23
Energy system flexibility and integration - precondition for large scale integration of VRE (wind) in the Danish power system iiESI Imperial College London 16 May 2017 iiESI 16 May 2017 Imperial College London Peter Børre Eriksen, Chief Engineer Energinet.dk

Energy System Integration in Denmark - iiesi.orgiiesi.org/assets/pdfs/4.2-pbe-danish-flexibilityiiesi-london.pdf · Energy system flexibility and integration-precondition for large

  • Upload
    lamhanh

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Energy system flexibility and integration- precondition for large scale integration of VRE

(wind) in the Danish power system

iiESIImperial CollegeLondon 16 May 2017

iiESI 16 May 2017 Imperial College London

Peter Børre Eriksen, Chief EngineerEnerginet.dk

Agenda

• The Danish power system – overview of large scale

integration of wind (VRE)

• Energy integration of VRE within connected power systems

• Energy integration across energy sectors

iiESI 16 May 2017 Imperial College London

Energy consumption in Denmark towards 2050

Imperial College London

The Green Energy Transition in Denmark is primarily based on:

1. Highly increased energy efficiency – especially through electrification

2. Much more fluctuating power production from especially wind (– and sun)

iiESI 16 May 2017

• 2020: DK wind power will constitute 50% of the electricity consumption

• 2050: Denmark must be independent of fossil-fuels

DK Generation of thermal and wind 2005-16;2016: wind generation approx. 40 % of yearly demand

iiESI 16 May 2017 Imperial College London

0

5

10

15

20

25

30

Thermal>100kV Thermal<100kV Wind PV

TWh

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Development of Wind Power and PV in Denmark

iiESI 16 May 2017 Imperial College London

0

2,000

4,000

6,000

8,000

10,000

12,000

2016

2018

2020

2022

2024

2026

2028

2030

2032

2034

2036

2038

2040

MW

On shore Coastal Offshore

0

2,000

4,000

6,000

2016

2019

2022

2025

2028

2031

2034

2037

2040

PV

MW

MW

WindWind + PV

PV

Danish Renewable Energy systems

iiESI 16 May 2017 Imperial College London

Large scale integration of VRE (wind and PV) needs flexibility.

Flexibility measures:

- A)Within European integrated power systems

- B)Across different energy sectors:

• Power system

• Heat system

• Transport system

• Natural gas system

• ……

Flexibility of power system

• Physics (“hardware”)

o Generation

o Demand

o Storage

o Transmission

• Market (facilitator) is the “software”

that dispatches the physical resources

(short term) and gives incentives for new

investments (long term)

• System operation (facilitator), e.g. good

forecasts reduce need for reserves

iiESI 16 May 2017 Imperial College London

The ability of a power system to handle variaility and uncertainty in generation and demand whilmaintaining satisfactory reliability

A)

1650 MW 680/740 MW

600 MW

1500/1640 MW

1300/1700 MW

600 MW

iiESI 16 May 2017 Imperial College London

MW Capacity 2016

Demand

Wind Power/Demand ~40%

0

1000

2000

3000

4000

5000

6000

7000

Large CHP

Local CHP

Wind power

Interconnectors

A) The Danish electricity system hasstrong connections abroad and more to come

Denmark has importantstorage opportunity in Norway/Sweden (flexibility)

Denmark is a bridge

between the hydro-

dominated

Norway/Sweden and

the thermal dominated

European Continental

power systemBorder between

Nordic and

Continental

synchronous systems

Border between hydro

and thermal systems

A)

iiESI 16 May 2017Imperial College London

European Transmission Planning-grid is facilitator of flexibility

• Transmission provides basis

for flexibility

• Transmission is necessary

hardware for balancing

generation resources with

demand

• Regional distribution of large

scale RES calls for regional

(European) transmission

planning and solutions

iiESI 16 May 2017 Imperial College London

Electricitytransmission

Gas transmission

Energinet.dk TSO for power and gas systems in DK

A)

European common day-ahead market - facilitates flexibility

Belgium, France,

Netherlands (TLC)

Price coupling since 2006

Nordic region-Germany

(operated by EMCC)

Volume coupling since

November 2009

CWE-Nordic region (+ Estonia)Flow calculated by EMCC Prices calculated by PXs

Interim solution NWE: Interim Tight Volume Coupling (ITVC) since

November 2010

Central West Europe (CWE)

Price coupling since

November 2010

Nordic Region Price coupling since 1999

(Eastern Denmark 2000)

North West Europe (NWE) -One price calculation for entire area

Price coupling since February 2014 = target model

Nordic region– SwePol/Nordic region-Lithuania/Nordic region-Latvia

Price coupling since Dec. 2010 / June 2012/ June 2013

iiESI 16 May 2017 Imperial College London

Price coupling since

May 2014

NWE+SWE = MRC (multi regional coupling)

One price calculation

MRC + Italian borders Price coupling since

February 2015

4M – not yet coupled to MRC Price coupling since November 2014

A)

Today’s ID markets

One intraday marketfrom Q1-2018

A)

iiESI 16 May 2017 Imperial College London

European intraday markets – facilitates flexibility

Spot price, wind power and market dynamics

iiESI 16 May 2017 Imperial College London

A) CASE DK: 1 week in September 2015

DK: 30 % increase by 2030 due to non classic demand

iiESI 16 May 2017 Imperial College London

30000

32000

34000

36000

38000

40000

42000

44000

46000

48000

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

20

31

20

32

20

33

20

34

20

35

20

36

20

37

20

38

20

39

20

40

DK Power Demand (GWh)

