32
ENERGY OPTIMIZATION ENERGY OPTIMIZATION AT ELECTRIC ARC FURNACES 1 INDEX Who Is CVS Who Is CVS Steel Industry Steel Industry & Energy Why The Energy Efficiency Is Important Important Classical Methods for Energy Efficiency New Concepts for Energy New Concepts for Energy Efficiency 2

Energy Optimization at Eaf

  • Upload
    metudgn

  • View
    130

  • Download
    8

Embed Size (px)

Citation preview

Page 1: Energy Optimization at Eaf

E N E R G Y O P T I M I Z AT I O NE N E R G Y  O P T I M I Z AT I O NAT   E L E C T R I C   A R C   F U R N A C E S

1

I N D E X

Who Is CVS Who Is CVS

Steel Industry

Steel Industry & Energy

Why The Energy Efficiency Is ImportantImportant

Classical Methods for EnergyEfficiency

New Concepts for Energy New Concepts for EnergyEfficiency

2

Page 2: Energy Optimization at Eaf

C OM PA N Y   P R O F I L E

C V S T U R K E Y

C V S E U R O P EI t a l y ‐ U d i n e

C V S M I D D L E E A S TE g y p t ‐ C a r i o

C V S C I SU k r a i n e ‐ D o n e t s k

F ROM   CON C E P T   TO   COMM I S S I O N I N GDesign

Manufacturing

Erection

Training

Consultancy

InnovationInnovation

Process Development

[email protected]                          www.cvs.com.tr

CVS SINGAPORESingapore

CVS POLANDWarsaw

CVS IRANTahran

CVS INDIAPune

CVS S.KOREASeoul

CVS USANew York

CVS GREECEAthens

CVS INDONESIAJakarta

CVS TRADE B.V.Amsterdam

3

C O M PA N Y   P R O F I L E

CVS provides plants & equipments for minimills(Meltshops & Rolling Mills), as well as “turn‐key”solutions in this regard.

CVS covers the complete design andmanufacturing activities for green field projectsmanufacturing activities for green‐field projectsas well as revamping/upgrading of existing plantsand equipments.

CVS manufactures spare parts & components forMeltshops & Rolling Mills & Off‐Gas SystemsMeltshops & Rolling Mills & Off Gas Systems.

CVS provides technical assistance and consulting CVS provides technical assistance and consultingservice to steel production.

4

Page 3: Energy Optimization at Eaf

C OM PA N Y   P R O F I L E

CVS headquarter is located in the most sophisticatedq pindustrial region of Turkey; Gebze (50 km to Istanbulcity center), close to many major ports.

Our modern facilities consist of three integratedmajor‐sized workshops equipped with post‐modernmachinery parks and three engineering buildingssumming up approx. 100,000 sqm.

CVS workforce is formed by over than 750specialized staff with a modern machinery park to

d t k th t h ll i j tundertake even the most challenging projects.

More than 270 engineers and administrative More than 270 engineers and administrativeemployees are involved in the design andmanagement of the projects. 5

A C T I V I T I E S

6

Page 4: Energy Optimization at Eaf

S T E E L   I N D U S T R Y

After crisis, World Iron & Steel Industry started to growing again.

In 2010, all over the world, more than 1 billion 400 million tons/year steel was produced,

and it will be increased each year as before crisis.y

According to rapid growing up in recent years all over the world, new requirements andAccording to rapid growing up in recent years all over the world, new requirements and

new formations to answer these requirements are occured.

Steelmaking is always a growing sector and steelmakers are always asking for more

fl ibl d ti f lt h itflexible and more easy operation for meltshop units.

7

S T E E L   I N D U S T R Y

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

847,670 850,345 904,053 969,992 1,069,082 1,146,686 1,251,196 1,351,289 1,329,123 1,211,461 1,413,596

The crisis of steel market was started in the end of 2008, as all other markets.

And it has been continued throughout the entire 2009.

In the end of 2009, the effects of crisis was began to pass. And again the market wasstarted to grow up.

But something was changed. Maybe the costs are not higher before crisis but profits arelower.

Energy and scrap are the biggest cost of meltshops.8

Page 5: Energy Optimization at Eaf

S T E E L   I N D U S T R Y

Today, investors worldwide are looking and waiting for new signals from steel market to

understand where to direct and dedicate their money, energy and resources for possible

alternative business. Because of uncertainty in the market, steelmakers are looking for

more flexible operation to catch the changing market demands.p g g

According to requirements of the market, steel production will be increased, and newAccording to requirements of the market, steel production will be increased, and new

investment will be try to answer.

Competition will be even more difficult, and the steelmakers will look new concepts to

d th t l ki treduce the steelmaking costs.

9

S T E E L   I N D U S T R Y   A N D   E N E R G Y

W h y t h e e n e r g y e f f i c i e n c y i s   i m p o r t a n t ?

Approximately 12% of energy produced all over the world is consumed at Iron & SteelIndustry.

So we can understand the importance of energy efficiency.

With the increasing of steel production studies of to reduce the energy consumption areWith the increasing of steel production, studies of to reduce the energy consumption arebecame important.

But 50% of consumed energy is loss due to several reasonsBut, 50% of consumed energy is loss due to several reasons.

In the end of these studies, the recovered energy will be very high, and the costs can be d d i h ibl ireduced with possible new concept investments.

