Energy Transfer and Conversion Methods

Embed Size (px)

Citation preview

  • 8/13/2019 Energy Transfer and Conversion Methods

    1/40

    EnergyTransferandConversionMethods

    MIT10.391J/22.811J/ESD.166J/11.371J/1.818J/3.564J/2.65

    9/16/2010

  • 8/13/2019 Energy Transfer and Conversion Methods

    2/40

    MissionofthisSession

    IntroducetheimportanceandchallengEnergyConversion

    Diffuseener sources

    Thermodynamiclimits

    Rateprocesses

  • 8/13/2019 Energy Transfer and Conversion Methods

    3/40

    EnergyConversion

    EnergyConversionistheprocessofchangingenergyfromoneformtoano

    Energy

    Source

    Use

    Ene

    Energy

    Conversion

  • 8/13/2019 Energy Transfer and Conversion Methods

    4/40

    HistoricEnergyConversionSeque

    Biomassheat(esp.cooking) Solar heat,dryclothes,dryfood

    Solarisstillmainlightsource,noneedforconversion

    Solarissourceofbiomass,wind,hydro,etc.

    Biomassfarmanimalshorsepower,foLater, people also did these conversions:

    Coalheat Hydromillingflour,runningmachinery

  • 8/13/2019 Energy Transfer and Conversion Methods

    5/40

    o mec ca e ec r c y

    ModernEnergyConversionSequeHeatingofBuildings:

    Gas,oil,biomassheat

    SolarheatElectricityGeneration:

    Coal,gas,nuclearheatmechanicalelectric

    Windmechanicalelectricity

    SolarElectricity

    Transportation:

    Oil

    gasoline,diesel,jetfuel

    heat

    mechanic Biomassethanolheatmechanical

    F l ll G h d l i i

  • 8/13/2019 Energy Transfer and Conversion Methods

    6/40

    EnergySources

    Type of Energy Examples

    PotentialEnergy Hydro

    KineticEnergy Wind,Tidal

    ThermalEnergy Geothermal,OceanTh

    RadiantEnergy Solar

    ChemicalEnergy Oil,Coal,Gas,Biomas

    Nuclear Energy Uranium Thorium

  • 8/13/2019 Energy Transfer and Conversion Methods

    7/40

    Solar Photovoltaics

    Wind, hydro,waves tidal

    Oceanthermal

    Biomass

    fuels

    Chemical

    Nuclear

    Heat

    Mechanical

    work ElectricitElectricit

    Geothermal

    Fission &

    fusion To end uses:residential, industrial,

    transportationo

    urces

    Energy

    Forms

    So

    urces

    Energy Sources and Conversion Processes

    Photosynthesis

    Direct

    thermal

    Climate

  • 8/13/2019 Energy Transfer and Conversion Methods

    8/40

    hair dryer 1 500 W

    Scalesofenergyflows

    cellphone 2W

    laptopcomputer 10W humanbody(2000Caloriediet) 100W

    1horsepower 750W

    a r ryer , automobile 130,000W

    1windturbine 2,000,000W(

    757jetplane 5,000,000W(

    Largepowerplant 1,000,000,000W(

    Global energy use 15 000 000 000 000 W (

  • 8/13/2019 Energy Transfer and Conversion Methods

    9/40

    Energy versus Power

    EnergyEnergy EE ( in BTU, joules(J) or cal)( in BTU, joules(J) or cal)

    PowerPowerPP== dEdE//dtdt

    ( BTU/hr, Watts(W))( BTU/hr, Watts(W))1 Watt = 1 Joule/Second1 Watt = 1 Joule/Second

    Heat Flows versus Work

    Energy per time can be used to describe heatEnergy per time can be used to describe heat

    flow and work but to distinguish between theseflow and work but to distinguish between theseenergy flows we use notation:energy flows we use notation:

  • 8/13/2019 Energy Transfer and Conversion Methods

    10/40

    OrderofMagnitudeofEnergyResour

  • 8/13/2019 Energy Transfer and Conversion Methods

    11/40

    EnergySupplyUSASource

  • 8/13/2019 Energy Transfer and Conversion Methods

    12/40

    ImportantMetrics

    Energy Sources Conversion Meth SpecificEnergy(MJ/kg) ConversionEffic

    EnergyDensity(MJ/L) Formofenergyp

    Phase CO2generation

    Impurities Waterusage

    Cost Landusage

    Cost

  • 8/13/2019 Energy Transfer and Conversion Methods

    13/40

    .

