18
Powered by: Sun Earth Water Air & Common Sense “The best kind of energy is the energy we do not need” -edmond krecké

Energy Reconsidered

Embed Size (px)

DESCRIPTION

solar-geothermal energy potential

Citation preview

Page 1: Energy Reconsidered

P o w e r ed b y :

Sun

E a r t h

Wat e r

A i r

&

C ommon Se nse

“The best kind of energy is the energy we do not need”-edmond krecké

Page 2: Energy Reconsidered

Energy ReconsideredEnergy Reconsidered

Page 3: Energy Reconsidered

E n E r g y r E c o n s i d E r E d i s c o m m i t t e d t o t h e c o n t i n u a l a d v a n c e m e n t o f b u i l d i n g t e c h n o l o g i e s . W e o f f e r s u p e r i o r p e r f o r m a n c e b u i l d i n g s t h r o u g h t h e i m p l e m e n t a t i o n o f a s e r i e s o f c o n s t r u c t i o n m e t h o d o l o g i e s c r e a t e d t h r o u g h o u r a f f i l i a t i o n w i t h r e s e a r c h e r a n d p h y s i c i s t M r. E d m o n d K r e c k é . E n E r g y r E c o n s i d E r E d f o c u s e s o n c r e a t i n g c o m m e r c i a l l y v i a b l e s e l f - s u s t a i n i n g b u i l d i n g s , e f f e c t i v e l y r e d u c i n g t h e b u i l d i n g ’s e n e r g y c o n s u m p t i o n t o z e r o . R e m a i n i n g c o n s c i o u s o f e c o l o g i c a l a n d e c o n o m i c c o n c e r n s , t h e f i r s t t e c h n o l o g y r e p r e s e n t e d b y E n E r g y r E c o n s i d E r E d i s t h e I S O M A X ® b u i l d i n g s y s t e m . T h i s s y s t e m , a l l s u b s e q u e n t t e c h n o l o g i e s r e p r e s e n t e d b y E n E r g y r E c o n s i d E r E d , a n d o u r s t a n c e w h i c h t h e y r e f l e c t , w i l l s h i f t t h e w a y o u r b u i l t e n v i r o n m e n t i s c o m m o n l y u n d e r s t o o d .

Page 4: Energy Reconsidered

Where are our priorities? Should we continue to ignore the cost to the environment in favor of saving money in the short term, or work solely for the environment with no regard for profit? Is there a solution that is both profitable and environmentally helpful?

t h e d i l e m m a

Everything in our environment is connected. No action goes without consequence; every action is felt by any number of links in the environmental chain. While the initial effects of our development and advancement felt by our civilization are minimal, the impact on other species and habitats can be immediate and life threatening. We are living in an age where the impact of the combined negligence of our and previous generations is alarmingly evident; we can no longer deny we are dangerously approaching a tipping point in the future of our natural environment.

“ D o e s t h e F l a p o f a B u t t e r f l y ’ s w i n g s i n B r a z i l s e t o f f a t o r n a d o i n T e x a s ? ” - E d w a r d L o r e n z

Page 5: Energy Reconsidered

Fr e e + $ + $ + $ = $$$

Al l the energy we could ever need,

and a l l of the energy we a l ready use,

comes indi rect ly f rom the sun. We

mine the earth endless ly for cost ly,

ineff ic ient , and di r ty resources, whi le

ignor ing the d i rect route to the u l t imate

source. Despi te the cost and effort to

extract the resources that have fue led

our c iv i l izat ion for decades, these

methods were once the most feas ib le

solut ions. This is no longer the case.

We now have the technology needed

to ut i l ize the energy f rom the sun

effect ive ly and eff ic ient ly. By tapping

th is energy source we can e l iminate

unnecessary cost, waste, and danger

to our env i ronment, in a susta inable

and replenishable fashion.

i t is imperat ive for the heal th of the

earth, and of our economy, that we

cut out the middleman and re l ieve our

re l iance on pol lutant processes . We

have an endless supply of energy f rom

the sun. The abi l i ty to tap th is energy

d i rect ly wi l l insure a prosperous and

heal thy future.