Elpatroner og storevarmepumperStore datacentre

Femern og elektrificering af fjernbanen

Elbiler

Individuelle varmepumper

Klassisk elforbrug

AF2015

Electric boiler and large

Data centres

Femern and railway electrification

Electric vehicles

heat pumps

Individual heat pumps

Classic demand

Flexibility across energy sectors

B)

Use of flexible demand to reduce peak residual load

Imperial College London

Max residual load is in a 12 hours period

iiESI 16 May 2017

Max residual load for averaging periods of 1 hour to 1 year (2035 scenario)

B)

DK: Integration across energy sectors

iiESI 16 May 2017 Imperial College London

Energy system Energy serviceEnergy ressource

Minimized, low and stable costs

Sustainable resourcesIntegrated energy systemcreates flexibility

Fjern- og blokvarme systemer

Vind

Sol-

Bølge

Bio, affald mv.

Naturg

Olie

Kul

El-system

Flydende brændstoffer (Benzin, Diesel, Metanol, DME etc.)

Termiskforgasnin

Anaerob

Export el

El-proceslys, it, køl

Proces-varme

Bygn opvarmn.

Vej-transport

Bane-transport

Sø-transport

Fly-transport

Gaslagre

Varmep

Kedel

EV

ICE/FC

Import

Import el

Gas-systemer (metan/syntesegas/H2)

Bio ElektrolyseDecentral varmep.

GasKraftvarme

Ethanol

Central varmep.

Gas-behandling

Electricity

Gasses

Liquid fuels

Heat

Performance of integrated system is key (economic and technical analysis)

• Building heating

• Proces-heat

• Cooling

• Light, IT etc.

• Wind

• Solar

• Biomass

• Natural gas

• Fossil oil

• Coal

• Etc…0,

20,

40,

60,

80,

100,

120,

140,

160,

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

$/b

arre

l

Historisk oliepris

Oil-price

Wind-variation

Heating

Process heat

Electrical services(Light, cooling, IT, process etc.)

Transport

B)

RE-gas as feedstock for fuels etc.

iiESI 16 May 2017 Imperial College London

Methane

Synthesis gas Methanol

DMEElectrolysis

Alkaline/SOECSynthetic Gasoline/

dieselHydrogen

Methan

PE plastic etc.

Fertilizer

RE-gas

H20

Legend:

CH4

H2

CO

TransportIndustry

etc.

Power/heatIndustryTransport

etc.

Biogas

Anaerobic

Thermal

gasification

400-600 °C

200-300 °C

200-300 °C

>200 °C

>800 °C

>500 °C

B)

B)Across different energy sectors

Measures of large scale RES integrationA)Within European

integrated power systems

50 % wind by2020=>100% VEby 2050

Longer term: • stronger integration with the

gas sector (electrolysis, H2, green gases, large scale gas storage)

DK

• Strong grids, strong interconnectors

• Coupled European markets• Flexibility in demand and

generation

Integration of power system with

• heat and gas• transport sector• .....

+

iiESI 16 May 2017Imperial College London

Conclusions

+

A)

B)

iiESI 16 May 2017 Imperial College London

Thank you for attention

The gas system adds a socio- economic value of DKK 2-3 bn. per year (2035)

iiESI 16 May 2017 Imperial College London

Fjern- og blokvarme systemer

Vind

Bølge

Naturgas

Olie

Kul

El-system

Flydende brændstoffer fossile/VE (Benzin, Diesel, Metanol, DME etc.)

TermiskAnaerob

Export el

El-proceslys, it, køl

Proces-varme

Bygn opvarmn.

Vej-transport

Bane-transport

Sø-transport

Fly-transport

Gaslagre

Varmep.

Kedel

EV/PHEV

FM/FC

Import el

Gas-systemer (metan/syntesegas/H2)

Elektrolyse VarmepumperGas

Kraftvarme

Ethanol

Sol

HT-VP.

Bio, affald mv.

BioKraftvarme

Gas-katalyse

Fjern- og blokvarme systemer

Vind

Bølge

Naturgas

Olie

Kul

El-system

Flydende brændstoffer fossile/VE (Benzin, Diesel, Metanol, DME etc.)

TermiskAnaerob

Export el

El-proceslys, it, køl

Proces-varme

Bygn opvarmn.

Vej-transport

Bane-transport

Sø-transport

Fly-transport

Varmep.

Kedel

EV/PHEV

FM/FC

Import el

Elektrolyse VarmepumperGas

Kraftvarme

Ethanol

Sol

HT-VP.

Bio, affald mv.

BioKraftvarme

Gas-katalyse

With gas in 2035-Storage and regional use of gas

Without gas in 2035-Local use of gas

B)

Operating the Danish power system without central stations

Imperial College London

On 2nd September 2015:

• Market did not schedule any central

power station in DK-W to operate

• System stability by operating:

• SK4 VSC (700 MW DK-NO)

• Synchronous compensators :

• 4 in DK-W

• 2 in DK-E

NewDC

NewAC

iiESI 16 May 2017

A) CASE DK: 1 week in September 2015

iiESI 16 May 2017Imperial College London

A) CASE DK: 1 week in September 2015