    TypicalSpecificEnergyValueFuel Higher Heating Value (M

    Hydrogen 141.8

    Methane 55.5Gasoline 47.3

    Diesel 44.8

    .

    Lignite 25.1

    DouglasFirWood 20.4

    CornStover 17.8

    Bagasse 17.3WheatStraw 17.0

  • 8/13/2019 Energy Transfer and Conversion Methods

    14/40

    Energy Content of Fuels

    Energy content of fuel is characterized by the heat produced by

    Dry Fuel

    Air

    CompleteCombustion

    Vapor: CO2,N2, SO2Cool25C

    Liquid: H2O

    Higher Heating Value (HHV) or Gross Calor

    Dry Fuel CompleteCombustion

    Vapor: H2

    O,CO2, N2, SO2Cool25C

  • 8/13/2019 Energy Transfer and Conversion Methods

    15/40

    KeyMetric:ConversionEfficien

    ConversionProcess

    Useful Energy O

    Energy Loss

    Energy Input

    Whenproducingwork(mechanicalorelectr

    =WorkOutput/EnergyInputWh d i i (di l h d

  • 8/13/2019 Energy Transfer and Conversion Methods

    16/40

    Solar Photovoltaics

    Wind, hydro,

    waves tidal

    Ocean

    thermal

    Biomass

    fuels

    Chemical

    Nuclear

    HeatMechanical

    workElectricitElectricit

    GeothermalFission &

    fusion

    Fossil fuels: Fuel cells

    To end uses:

    residential, industrial,transportation

    Sourc

    es

    EnergyForms

    Sources

    Energy Sources and Conversion Processes

    Photosynthesis

    Direct

    thermal

    Climate

  • 8/13/2019 Energy Transfer and Conversion Methods

    17/40

    Conversion Efficiencies

    Conversion Type Ef

    Natural Gas Furnace Chemical

    Heat 90Internal combustion engine Chemical Mechanical 15

    Power Plant Boilers Chemical Heat 90

    Electricity Generator Mechanical Electricity 98

    Gas Turbines Chemical Mechanical 35

    Hydro Grav. Potential Mechanical 60

    Geothermal ThermalMechElectricity 6-Wind Kinetic MechElectricity 30

  • 8/13/2019 Energy Transfer and Conversion Methods

    18/40

    Overall Efficiency includes Steps Upstr

    & Downstream of the Energy Conversion A linked or connected set of energy efficiencies from extraction to use:

    n

    Overall efficiency= overall = ii=1

    = overall gasextraction gasprocessin g gastransmission powerplant electricitytransmissionKey Efficiencies include:

    Fuel production Fuel Transport Transmission Energy Storage

    for example compressed air energy storage (CAES):

  • 8/13/2019 Energy Transfer and Conversion Methods

    19/40

    Energy Conversion

    Laws of Thermodynamics provide limits

    Heat and work are not the same

    They are both energy, but..cannot convert all heat to work

    Each conversion step reduces efficiency

    reversible processes All real processes are irreversible

    Losses always occur to degrade the

    efficiency of energy conversion and reduce

    work/power producing potential

  • 8/13/2019 Energy Transfer and Conversion Methods

    20/40

    em ca ec ons

    RateProcessesinEnergyConvers

    HeatTransfer MassTransfer

    Ch i l tiem ca Reac ons

  • 8/13/2019 Energy Transfer and Conversion Methods

    21/40

    Fluid mechanics

    Fluxesofheat,material,electronsmustbe

    bygradientsinfreeenergydT

    Fourierslawofheatconduction q= kdx

    Fickslawofdiffusion j= DdC

    dx

    Fluidmechanics Flowinpipe=

    2

    fRe

    I dV=

    Ohmslawofcurrentflow A dx

  • 8/13/2019 Energy Transfer and Conversion Methods

    22/40

    Heat Transfer

    For heat to be transferred at anappreciable rate, a temperaturedifference ( T) is required.