10

Page 6: Energy Optimization at Eaf

S T E E L   I N D U S T R Y   A N D   E N E R G Y

5 main input for meltshops with EAF1. Scrap2. Energy3. Refractoryy4. Ferro Alloys5. Electrodes

To reduce the scrap cost is limited for steelmakers but they can recude energyconsupmtion themselves.

The scrap cost is determined by market. And request of steel production is increasedevery day.

Based on this growing, coke, iron ore and scrap requested are increased so much and theirinternational costs will be higher than the past.

The difference between product and input price, is determined to the profit ofsteelmakers. 11

S T E E L   I N D U S T R Y   A N D   E N E R G Y

There are a lot of inputs and outputs of EAF.

But the most important and can be reduced one is electricity energy.p y gy

How can we reduced the electricity energy consupmtion?How can we reduced the electricity energy consupmtion?

With classical methods this is not advantage for the competition because of all importantWith classical methods, this is not advantage for the competition because of all important

competitors knows to use this energy input.

With new concepts, this can be created to make a difference if you can find the right

investments.

12

Page 7: Energy Optimization at Eaf

C H E M I C A L   E N E R G Y

In the EAF melting process the chemical energy is playing an importantrole since production costs and productivity have to be alwaysimproved.

It is now common practice to use between 30% and 40% of the totalenergy input to the EAF being supplied through oxy‐fuel burners andoxygen lancing.

Exothermic reactions are provided veryimportant energy input.

yg g

At EAF, while the energy inputs are calculated;Total oxygen which blows from burners (burnerTotal oxygen which blows from burners (burnermode & jet mode) and lance manipulator, totalNG which blows from burners, total C which iscoming from with charge injection and scrapcoming from with charge, injection and scrap,total removal elements are going into thecalculations. 13

C H E M I C A L   E N E R G Y

The Advantages of the CB system are:

‐ Operate the furnace with multipoint oxygen injection that allow a more intensive and/or efficient chemical energy utilization.‐ Operate the furnace with multipoint carbon injection to better foam the slag.‐Minimise operation with slag door open reducing the energy losses via f fffurnace off gas.‐ Avoid any manual lancing operations.‐ High lifetime and reliability of the equipment.Full process automation‐ Full process automation.

The CB system has the following benefits on the furnace performance:

‐ Reduced electrical energy requirements, as less energy is lost in the off gases.‐ Better energy and thermal balance inside the furnace.‐ High flexibility and high efficiency on chemical energy utilisation.

14

Page 8: Energy Optimization at Eaf

C H E M I C A L   E N E R G Y

Along with the main target, the other reasons for using chemical energy for melting are:‐much greater flexibility of processes with regard to raw materials and energy availability‐ increased productivity while simultaneously improved energy efficiency

The complete system installed on the furnace enables the following functions:The complete system installed on the furnace enables the following functions:‐ Fuel utilization: the fuel burners are installed onto the cold spots in order to balance the totalenergy input into the furnace on the basis of the process requirements.‐ Steel bath refining: the multipoint oxygen injection allows for fast and homogeneous bath‐ Steel bath refining: the multipoint oxygen injection allows for fast and homogeneous bathdecarburization and superheating.‐ Slag foaming: the checking of the covering of the bath and the arc by a suitable management ofthe carbon injectionthe carbon injection.

Burner oxygen;yg ;‐ Burner fuel (Natural Gas, LPG, CH4, etc.);‐ Lance oxygen;‐ Carbon injection.

15

C H E M I C A L   E N E R G Y

To reduce the power on time, the electrical energy input to the furnace must be rather aggressive.The correct power program must be used and is designed to balance both electrical and chemical(burner and lance) power inputs. In the early stages of melting a short arc is selected to avoidexcessive damage to the roof panels from arc flare. This slight reduction in the initial power ishowever compensated for by the CB burner‐injector units which are fired very quickly during initialarcing and maximize the energy input to the cold scrap.

Sl f i i t l i t t if i i t b i t i d th h t th h t ASlag foaming is extremely important if an aggressive arc is to be maintained throughout the heat. Asthe scrap level reduces in the furnace and flat bath conditions are approached the height of thefoaming slag must be increased to completely submerge the arc and prevent damage to the watercooled panelscooled panels.

16

Page 9: Energy Optimization at Eaf

C H E M I C A L   E N E R G Y

REMOVAL OF ELEMENTS C Si and MnREMOVAL OF ELEMENTS C, Si and MnAll of the heats of formation of the oxides are exothermic so oxidation of the elements actuallyhelps to raise the temperature of the bath. In addition the formation of CO helps to stir the bath andhomogenise it whilst promoting further slag‐metal reactions The heats of formation can behomogenise it whilst promoting further slag metal reactions. The heats of formation can becalculated if the Wt% of the element in the molten bath is known.

2Al(l) + 2/3O2(g) = Al2O3  ΔHR = ‐402  Kcal/mol( ) / (g) /Si(l) + O2(g) = SiO2  ΔHR = ‐226  Kcal/molMn(l) + 1/2O2(g) = MnO ΔHR = ‐97.45  Kcal/mol2C + O2(g) = 2CO (g)  ΔHR = ‐28  Kcal/mol(g) (g)2Fe + O2(g) = 2FeO  ΔHR = ‐63.5 Kcal/mol

Carbon alone is not enough to create a foaming slag. Often the chemistry of the slag itself is ignored. The CO bubbles generated in the bath from direct oxidation of carbon, or those created in the slag by mixing C and O or reducing FeO will all escape from the slag very quickly unless the slag composition is correct.