Fr e e + 0 + 0 + 0 = Fr e e

Page 6: Energy Reconsidered

U.S. Primary Energy Consumption by Source and Sector, 2007(Quadrillion Btu)

1Petroleum

39.8

Natural2

Gas23.6 5

Industrial21.4

7Electric Power

40.6

Residential6

and Commercial10.6

3Coal22.8

Renewable4

Energy6.8

NuclearElectric Power

8.4

10021

51

9

309

9

10

6

9

8<1

1

2

3

22

2

5

18

24

44

70

96

30

17

34

75

37

34

91

51

Percentof Sector

Percentof Source

1Does not include 0.6 quadrillion Btu of fuel ethanol, which is included in "Renewable Energy.”2Excludes supplemental gaseous fuels.3Includes less than 0.1 quadrillion Btu of coal coke net imports.4Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass.5Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants.

6Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants.7Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity,or electricity and heat, to the public. Note: Sum of components may not equal 100 percent due to independent rounding. Sources: Energy Information Administration, Annual Energy Review 2007, Tables 1.3, 2.1b-2.1f and 10.3.

Transportation29.0

E n e r g y L i f e c y c l eThe graphic (left)* explains ‘U.S. Primary Energy Consumption by Source

and Sector, 2007’ with numbers represented in quadrillion Btu. This analysis

tells us that only 6% of the 10.6 quadrillion Btu allocated to residential and

commercial buildings comes from renewable energy.

Looking more closely at these renewable energies that constitute that

anemic 6%, we find that they can often be costly to build and maintain,

thereby discouraging potential consumers.

The graphics below are the beginning of an investigation into the costs and

benefits of different energies currently available to the market.

*Information pulled from the Energy Information Administration Annual Review, 2007.

Page 7: Energy Reconsidered

Ho t Sp o t S - tH e Ca r b o n at l a SFr o m ‘tH e Gu a r d i a n’ Sat u r d ay de C e m b e r 15, 2007

The United States has become too reliant on foreign nations for natural gas due to our ever increasing consumption of energy. This structure

was predicated on the availability of cheap energy, which is no longer the reality. The United States must become more stable in its energy

needs in order to maintain its position as a world power.

Page 8: Energy Reconsidered

U n t a p p e d R e s o u r c e s : s o l a r r a d i a t i o n a n d T h e r m a l S t o r a g e C a p a c i t y

The map above marks how much solar radiation is attained daily by different regions across th US, ranging from 1.25 kWh/m2/day in parts of Alaska, to over 8 kWh/m2/day in Southern California.

The ISOMAX system requires 250 kWh/m2 of solar radiation to run annually. That equals 0.69 kWh/m2/day. This is distinct from the total energy consumption of the system; this number represents the the solar radiation that the system relys on.

The map above shows that the conditions with the least sunlight in Pennsylvania still get 2.81 kWh/m2/day, four times the energy

needed to power the system. Even the northernmost parts of Alaska recieve almost twice as much as they would need, recieving energy

directly from the sun at a rate of 1.20 kWh/m2/day.

The ground has an immense capacity

to equalize temperature and retain heat.

The map above (and overlaid upon the

map to the left) marks the temperature

sustained just a few feet beneath the

top of the soil.

Imagine a system that could utilize

this temperature as a starting point

to reaching the desired comfort zone

instead of beginning from the fluctuating

air temperature.

and that’s not even taking into account externalized costs.

Page 9: Energy Reconsidered

I somax Bu i ld i ng T echnolog i es

Solar Col lector -Energy Absorber

Near Surface Geothermal Heat Sink

Pipe in Pipe Vent i lat ion System

Hot Water Supply

Insulated Concrete Forms

Secur i ty System - Pressure Detect ion

Page 10: Energy Reconsidered

S o l a r H a r v e s t i n g

Each polypropylene tube acts as an individual

collector circuit, and is controlled according to the

respectively absorbed temperature.

After assessment of requirements, sub-circuits are

laid out and connected.

Hydraulic compensation in connection with the

selected pumping capacity and control valves

is to be guaranteed whilst always observing the

permissible noise level.