    Q = U A T

    The non-zero T guaranteesirreversibility

    As T does to zero, area and costgoes to infinity

  • 8/13/2019 Energy Transfer and Conversion Methods

    23/40

    -

    Heatexchangers

    Manyvarietiesofheat

    exchangersusedinenergyconversion Heatrecoverysteamgenerators

    (HRSG)

    -

    Shell-and-tubeexchangers Plate-finexchangers

    CoolingTower

  • 8/13/2019 Energy Transfer and Conversion Methods

    24/40

    HumanitysMainEnergySourChemicalreactions

    Virtuallyallfossilfuelsandbiofuelsareconvertedusefulenergyviachemicalreactionsatarateof~1

    Energyreleasedbyconversionreactionscanbecon

    Somereactionsareusedtoconvertaprimaryenerg

    sourcestomoreusefulformsofchemicallystorede

    SolidfossilfuelsLiquidfuels NaturalGas

    Hydrogen BiomassLiquidfuels

  • 8/13/2019 Energy Transfer and Conversion Methods

    25/40

    ChemicalReactions

    Chemical reactions either require or release heat.

    CH4 + 2 O2CO2 + 2 H2O Hrxn = -890 kJ/mol

    Exothermic reaction: one that gives off energy. Hrxn < 0.Endothermic reaction: one that requires energy. Hrxn > 0.

    Except in unusual situations (e.g. fuel cells, chemiluminescenceessentially all of the Hrxn is released or supplied as heat.

  • 8/13/2019 Energy Transfer and Conversion Methods

    26/40

    Examples of Energy Conversion Reac

    Fuel combustion

    CH4 + 2 O2 = CO2 + 2 H2O natural gas C8H12 + 11 O2 = 8 CO2 + 6 H2O gasoline C6H12O6 + 6 O2 = 6 CO2 + 6 H2O cellulosic bi

    Hydrogenproduction CH4 + H2O = CO + 3H2 steam reforming of m CO + H2O = CO2 + H2 water gas shift reaction

    Hydrogenfuelcell H2 + O2 = H2O + electricity + heat

  • 8/13/2019 Energy Transfer and Conversion Methods

    27/40

    CH O 0 33 H O CO 1 08 H

    GasificationtoSyngasFossil fuelor biomass

    Steam or oxygen

    Gasifier800C

    Electricity,CH4, H2,Gasoline/d

    methanol

    Syngas:CO

    H2

    CH O + 0.33 H OCO + 1.08 H . .wood steam syngas

    Hr = +101 kJ/mol700-900C, 1 atm

    Heat required to drive thisendothermic reactionusually provided by partial

  • 8/13/2019 Energy Transfer and Conversion Methods

    28/40

    Water-gas-shift and methanation reacCOH2 WGS

    reactor

    H2CO2

    CO + H OCO + HHr = -41 k400-500C

    Water gas shift

    H2O

    COH2

    Methanation

    reactor

    CO + 1 08 H 0 52 CH + 0 48 CO + 0 04 H OHr = -12400C 10

    Methanation

    CH4CO2H2O

    Iron oxide c

  • 8/13/2019 Energy Transfer and Conversion Methods

    29/40

    Fischer-Tropsch Reaction:Syngas to Liquid Fuels

    Ideal FT reaction:

    (2n+1) H2 + n COCnH2n+2 + n H2O

    COH

    2

    F-T

    Many simultaneous reactions alcohols, alkenes, etc.

    Applications: Coal-to-liquids

    reac or

    Alkanes (gasoline, d

    Alcohols

  • 8/13/2019 Energy Transfer and Conversion Methods

    30/40

    RatesofchemicalreactionA + B C + D

    Chemicalreactionrates

    arefunctionsofthe Forward rateconcentrationof rf =kf[A]nA[B]nreactingspecies.

    Backward rate

    rb =kb[C]nC[D]n ForwardandBackwardOverall rate

    Reactionsrunning

    simultaneously:needa r=k [A]nA[B]nB k [f bfree-energydifferencetodriveinone Rate definition

  • 8/13/2019 Energy Transfer and Conversion Methods

    31/40

    Reactionratesarestrongfunctionsoftemperature

    Chemicalreactions rk=Aexp

    ERT

    generallyaccelerate

    dramaticallywith ln ktemperature

    TypicalvaluesofEA are

    ~200kJ/mol.

  • 8/13/2019 Energy Transfer and Conversion Methods

    32/40

    catalysts can accelerate

    Catalysts

    Catalystsacceleratechemicalreactions.

    Inmixtureswithmanyreactionspossible,

    catalystscanacceleratedesiredreactionstoincreaseselectivity.