17

C H E M I C A L   E N E R G Y

The system has below mentioned results:y

‐ Increase of production

‐ Reduction of production cost

Reduction of electric energy‐ Reduction of electric energy

‐ Reduction of tap to tap time

‐ Reduction of electrode consumption

‐ Better efficiency of the carbon

‐ Better homogenization of the meltg

‐ Low investment cost* According to temperature and flowing rate these values can be changed 18

Page 10: Energy Optimization at Eaf

N EW   C O N C E P T S

S c r a p P r e ‐He a t i n g S y s t em s

On e C h a r g e EA F Some new technologies and conceptsare developled by providers of steel

E P C   S y s t emmaking plants.

Which one is the right investment for you?

CVS has a new concepts and advises to reduce

the energy consumption of EAF.

19

S C R A P   P R E ‐ H E AT I N G   S Y S T E M

15 20 % of contained energy as 100 150kwh/t in EAF during the oparation is gone out via duct15 – 20 % of contained energy as 100 ‐ 150kwh/t in EAF during the oparation, is gone out via ductemissions.

CVS scrap pre‐heater is a system which utilizes thisheat energy to heat scrap in a bucket before chargedinto the EAF and thus contributes towards to energy

isaving.

Evacuated gas from the EAF is flowed to theEvacuated gas from the EAF is flowed to thecombustion chamber, and via the second out waywith another duct pipes, hot gas is flowed to thescrap buckets, gone into bucket to heat scraps andscrap buckets, gone into bucket to heat scraps andafter that gone out from bottom of scrap bucket andvia duct pipes, mentioned gases are gone to the FTPafter gives existing heats to the scraps.g g p

20

Page 11: Energy Optimization at Eaf

S C R A P   P R E ‐ H E AT I N G   S Y S T E M

Preheating is burned by mixing with the gas fromthe EAF. This enables to eliminate an air pollutionafter dust collector.

By provision of preheating fan, existing fumetreatment plant can employ the scrap pre‐heaterwithout modification.

As the system is fully automatically operated, thissystem does not require additional worker.EAF ti ill t b i t t d th hEAF operation will not be interrupted even thoughthe preheating system run into a trouble.

Recycling method of preheating system can be controlled separately from dust collector system.

P dj t t f th h ti t t t th b k t th b k tProper adjustment of the preheating temperature prevents the scrap bucket the scrap bucketfrom being deformed.

21

S C R A P   P R E ‐ H E AT I N G   S Y S T E M

SpecificationsScrap Preheating system for improved efficiency of MeltshopEasy SolutionLow Investment CostBetter OperationAdaptable for Existing AutomationMaintenance Friendly

Main Profit: Preheated scrap average temperature is between 150°C ‐ 200°C h f i i k h/

P h ti t

The amount of energy saving is 20 – 30 kwh/ton in practice.

Preheating system:

‐ Inlet temperature of preheater: approx. 800ºC – 200º C

Outlet tempearture of preheater: approx 250º C – 50º C‐ Outlet tempearture of preheater: approx. 250 C – 50 C

‐ Temperature of preheated scrap: approx. 400º C – 100º C

‐ Temperature at combustion chamber inlet widely varies between 1200º C to 300º C according to the time and conditions of the steelmaking stages. 22

Page 12: Energy Optimization at Eaf

O N E   C H A R G E   E A F

23

O N E   C H A R G E   E A F

Our invention makes possible the continuous melting of ferrous materials such as sponge iron scrapOur invention makes possible the continuous melting of ferrous materials such as sponge iron, scrap

iron or iron ore in an electric arc furnace so that the electric arc is never turned off nor is the power

ever reducedever reduced.

Our invention comprises an electric arc furnace for continuous

charging of ferrous materials and semi continuous tapping ofcharging of ferrous materials and semi continuous tapping of

molten steel when it is adequately refined.

24

Page 13: Energy Optimization at Eaf

O N E   C H A R G E   E A F

Most modern furnaces are designed to operate with a minimum of back‐charges. This isg p gadvantageous because charging is a dead‐time where the furnace does not have power on andtherefore is not melting. Minimizing these dead times helps to maximize the productivity of thefurnace. In addition, energy is lost every time when the furnace roof is opened.This can amount to 10–20 kWh/ton for each occurrence.

Most operations aim for 2 to 3 buckets of scrap perMost operations aim for 2 to 3 buckets of scrap per

heat and will attempt to blend their scrap to meet

this requirement Our invention achieve a singlethis requirement. Our invention achieve a single

bucket charge.

25

O N E   C H A R G E   E A F

Constant flat bath allows for high electrical efficiency if a good foamy slag is maintained !g y g y gOtherwise ‐ damage to refractory, accelerated delta wear, increased electrodeconsumption, decreased yield, increased power consumption, increased wear on oxygenlancelance.