The division of the register into temperature levels

enables, in the same manner as the design of the

ground storage system, optimum use of a maximum

of the available storage energy in the respective

temperature range.

Page 11: Energy Reconsidered

Near Surface Geothermal Heat S ink

The underground storage system itself and the

thermal production fed into it from the building

shell is sub-divided into the following levels:

circuit 1 - + 25°C

circuit 2 - + 20°C

circuit 3 - + 15°C

circuit 4 - + 10°C

Extraction and ventilation is also driven via the

underground storage system.

The underground storage system serves both

the heating and cooling process as required.

Page 12: Energy Reconsidered

P i p e - I n - P i p e V e n t i l a t i o nThrough a stainless steel coaxial piping system, fresh air is inhaled into the building while stale air

is exhaled at the same time. Due to the stainless material of the pipes, the heat exchange between

the fresh air and the stale air is measured at 98% efficiency. This means that the fresh air ventilating

the house is already at the desired temperature and needs no auxiliary energy expenditure to reach

the comfort zone. The volume of air exchanged is much above the prescriptive ASHRAE standards

and takes place 24/7 without creating any feeling of drafts in hallways or individual rooms.

50% of the length of pipe is placed within the energy storage heat sink below the building, and 50%

is placed underground in the isothermal cool zones on the periphery of the building. These zones

are utilized to transfer heat either to or from the ventilation pipes as needed to achieve a comfortable

temperature year round. Every room has its own thermostat, so the temperature is controlled

immediately by each space individually. Additionally, the humidity is maintained at a constant of

between 45-55%. This is of importance since spores of mold and mildew start to proliferate in

conditions above 65% humidity and ultimately lead to “sick building syndrome”.

The energy needed to accomplish this feat is between 6-8 kWh/10 SF annually. For Pennsylvania this translates to monetary output of $0.60-$0.80/10 SF per year.

3/12

Via the roof absorber piping the solar energy is collected by heating the water contained in

said piping up to a temperature of +80°C and fed into the ground underneath the sole plate

by means of insulated piping. The ground underneath the sole plate is “diked“ laterally with

insulation so as to serve as an efficient storage for the heat supplied. The storage is sub-

divided into different temperature zones by an appropriate control system. The core storage

with temperatures above +35°C serves for preheating of the service water and the center

and boundary storages with temperatures within the range of +15°C to +34°C serve for heat-

ing of the outside walls. A cooling circuit also conceivable outside of the building makes use

of the relatively constant ground temperature of +7°C to +14°C and may be provided for cool-

ing of the outside walls in summer.

Apart from heating and/or cooling of walls and roofing, an additional aeration and ventilation

of buildings by means of a “Pipe-in-Pipe” counterflow system is deemed useful. To this ef-

fect, the outgoing air from the rooms is dissipated in a larger-section pipe in one direction

and the fresh air is supplied through a smaller pipe which is inserted in the larger-section

pipe, in the opposite direction. In case of an adequate length of the two pipes heat exchange

efficiencies in excess of 98% are achieved. The fresh air supplied through the pipe system is

routed within the ground for heating and/or cooling as a function of outdoor temperatures.

Figures 2 to 5 show examples of piping installations in the ground underneath the foundation

slab as well as in and adjacent this sole plate and on the roof. Illustrated in Figure 6 is the

erection of wall assembly units with integrated piping. Figure 7 shows the necessary control

engineering restricted to two circulating pumps and several control valves.

Figure 2. „Pipe-in-Pipe“ counterflow system

Página 18

El sistema de conductos es llevado desde la superficie superior útil a través de la plancha del suelo a tierra, y allí, debajo de la plancha del suelo en el depósito lateral, se dispone en una superficie de 40 a 45 m para absorber desde el exterior del edificio aire entrante y para expulsar aire saliente. Los tubos están realizados en acero inoxidable que ofrece en la parte exterior puentes para facilitar la transmisión de calor. En el conducto destinado al aire fresco se puede formar rocío en las paredes del conducto y producirse un líquido de condensación. Por lo tanto los tubos se deben realizar con una inclinación de 0,5% para que el líquido de la condensación pueda ser evacuado.

