larimore et al. Real-time internal residual mass estimation for combustion with high cyclic variability. International J of Engine Research, Cyclic Dispersion Special Issue, 2014. [ bib | DOI ][31] S Nüesch et al. Mode switches among si, saci, and hcci combustion and their influence on drive cycle fuel economy. In in Proceedings of American Control Conference (ACC) 4[30] S Nüesch et al. Methodology to evaluate the fuel economy of a multimode combustion engine with three-way catalytic converter. In ASME Dynamic Systems and Control Conference (DSCC), San Antonio, October 2014, DSCC2014[29] Sa P. Nüesch et al. Methodology to evaluate the fuel economy of a multimode combustion engine with three-way catalytic converter. Journal of Dynamic Systems Measurement and Control, 137(5), 2014. [ bib | DOI ][28] E. Hellström et al. Cyclic variability and dynamical instabilities in autoignition engines with high residuals. IEEE Transactions on Control Systems Technology, 21(5):1527[27] E. Hellström et al. A linear least-squares algorithm for double-wiebe functions applied to spark-assisted compression ignition. In ASME 2013 Internal Combustion Engine Division Fall Technical Confe[26] S. Jade et al Enabling large load transitions on multicylinder recompression hcciengines using fuel governors. In in Proc. American Control Conference, pages 4423[25] J. Larimore et al. Controlling combustion phasing variability with fuel injection timing in a multicylinder hcci engine. In in Proc. American Control Conference (ACC), pages 4435[24] J Larimore, et al. Online adaptive residual mass estimation in a multicylinder recompression hcci engine. In Proc. ASME 2013 Dynamic Systems and Control Conference (DSCC), volume 3, 2013. [ bib | DOI ][23] S. Nüesch, et al. Influence of transitions between si and hcci combustion on driving cycle fuel consumption. In Proc. 2013 European Control Conference (ECC), pages 1976[22] P. Gorzelic et al. Model-based feedback control for an automated transfer out of si operation during si to hcci transitions in gasoline engines. In Proc. ASME Dynamic Systems and Control Conference, number DSCC2012[21] P. Gorzelic. A coordinated approach for throttle and wastegate control in turbocharged spark ignition engines. In Proc. 24th Chinese Control and Decision Conference, pages 1524[20] E. Hellström et al. Quantifying cyclic variability in a multi-cylinder HCCI engine with high residuals. Journal of Engineering for Gas Turbines and Power, 134(11):112803, 2012. [ bib | DOI | [19] E. Hellström et al. Quantifying cyclic variability in a multi-cylinder HCCI engine with high residuals. In ASME ICE Division Spring Tecnical Conf, Torino, Italy, 2012. ICEF2012[18]E. Hellströmet al. Reducing cyclic dispersion in autoignition combustion by controlling fuel injection timing. In Proc. 51st IEEE Conference on Decision and Control, Maui, HI, USA, 2012. [17] E. Hellström, et al. Understanding the dynamic evolution of cyclic variability at the operating limits of HCCI engines with negative valve overlap. In SAE World Congress, number 2012[16] E. Hellström et al. Understanding the dynamic evolution of cyclic variability at the operating limits of HCCI engines with negative valve overlap. SAE International Journal of Engines, 5(3):995[15] S. Jade, et al. Fuel governor augmented control of recompression HCCI combustion during large load transients. In Proc. American Control Conference, pages 2084[14] J. Larimore et al. Experiments and analysis of high cyclic variability at the operational limits of spark-assisted HCCI combustion. In Proc. American Control Conference, pages 2072[13] E. Hellström et al. Modeling cyclic dispersion in autoignition combustion. In Proc. 50th IEEE Conference on Decision and Control, pages 6834-6839, Orlando, FL, USA, 2011. [ bib | DOI | [12] S. Jade, et al. On the influence of composition on the thermally-dominant recompression HCCI combustion dynamics. In Proc. ASME Dynamic Systems and Control Conference, pages 677[11] D Lee et al. Air charge control for turbocharged spark ignition engines with internal exhaust gas recirculation. In American Control Conference (ACC), 2010, pages 1471 [10] D. Lee, et al. Modeling and control of a heated air intake homogeneous charge compression ignition (hcci) engine. In American Control Conference (ACC), 2010, pages 3817[9] C. J. Chiang et al. Sensitivity analysis of combustion timing of homogeneous charge compression ignition gasoline engines. Journal of Dynamic Systems, Measurement and Control, 131(1):014506[8] C. J. Chiang et al. Dynamics of homogeneous charge compression ignition (hcci) engines with high dilution. In Proceedings of the American Control Conference, pages 2979[7] C.J. Chiang, A. G. Stefanopoulou, and M. Jankovic. Nonlinear observer-based control of load transitions in homogeneous charge compression ignition engines. IEEE Transactions on [6] C.J. Chiang et al. Stability analysis in homogeneous charge compression ignition (hcci) engines with high dilution. IEEE Transactions on Control Systems Technology, 15(2):209

[5] C. J. Chiang et al. Sensitivity analysis of combustion timing and duration of homogeneous charge compression ignition (hcci) engines. In Proc. American Control Conference, pages 1857[4] D.J. Rausen, et al. A mean-value model for control of homogeneous charge compression ignition (hcci) engines. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, 3(3):355[3] C. J. Chiang et al. Control of thermal ignition in gasoline engines. In Proc. American Control Conference the 2005, volume 6, pages 3847-3852, June 2005. [ bib | DOI | [2] C. J. Chiang et al. Steady-state multiplicity and stability of thermal equilibria in homogeneous charge compression ignition (hcci) engines. In Proceedings of the 43rd IEEE Conference on Decision and Control, volume 2, pages 1676[1] D. J. Rausen, et al. A mean-value model for control of homogeneous charge compression ignition (hcci) engines. In Proceedings of the American Control Conference, volume 1, pages 125

At no special order… More at http://www-personal.umich.edu/~annastef/pubs.html

Page 46: Engine Control At the Rugged Edge of High Efficiencyusers.isy.liu.se/fs/larer/AAC2016/AAC_2016_Stefanopoulou.pdf · case study on multimode combustion, DSCC 2015. Powertrain Control

Powertrain Control

Thanks toJason Martz, Huan Lian, Niket Prakash, Rasoul Salehi, Erik HellstromShyam Jade, Jacob Larimore, Sandro Nuesch, Pat Gorzelic (UMICH)

Dan Hussey, David Jacobson (NIST),

National Science FoundationUS Department of Energy,

ARPA-E,US Army

with Bosch, Daimler, Ford, Toyota

Thank You!!