Specific Objectives of New Process‐ Lower specific capital costs‐ Lower primary energy consumption‐ High productivity/low conversion costg p y‐ Flexibility in choice of feed materials‐ Lower T‐T‐T closer‐Maintain maximum process flexibilityMaintain maximum process flexibility‐ Increase product quality while maintaining cost competitiveness‐More environmentally friendly and meet environmental requirements at minimum costMaximizing power input to the EAF by using a combination of energy sources‐Maximizing power input to the EAF by using a combination of energy sources

‐ Optimized energy use and electrical power supply optimized to minimize losses26

Page 14: Energy Optimization at Eaf

O N E   C H A R G E   E A F

This invention offers many features that are not available in the present art: 

‐ the charge is continuous and several types of materials can be charged simultaneously;

‐ the required melting time is reduced because the furnace works continuously; 

‐ heat and emissions released into the environment are reduced because the furnace always works 

with closed cover; 

‐ all motions required for charging, melting, refining and tapping the steel are automated;

‐ the furnace tilting motion enables the steel to be refined during the melting process thus assuring 

a precise control of the steel temperature and composition;

d d d d d h f f ld d‐ dust dispersion is reduced and, therefore, transformation yield is improved; 

‐Modern operations aim for a tap‐to‐tap time of less than 45‐50 minutes. We aim for achieving tap‐

t t ti f 40 t 45 i tto‐tap times of 40 to 45 minutes. 

27

O N E   C H A R G E   E A F

Low Powered EAF

Inputs /ton kWh %UHP  EAFUHP  EAF

InputsInputs /ton/ton kWhkWh %%

CVSCVS EAFEAF

InputsInputs /ton/ton kWhkWh %%p

Electrical 580 82

Chemical 125 18

Total 705 100

InputsInputs /ton/ton kWhkWh %%

ElectricalElectrical 420420 6565

ChemicalChemical 190190 3030

BurnerBurner 3030 55

InputsInputs /ton/ton kWhkWh %%

ElectricalElectrical 383800 6565

ChemicalChemical 190190 3030

BurnerBurner 3030 55Outputs

Steel 365 52

Slag 80 11

l i l

BurnerBurner 3030 55

TotalTotal 640640 100100

OutputsOutputs

SteelSteel 365365 5858

BurnerBurner 3030 55

TotalTotal 660000 100100

OutputsOutputs

SteelSteel 365365 5858Electrical 90 13

Misc 80 11

Offgas 50 7

C Water 40 6

SteelSteel 365365 5858

SlagSlag 6565 1010

MiscMisc 1515 22

OffgasOffgas 130130 2020

SteelSteel 365365 5858

SlagSlag 6565 1010

MiscMisc 110        0        22

OffgasOffgas 110000 2020C Water 40 6 OffgasOffgas 130130 2020

C WaterC Water 6565 1010

OffgasOffgas 110000 2020

C WaterC Water 60     60     1010

28

Page 15: Energy Optimization at Eaf

E P C :   E N V I R O NM E N TA L   P R E H E AT I N G   &C O N T I N U O U S C H A R G I N G S Y S T E MC O N T I N U O U S   C H A R G I N G   S Y S T E M

29

E P C   S Y S T E M

CVS MAKINA has a commercial cooperation with KR Tec company which has developed aNew Generation concept in Arc Furnace Steelmaking, ENVIRONMENTAL PREHEATING &CONTINUOUS CHARGING SYSTEM (EPC).

Idea behind the challenge is to recover the heat lost to FTP system by the application ofScrap Preheating.

The EPC System combines the advantages of thepreheating efficiency of the chamber and thecontinuous scrap feedingcontinuous scrap feeding.

The EPC System is a new generation of economicalarc furnacearc furnace.

EPC system overcomes all the missing items of theexisting Preheating system.existing Preheating system.

30

Page 16: Energy Optimization at Eaf

E P C   S Y S T E M

One of the issues of the EPC System is to charge the scrap independent of the electric arc furnacetaken into consideration the environmental aspects.taken into consideration the environmental aspects.

The EPC System is installed beside the EAF and the preheated scrap can be charged continuously bythe telescopic feeder system in the melting chamber during Power On.

Even during charging of the scrap basket into the EPC System, the system is always airtight and asmall amount of dust can only escape. Furthermore, the design has been considerably simplified toincrease the reliability and the profitability of the investment, reducing the ROI by less than 12months.

31

E P C   S Y S T E M :   A D VA N TA G E S

ENERGY SAVINGENERGY SAVINGThe EPC reduces the electric energy consumption by approx. 80‐100 kWh/t compared to the conventional EAF. 

INDEPENDENT SCRAP CHARGINGCharging of the scrap basket is done with power‐on and independently from the furnace operation. g g p p p y pThis improves the operation and reduce the Power off time 

HIGHER PRODUCTIVITYDue to shorter power‐on and power‐off times. The productivity of the furnace can be increased bymin. 20 % compared to the conventional EAF.

HIGHER RETURN ON INVESTMENTTh EPC S t f t l i t d t th h ti ff t F th hi hThe EPC System features lower conversion cost due to the preheating effect. Furthermore higherproductivity because of less power‐on and power‐off are assured.

32

Page 17: Energy Optimization at Eaf

E P C   S Y S T E M :   R E S P E C T   T O   N AT U R E

MINIMUM DUST EMMISIONDuring charging procedure the system/pre‐heating chamber is always in airtight situation which reflects a minimum of pollution in the meltshop.

LOW FTP CAPACITY REQUIREMENTFume Treatment System capacity is reduced thank to the completely closed operation and flat bath condition.