Los cálculos necesarios para la colocación y dimensiones de los tubos de ventilación se pueden realizar mediante programas de simulación. Como parámetro inicial de cara a este tipo de cálculos también se deben determinar la densidad, capacidad de generación de calor específica, capacidad de conducción de calor y el contenido en agua del suelo sometido a examen. La velocidad de flujo debe situarse entre los 1,0 m/seg y 1,4 m/seg. Cuando se trata de valores de flujo de aire variables entre 0,4 y 0,8/h, se producen en viviendas con medidas estándar habituales flujos de aire de hasta 500 m3/h.

4.4 Obtención de calor en el interior

La obtención de calor en el interior se consigue mediante aparatos eléctricos, iluminación y las personas. Se debe decidir principalmente si se debe tomar en consideración realizar un estudio diferenciado o aproximado en lo que respecta a la obtención de calor en una superficie útil determinada. Si un estudio diferenciado de aparatos eléctricos, iluminación y personas se puede considerar útil, se debe realizar considerando las diferentes estaciones y meses del año.

5. Precalentamiento de agua potable, el depósito central

Es recomendable colocar para el precalentamiento de agua potable debajo del suelo un depósito especial, el llamado depósito central. Se trata de un cuerpo terrestre recubierto en todos sus lados por un material aislante de 10 cm a cuyo interior se dirigen los conductos con agua con una temperatura superior a 35º C. El volumen del depósito es de más o menos 10 a 20 m3 por unidad de vivienda.

El depósito central se usa en espacios de poca carga estática, por lo tanto no debajo de muros de carga. Si no es posible, se debe solidificar el terreno y debe ser tenido en cuenta desde la planificación del soporte de obra.

Cold air in From outdoorS

98% Heat exCHanGe Warm FreSH air into buildinG

Warm Stale air exHauSted For Heat tranSFer

Winter SCenario depiCted - SyStem FunCtionS in reverSe durinG Summer

Page 13: Energy Reconsidered

I n s u l a t e d C o n c r e t e F o r m sICF construction begins with stay-in-place Styrofoam. Rebar is placed within each unit and concrete is poured inside to make a

permanent structure. The end result is a high-performance, structurally sound wall that is already insulated, has a vapor barrier, and

can receive final finishes to the interior and exterior portion of it.

Advantages of ICF:

Increases energy efficiency

Life-cycle friendly

Shock resistant

Reduced noise transmission

Reduces CO2 emissions

Reduces waste for land fills

Non-toxic

No CFC’s

Reduces construction time

Replaces insulation material

No structural deterioration

Building with ICF improves the envelope and

the thermodynamics of every structure. Energy

savings of between 30%-70% are realized

in the US, whether it is in Alaska or Florida,

Arizona or New York.

Lakeside Village - Cayman Islands - built by Manfred Knobel

Page 14: Energy Reconsidered

T h e r m a l B a r r i e rIn winter, heat is transported through the outer walls of the

building by water constantly pumped through small, evenly-

spaced pipes. The water, directed from underground

HEAT CIRCUITS at 64-78 degrees Fahrenheit, forms

TEMPERATURE BARRIERS in the outer walls. Similarly,

in the summer months, cold water of about 50 degrees

is directed from the COLD CIRCUITS is pumped through

the walls creating comfortable room temperature all year

round.

This construction method changes the context of a

wall from having a large R-value to combat the outdoor

temperature, to having a smart adjustable envelope that

generates comfort zones, thus rendering the R-value null.

This is a slow system, so any immediate change in

temperature must be derived from the ventilation system

and its partitioned thermal zones, but the near constant

thermal wall system provides a beginning point far closer

to human comfort than that usually found beyond the

exterior walls of the building.

This smart system regulates the temperature via a computer

that records information for analysis as it adjusts the

temperature of the walls according to outside temperature

and the anticipated temperature based on previous years

and supplementary data.

Página 13

La barrera térmica (BT), dentro o sobre las paredes externas, se coloca por zonas, haciendo corresponder cada porción individual con cada espacio interior. Así es posible regular la barrera térmica por recintos.