    Catalystsdontchangethe

    equilibrium. Catalystsdontchange

  • 8/13/2019 Energy Transfer and Conversion Methods

    33/40

    Po

    gen

    Hy

    rec

    Transpo

    fue

    Wax

    hydrocracking

    Product

    recoveryFT

    process

    WGS

    Gas

    treatment

    Synthesis gas

    production

    Air sep.

    plant

    Prep

    Coal

    Air

    Liquid

    fuels

    Mid-distillate

    Liquid

    fuels

    Wax

    Tail

    gas

    Ele

    H2

    N2O2

    H2

    CO2 H2S

    CO

    Coal-to-Liquids Conversion

  • 8/13/2019 Energy Transfer and Conversion Methods

    34/40

    Po

    gen

    Hy

    rec

    Transpo

    fue

    Wax

    hydrocracking

    Product

    recoveryFT

    process

    WGS

    Gas

    treatment

    Synthesis gas

    production

    Air sep.plant

    Prep

    Coal

    Air

    Liquid

    fuels

    Liquidfuels

    Wax

    Tail

    gas

    Ele

    H2

    N2O2

    H2

    CO2 H2S

    CO

    Coal-to-Liquids Conversion

    Reaction Kinetics - Key to Performance

  • 8/13/2019 Energy Transfer and Conversion Methods

    35/40

    Po

    gen

    Hy

    rec

    Transpo

    fue

    Wax

    hydrocracking

    Product

    recoveryFT

    process

    WGS

    Gas

    treatment

    Synthesis gas

    production

    Air sep.

    plant

    Prep

    Coal

    Air

    Liquid

    fuels

    Liquid

    fuels

    Wax

    Tail

    gas

    Ele

    H2

    N2O2

    H2

    CO2 H2S

    CO

    Coal-to-Liquids Conversion

    Mass Transfer: Key to Reactions & Separations

  • 8/13/2019 Energy Transfer and Conversion Methods

    36/40

    Po

    gen

    Hy

    rec

    Transpo

    fue

    Wax

    hydrocracking

    Product

    recoveryFT

    process

    WGS

    Gas

    treatment

    Synthesis gas

    production

    Air sep.

    plant

    Prep

    Coal

    Air

    Liquid

    fuels

    Liquid

    fuels

    Wax

    Tail

    gas

    Ele

    H2

    N2O2

    H2

    CO2 H2S

    CO

    Coal-to-Liquids Conversion

    Heat Transfer Size & Cost

  • 8/13/2019 Energy Transfer and Conversion Methods

    37/40

    Pogene

    Hy

    rec

    Transpofue

    Wax

    hydrocracking

    Productrecovery

    FTprocess

    WGS

    Gas

    treatment

    Synthesis gasproduction

    Air sep.

    plant

    Prep

    Coal

    Air

    Liquid

    fuels

    Mid-distillate

    Liquid

    fuels

    Wax

    Tail

    gas

    Ele

    H2

    N2O2

    H2

    CO2 H2S

    CO

    Coal-to-Liquids Conversion

    Thermodynamics set the limits

  • 8/13/2019 Energy Transfer and Conversion Methods

    38/40

    Cooli tower rate of eva ati LHV limit

    CommonConversionEfficienChallenges,Part1

    ThermoLimitonConversionofheattowor Work

  • 8/13/2019 Energy Transfer and Conversion Methods

    39/40

    CommonConversionEfficienChallenges,Part2

    EnergyResourcesFarFromUsers

    Realsecurity,globaleconomyissues Takesenergyandmoneytomovetheresourceorelectricitytotheusers

    Convenience,Reliability,EmissionsMatter SolidFuelsDifficulttohandle(sowedontusecoalforshipsanymore

    EnergyDensityandSpecificEnergyMatters Lotsoflandneededtocollectdiffuseresourceslikesolar,wind,biomas

    Transportcostsandtransportenergysignificantforlow-energy-densitynaturalgas,hydrogen)

    PowerDensityMatters Energyconversionequipmentisexpensive,wanttodoalotofconversi

    smallequipment:LargeFluxesrequired,soLargeFreeEnergyGradien Fortransportation,needtocarrytheenergyconversionequipmentwith

  • 8/13/2019 Energy Transfer and Conversion Methods

    40/40

    MIT OpenCourseWarehttp://ocw.mit.edu

    22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166JIntroduction to Sustainable EnergyFall 2010

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/