LOW DOWNTIMES & MAINTENANCENo critical mechanical parts such as fingers, conveyors, water cooling which cause unforeseen t d i tstoppages and maintenance.

ADAPTABLE TO CONVENTIONAL METHODOperation can be changed immediately to Conventional method by opening of the off gas bypassOperation can be changed immediately to Conventional method by opening of the off gas ‐ bypass flap.

LESS FLICKERLESS FLICKERRelated to the flat bath operation, preheated scrap and the constant energy input, a reduced flicker and less noise generation will be achieved. 33

E P C   S Y S T E M :   B E N E F I T S   R E G A R D I N G  E N V I R O NM E N TE N V I R O NM E N T

Charging with airtight system

Mi i f d i h iMinimum fume during scrap charging

Cleaner working areag

Min. 30% less off gas

Min. 30 % less dust at the filter

Less noise  (melting of preheated scrap)

Respect of most environmental standards

34

Page 18: Energy Optimization at Eaf

E P C   S Y S T E M :   F E AT U R E S

Flat bath operation

Controlled scrap quantity input throughtelescopic feeder system

Charging during power on

Preheating temperature controlled by PLC

Minimized off gas volume related to airtight systemsystem

35

E P C   S Y S T E M

The scrap basket will be charged into a drawer of the EPC system which is in waiting position.

While this position the front wall of the drawer is closing the preheating chamber and themelting process in the EAF and preheating doesn`t have to be interrupted.

After filling of the drawer by the scrap basket a slide gate on top of the EPC System will be closed.

Than the drawer will be forwarded by hydraulic cylinders to the preheating chamber and thescrap falls smoothly inside the pre‐heating chamber where it will be preheated.

If the drawer is in front position, the back wall of it, is closing to the pre‐heating chamber.

A special design of the off gas duct together with a water cooled regulation flap allows to controlthe preheating effect in the pre‐heating chamber.

36

Page 19: Energy Optimization at Eaf

E P C   C H A R G I N G   H O P P E R I N

P R E H E A T I N G   P O S I T I O NC H A R G I N G P O S I T I O N

37

E P C   T E L E S C O P I C   F E E D E R I N

S T A R T P O S I T I O N F R O N T P O S I T I O N

38

Page 20: Energy Optimization at Eaf

E P C   S Y S T E M :  MA I N   C OM P O N E N T S

C L O S I N G S L I D E G A T EB Y P A S S S Y S T E M C H A R G I N G G A T EB Y P A S S S Y S T E M

O F F G A S

O F F G A SR E G U A T I O N

F U N N E L

C H A R G I N G H O P P E R

R E G U L A T I O N F L A P

T E L E S C O P I C S C R A P F E E D E R S Y S T E M

E P C S Y S T E M T R A V E L L I N G F R A M E

39

E P C   S Y S T E M   3 D   V I E W S

40

Page 21: Energy Optimization at Eaf

E P C   S Y S T E M   3 D   V I E W S

41

P R O C E S S   S T E P S   O F   E P C

R e f i n i n g   p h a s e   o f   E A F

‐Preheating of 1st bucket of next heat in pre‐heating chamber‐Charging of next bucket into charging hopper 42

Page 22: Energy Optimization at Eaf

P R O C E S S   S T E P S   O F   E P C

C h a r g i n g o f   P r e h e a t i n g C h a m b e rg g g

‐Moving of charging hopper into pre‐heating chamber‐Preheating of 2nd  bucket of next heat in pre‐heating chamber‐Off gas flap of by pass system closed 43

P R O C E S S   S T E P S   O F   E P C

P r e h e a t i n g i n s i d e   E P Cg

‐Start feeding of preheated scrap after tapping‐Pre‐heating chamber half empty hopper can move backward to waiting position

44

Page 23: Energy Optimization at Eaf

P R O C E S S   S T E P S   O F   E P C

P r e h e a t i n g i n s i d e   E P Cg

S b k t i iti iti‐Scrap bucket in waiting position‐Continuous feeding of scrap during power on‐Control of preheating scrap temperature with by‐pass regulation flap 45

P R O C E S S   S T E P S   O F   E P C

C h a r g i n g o f   U p p e r H o p p e r E P C

‐Start feeding of preheated scrap‐Opening of sliding gate on top‐Charging of next bucket into charging hopper

46

Page 24: Energy Optimization at Eaf

P R O C E S S   S T E P S   O F   E P C

P a r k i n g P o s i t i o n o f   E P Cg

‐EPC system is moving backward on wheel mechanism underneath only formaintenance purpose