Para limitar las pérdidas por fricción y con ello la capacidad de las bombas, es importante que los tubos tengan una longitud máxima de entre 100 y 120 m. En la colocación se deben evitar los puntos de cruce.

Los gráficos 4.5 y 4.6 muestran dos posibilidades básicas de colocación de los conductos por campos. La colocación de los conductos por campos representada en el gráfico 4.6 b ofrece la ventaja de nivelar las diferentes temperaturas de entrada y salida. Esta forma de colocación requiere de más esfuerzo de cara a su planificación y realización. Se debe prestar especial atención a la colocación del tubo en la zona correspondiente a las ventanas y puertas. Las distancias entre cada conducto son de aproximadamente 20 a 25 cm.

Si las superficies correspondientes a los tejados no son suficientes como para albergar los tubos de absorción requeridos, también se pueden colocar en las paredes exteriores. Los tubos de absorción se fijan con un mortero de un espesor determinado.

Página 13

La barrera térmica (BT), dentro o sobre las paredes externas, se coloca por zonas, haciendo corresponder cada porción individual con cada espacio interior. Así es posible regular la barrera térmica por recintos.

Para limitar las pérdidas por fricción y con ello la capacidad de las bombas, es importante que los tubos tengan una longitud máxima de entre 100 y 120 m. En la colocación se deben evitar los puntos de cruce.

Los gráficos 4.5 y 4.6 muestran dos posibilidades básicas de colocación de los conductos por campos. La colocación de los conductos por campos representada en el gráfico 4.6 b ofrece la ventaja de nivelar las diferentes temperaturas de entrada y salida. Esta forma de colocación requiere de más esfuerzo de cara a su planificación y realización. Se debe prestar especial atención a la colocación del tubo en la zona correspondiente a las ventanas y puertas. Las distancias entre cada conducto son de aproximadamente 20 a 25 cm.

Si las superficies correspondientes a los tejados no son suficientes como para albergar los tubos de absorción requeridos, también se pueden colocar en las paredes exteriores. Los tubos de absorción se fijan con un mortero de un espesor determinado.

Page 15: Energy Reconsidered

The Pr i c e Of Energy

Statistics pulled from the Energy Information Administration Annual Report, 2005 and extrapolated to find the average square footage

per US residence and energy consumption data.

Calculations prove the overall energy savings to the customer to be 51% - 55% for the entire US and 60% - 64% for the North East. These numbers reflect the actual utility bill including the cost of appliances, lighting, and refrigerator

- none of which are provided for by this system. The actual savings from heating, air-conditioning, and the heating of water can be

seen to be between 84% - 92% as the US average and 90% - 95% in the North East.

Traditional Const Construction with ISOMAX BUILDING TECHNOLOGY

12 Kwh/m2/yr % Save 6 Kwh/m2/yr % Save

Total Energy Cost $1,830.47 $903.27 51% $816.14 55%

Air Conditioning $276.80 $174.27 84% $87.14 92%

Heating $533.67

Water Heating $291.00

Others (1)

$729.00 $729.00 $729.00

12 Kwh/m2/yr % Save 6 Kwh/m2/yr % Save

Total Energy Cost $2,525.87 $998.54 60% $911.41 64%

Air Conditioning $396.00 $174.27 90% $87.14 95%

Heating $970.60

Water Heating $335.00

Others (1)

$824.27 $824.27 $824.27

1) Includes all home appliances and lighting requirements

2) Based on the avergage household size in the United States of America at 1536.80 Sqft

3) Energy Calcutions are based on the following formula (153.68 m2 x (x) Kwh x (x)/Kwh)

4) All pricing based on commerical and industrially available numbers for our market (12 Kwh and 6 Kwh and 0.0945/Kwh)

5) Energy prices derived from this chart http://www.eia.doe.gov/emeu/aer/txt/ptb0810.html

$1,101

$1,702

Un

ite

d S

tate

sN

orth

Ea

st

Page 16: Energy Reconsidered

60% of energy expendi tures in the US come f rom heat ing, cool ing, and vent i lat ion of our bui ld ings. Imagine the d i fference i t would make i f a l l bu i ld ings implemented th is system and we could e l iminate th is cost to our economy and to our env i ronment. We would be leaders on a g lobal scale, p ioneer ing change for future generat ions, and without any compromise in our standard of l iv ing.