47

O P E R AT I O N A L   C Y C L E   D I A G R A MW I T H E P CW I T H   E P C

E A F C A P A C I T Y 1 0 0 T O N

700

T R A N S F O R M E R C A P A C I T Y 1 0 0 M V A

500

600

LIQUID STEEL

400 SCRAP WEIGHT IN FIRST CHAMBER

200

300 SCRAP TEMP IN FIRST CHAMBER

100

SCRAP WEIGHT IN SECOND CHAMBER

-

0 5 10 15 20 25 30 37 42 47 52

48

Page 25: Energy Optimization at Eaf

L I Q U I D   S T E E L   L E V E L   D U R I N G   C Y C L EW I T H E P CW I T H   E P C

140

120

E A F C A P A C I T Y1 0 0 T O N

E A F C A P A C I T Y1 0 0 T O N

100

T R A N S F O R M E R C A P A C I T Y

1 0 0 M V A

T R A N S F O R M E R C A P A C I T Y

1 0 0 M V A

60

80

LIQUID STEEL

40

SCRAP WEIGHT IN FIRST CHAMBER

20

SCRAP WEIGHT IN SECOND CHAMBER

RE

PA

RA

TI

AP

PIN

G

EPARATION

1 HEAT CYCLE

-

0 5 10 15 20 25 30 37 42 47 52

PR

TA

PRE

49

C O M PA R I S O N   O F   P R O D U C T I V I T Y

P R O D U C T I O N D I F F E R E N C E

E P C - E A F C O N V E N T I O N A L E A F

T r a n s f o r m e r M V A 1 0 0 1 0 0

T a p - w e i g h t t 1 0 0 1 0 0

N e t w o r k i n g h o u r s h / y 7 . 2 0 0 7 . 2 0 0

P o w e r - o n T i m e m i n 3 2 3 6

P f f i i 6 1 1P o w e r - o f f t i m e m i n 6 1 1

T a p - t o - T a p - t i m e m i n 3 8 4 7

P r o d u c t i o n / h o u r t / h 1 5 7 , 8 9 1 2 7 , 6 6

P r o d u c t i o n / y e a r t / y 1 1 3 6 8 4 2 9 1 9 1 4 9P r o d u c t i o n / y e a r t / y 1 . 1 3 6 . 8 4 2 9 1 9 . 1 4 9

D i f f e r e n c e t / y 2 1 7 . 6 9 3

20 % PRODUCTIVITY INCREASEWITH EPC SYSTEM

(100 TON – 100 MVA FURNACE)50

Page 26: Energy Optimization at Eaf

C OM PA R I S O N   O F   O P E R AT I O N A L   C O S T

O P E R A T I O N A L C O S T D I F F E R E N C EC O N V E N T I O N A L

U n i t

U n i t p r i c e E P C - E A FC O N V E N T I O N A L

E A F

E U R C o n s u m p t i o n E U R / t C o n s u m p t i o n E U R / t

E l e c t r i c a l e n e r g y K W h / t 0 0 6 3 0 0 0 1 8 0 3 8 0 0 2 2 8E l e c t r i c a l e n e r g y K W h / t 0 , 0 6 3 0 0 , 0 1 8 , 0 3 8 0 , 0 2 2 , 8

O x y g e n N m ³ / t 0 , 2 0 3 8 , 0 7 , 6 3 8 , 0 7 , 6

E l e c t r o d e s k g / t 4 , 0 0 1 , 3 5 , 2 1 , 6 6 , 4

F u e l N m ³ / t 0 , 2 0 3 , 0 0 , 6 6 , 0 1 , 2

C h a r g e d c a r b o n k g / t 0 , 2 0 - - 7 , 0 1 , 4

I n j e c t e d c a r b o n k g / t 0 2 0 1 5 0 3 0 8 0 1 6I n j e c t e d c a r b o n k g / t 0 , 2 0 1 5 , 0 3 , 0 8 , 0 1 , 6

S c r a p % 0 , 3 0 0 , 8 9 3 3 7 , 1 0 , 8 9 3 3 7 , 1

D u s t r e m o v a l k g / t 0 , 2 0 1 2 , 0 2 , 4 1 8 , 0 3 , 6

L i m e k g / t 0 , 1 0 3 8 , 0 3 , 8 3 8 , 0 3 , 8

T O T A L 3 7 7 , 7 3 8 5 , 5

S a v i n g s E U R / t 7 8S a v i n g s E U R / t 7 , 8

8 €/T SAVING IN OPERATIONAL COST WITH EPC SYSTEM(100 TON – 100 MVA FURNACE)

51

C O M PA R I S O N   O F   C O N V E R S I O N   C O S T S

E P C - E A F C O N V E N T I O N A L E A FE P C E A F C O N V E N T I O N A L E A F

A n n u a l P r o d u c t i o n t / y 1 . 1 3 6 . 8 4 2 9 1 9 . 1 4 9

O p e r a t i o n a l C o s t E U R / t 3 7 8 3 8 5

S a l e s P r i c e E U R / t 4 2 0 4 2 0S a l e s P r i c e E U R / t 4 2 0 4 2 0

C A L C U L A T I O NA n n u a l O p e r a t i o n a l

C o s t E U R / y - 4 2 9 . 3 6 0 . 9 9 3 - 3 5 4 . 3 1 2 . 2 9 3

A n n u a l F i x e d C o s t E U R / y - 3 0 . 0 0 0 . 0 0 0 - 3 0 . 0 0 0 . 0 0 0T o t a l C o s t f o r

P r o d u c t i o n E U R / y - 4 5 9 . 3 6 0 . 9 9 3 - 3 8 4 . 3 1 2 . 2 9 3

S a l e s R e v e n u e E U R / 4 7 7 4 7 3 6 8 4 3 8 6 0 4 2 5 5 3S a l e s R e v e n u e E U R / y 4 7 7 . 4 7 3 . 6 8 4 3 8 6 . 0 4 2 . 5 5 3

A n n u a l P r o f i t E U R / y 1 8 . 1 1 2 . 6 9 1 1 . 7 3 0 . 2 6 1

S a v i n g w i t h E P C E U R / y 1 6 . 3 8 2 . 4 3 0

AROUND 16 MILLION EUR ANNUAL SAVING WITH EPC SYSTEMWITH EPC SYSTEM

(100 TON – 100 MVA FURNACE)52

Page 27: Energy Optimization at Eaf

C OM PA R I S O N   O F   R I O

R O I C O M PA R I S O N

25

30

R O I C O M PA R I S O N

15

20

10

15

on

Eu

ro

EPC - EAF

ROI FOR EPC-EAF

-

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mill

i

CONV EAF

-10

-5

ROI FOR CONV-EAF

-15 Time (month)

53

E P C   S Y S T E M   P OW E R   F L U C T I O N S

VOLTAGE, CURRENT AND POWER FLUCTUATIONS;

BEFORE AND AFTER SCRAP PREHEATING

54

Page 28: Energy Optimization at Eaf

R E S U LT S

I n v e s tm e n t C o s t s o f  New   C o n c e p t s

A d v a n t a g e s Wh i c h A r e Mo r e T h a n C omp e t i t o r s

CVS provides tailor‐made different alternative solutions according to all your requests andrequirements, as below;

‐ LayoutT f I‐ Target of Investment

‐ Process Conditions‐ Budget

55

Y o u r   O n e ‐ S t o pS o l u t i o n P r o v i d e r f o rS o l u t i o n P r o v i d e r f o r

M e l t s h o p s &   R o l l i n g  M i l l s

56

Page 29: Energy Optimization at Eaf

R E F E R E N C E S   ‐ M E LT S H O P S

CapacityYear of start

Customer Country Location Product Production unitsYear of start‐

up(tpy)

ABINSK ELECTROMET. PLANT Russia Abinsk 1.300.000 Billets Complete Meltshop 2012

ENERGOMASSPETSTAL Ukrain Kramatorsk 600.000 Ingot Complete Meltshop 2011

TAYBAH STEEL CO. Egypt Al Mansura 450.000 Billets Complete Meltshop 2011

ZELJEZARA NIKSIC AD. Montenegro Niksic 500.000 BilletsEAF, FTP, WTP, AUX 2010

TOSCELIK A.S. Turkey Iskenderun 1.400.000 Billets&Slab Complete Meltshop 2009

KHAZAR BILLET CO. Iran Rasht 800.000 Billets EAF, LF, FTP, AUX 2008

CONSOLITED JORDANIAN STEEL CO. Jordan Amman 200.000 Billets Complete Meltshop 2007

UNITED IRON & STEEL MGF. CO. Jordan Amman 250.000 Billets EAF, LF, CCM, FTP 2007

NURSAN METALURJI A S Turkey Iskenderun 700 000 Billets Complete Meltshop 2006NURSAN METALURJI A.S. Turkey Iskenderun 700.000 Billets Complete Meltshop 2006

CER CELIK A.S. Turkey Izmir 500.000 Billets EAF, LF, FTP, AUX 200657

R E F E R E N C E S   ‐ E A F

Customer Country LocationTap Capacity Shell dia. Transformer Year of 

start‐up(tons) (mm) (MVA) start‐up(tons) (mm) (MVA)

ABINSK ELECTROMET. PLANT Russia Abinsk 130 7.200 130 2012

ENERGOMASSPETSTAL Ukrain Kramatorsk 70 5.300 52 2011

TAYBAH STEEL CO. Egypt Al Mansura 60 5.300 52 2011

ZELJEZARA NIKSIC AD Montenegro Niksic 65 5 300 52 2010ZELJEZARA NIKSIC AD. Montenegro Niksic 65 5.300 52 2010

DHT METAL  Azerbaıjan Baku 30 3.900 25 2009

UNITED IRON & STEEL MFG CO. Jordan Amman 50 5.000 45 2009

TOSCELIK A.S. Turkey Iskenderun 155 7.300 130 2009

KHAZAR BILLET CO Iran Rasht 100 6 100 78 2008KHAZAR BILLET CO. Iran Rasht 100 6.100 78 2008

NURSAN METALURJI A.S. Turkey Iskenderun 130 7.200 135 2008

SOCIETE UNIVERS ACIER (SET 2) Morocco Casablanca 50 4.800 50 2008

SOCIETE UNIVERS ACIER (SET 1) Morocco Casablanca 50 4.800 50 2008

DETAL LTD. Azerbaijan Baku 85 6.000 80 2008DETAL LTD. Azerbaijan Baku 85 6.000 80 2008

YESILYURT DEMIR CELIK A.S. Turkey Samsun 90 6.100 100 2008

COJSCO Jordan Amman 35 4.500 45 2007

IZMIR DEMIR CELIK A.S. Turkey Izmir 130 6.500 120 2007

BAKU POLAT DOKME LTD. Azerbaijan Baku 25 3.900 20 2007BAKU POLAT DOKME LTD. Azerbaijan Baku 25 3.900 20 2007

AL HADDAD STEEL CO. Palestine Hibron 12 3.200 5 2007

CER CELIK A.S. Turkey Izmir 45 5.000 45 2007

NURSAN METALURJI A.S. Turkey Iskenderun 75 5.500 100 2006

YESILYURT DEMIR CELIK A.S. Turkey Samsun 60 5.300 50 2006YESILYURT DEMIR CELIK A.S. Turkey Samsun 60 5.300 50 2006