Ex i s t i ng Energy Use Projec ted Energy Use

Projec ted Global Impact

Page 17: Energy Reconsidered

Energy Reconsidered is going to pull profits from a range of areas in the industry: sublicensing, distribution,

consultation, and construction supervision. The ISOMAX building system presented here is potentially just the

beginning of product lines offered by Energy Reconsidered through continued research and development inside of

our direct engagement with Edmond Krecké.

This building system yields results to varied typologies within the building industry including new construction as

well as retrofitting existing projects. We have identified several potential projects to go forward with in the next

year, including typologies such as single family homes, dorm style, multi-unit condos, low-income multi-unit,

assisted living, co-housing development, as well as office towers. Our current prospective client list includes

Habitat for Humanity, the Philadelphia School District, and Temple University.

Energy Reconsidered

Energy Reconsidered

Founder:

Michael Sebright of Stimulant Design

Founder:

Manfred Knobel of Moss Pointe Builders

Page 18: Energy Reconsidered

The Inventor: Edmond Kreckér e S u m é :1956–1962 – Construct ion of the c i ty of BRASILIA / Braz i l , together wi th the archi tect Oscar Niemeyer.

1963–1969 – product ion of internat ional ly patented, new technologies for road and motorway safety. (Double-distance crash barr iers, roadside guide posts, ref lectors, ant ig lare protect ion e lements, sound insulat ing wal ls , mark ing paints etc. )

Many years of pract ica l test ing on the test grounds of Mercedes-Benz. Implementat ion of the new technology for the f i rst t ime in Germany, Braz i l , Switzer land, Sweden, France, Venezuela.

1970-1975 Project set-up – p lanning – construct ion of ecologica l bui ld ings in France which were adapted to the landscape, wi th typica l local mater ia ls , by tak ing into considerat ion a l l natura l resources.

1976–1991 Research – development – recycl ing product ion of var ious new construct ion products, such as l iqu id leather, l iqu id ce l lu lose for wal l coat ing etc. , porous concrete, sheath ing e lements, f lat fac ing br icks. Product ion of low-energy bui ld ings.

Co-founder of the Amer ican Associat ion of Manufacturers of Sheath ing Elements ICFA (Forerunner of pass ive bui ld ing technology) .

P lanning, product ion and construct ion of approx. 400 earthquake-proof res ident ia l and administrat ive bui ld ings in URI, Himalaya, and planning, product ion, in f rastructure and construct ion of approx. 400 res ident ia l bui ld ings in Dj ibout i .

1991-1993 Pr ivat iz ing of WIGEBA- Scient i f ic Equipment Product ion – Ber l in,successor organizat ion of the State Secur i ty DDR (STASI )

1994–today Research – development–product ion of pass ive “zero energy” bui ld ings (systems (R) ISOMAX (R) ISOGARDE, (R) ISOSAFE ) .

2004 Founding member of the European Associat ion of Manufacturers of Sheath ing Elements VIBS ( forerunner of pass ive bui ld ing technology ) .

2005 Founding member of the TSW TERRA - SOL INTERN. WISSENSCHAFTSGREMIUMFÜR WISSENSCHAFT UND WIRTSCHAFT e.g.V. ( Internat ional Associat ion for Science)2005 Founding member of the IWR INTERNATIONALER WISSENSCHAFTLICHER RAT( internat ional sc ient i f ic counci l )

2005-today Seminars, Internat ional Env i ronment Conferences, and lectures at Internat ional Inst i tut ionsPropr ietor and pres ident of var ious internat ional admin ist rat ion and product ion companies.

on tH e Ho r i z o n**

Hydrogen Battery

Ai r Humidi ty to Potable Water Converter

Tr a n s l a t i o n To H i g h R i s e C o n s t r u c t i o n

Thermal A i r Barr ier

** Energy Reconsidered automat ica l ly reta ins usage r ights to a l l new inte l lectual property