EKINCILER A.S. Turkey Iskenderun 90 6.100 85 2005

KAPTAN DEMIR CELIK A.S. Turkey Istanbul 120 6.300 120 2005

JORDAN IRON & STEEL CO. Jordan Amman 13,5 3.100 7 200558

Page 30: Energy Optimization at Eaf

R E F E R E N C E S   ‐ S E C O N D A R Y  M E TA L U R G Y

Customer Country LocationCapacity Transformer Year of 

start‐up(tons) (MVA) start up(tons) (MVA)

ABINSK ELECTROMET. PLANT Russia Abinsk 130 24 2012

WONKANG METAL CO. S.Korea Seoul 16 VD/VOD 2011

CEMTAS Turkey Bursa 30 5 2011

ORUMIEH STEEL I O i h 25 5 2011ORUMIEH STEEL Iran Orumieh 25 5 2011

ENERGOMASSPETSAL Ukrain Kramatorsk 140 24 2011

TAYBAH STEEL CO. Egypt Al Mansura 60 10 2011

KUMAS MANYEZIT (SET 2) Turkey Kutahya Producing Fused Mgo 2010

KARDEMIR A.S. Turkey Karabuk 120 22 2009

TOSCELIK A.S. Turkey Iskenderun 155 24 2009

KUMAS MANYEZIT (SET 1) Turkey Kutahya Producing Fused Mgo 2008

DETAL LTD Azerbaijan Baku 85 16 2008DETAL LTD. Azerbaijan Baku 85 16 2008

KHAZAR BILLET CO. Iran Rasht 100 20 2008

YESILYURT DEMIR CELIK A.S. Turkey Samsun 90 16 2007

COJSCO Jordan Amman 35 8 2007

UNITED IRON & STEEL MGF CO. Jordan Amman 50 12 2007

COCSCO Jordan Zarqa 35 8 2007

JORDAN IRON & STEEL CO. Jordan Amman 15 5 2006

COJSCO Jordan Amman 45 8 2006

CER METAL A.S. Turkey Izmir 45 12 2006

NURSAN METALURJI A.S. Turkey Iskenderun 100 18 2005

KROMAN CELIK A.S. Turkey Kocaeli 100 18 199859

R E F E R E N C E S   ‐ C C M

Casting Nr ofSections

Year ofCustomer Country Location

CastingRadius

Nr. of Strands

ProductYear of start‐up

(mm)

ABINSK ELECTROMET. PLANT Russia Abinsk 9 m 6 Square billets 130 ‐ 200 2011

ARCELOR MITTAL TEMIRTAU Kazakhstan Temirtau 9 m 6 Square billets 100 ‐ 200 2011

TAYBAH STEEL CO. Egypt Al Mansura 6 m 4 Square billets 100 ‐ 160 2011

ZELJEZARA NIKSIC AD. Montenegro Niksic 5 m 4 Square billets 100 ‐ 140 2010

TOSCELIK A.S. Turkey Iskenderun 9 m 6 Square billets 130 ‐ 200 2009

KHAZAR BILLET CO. Iran Rasht 6 m 6 Square billets 100 ‐ 160 2008

YESILYURT DEMIR CELIK A.S. Turkey Samsun 8 m 6Square & round 

billets100 ‐ 200 2007

d b llCOJSCO Jordan Amman 6 m 3 Square billets 100 ‐ 160 2006

CER METAL A.S. Turkey Izmir 5 m 4 Square billets 140 2006

CER METAL A S Turkey Izmir 5 m 3 Square billets 200 2006CER METAL A.S. Turkey Izmir 5 m 3 Square billets 200 2006

NURSAN METALURJI A.S. Turkey Iskenderun 5 m 6 Square billets 100 ‐ 150 200560

Page 31: Energy Optimization at Eaf

R E F E R E N C E S   ‐ F T P

Customer Country LocationPlant Capacity

TechnologyYear of 

Customer Country Location Technologystart‐up(m3/h)

ABINSK ELECTROMET. PLANT Russia Abinsk 2.300.000 Pulse‐jet FF 2012

JSC DNEPROSPETSSTAL Ukraine Zaporozhye 1.200.000 Pulse‐jet FF 2011

ENERGOMASSPETSTAL Ukraine Kramatorsk 1 200 000 Pulse jet FF 2011ENERGOMASSPETSTAL Ukraine Kramatorsk 1.200.000 Pulse‐jet FF 2011

TAYBAH STEEL CO. Egypt Al Mansura 600.000 Pulse‐jet FF 2011

ZELJEZARA NIKSIC AD. Montenegro Niksic 1.200.000 Pulse‐jet FF 2010

DHT METAL  Azerbaijan Baku 650.000 Pulse‐jet FF 2009j j

BILECIK DEMIR CELIK Turkey Bilecik 500.000 Pulse‐jet FF 2009

TOSCELIK A.S. Turkey Iskenderun 2.300.000 Pulse‐jet FF 2009

KARDEMIR A.S. Turkey Karabük 220.000 Pulse‐jet FF 2009

SOCIETE UNIVERS ACIER Morocco Casablanca 2.350.000 Pulse‐jet FF 2009

ALEZZ STEEL AL DEKHILIA (Set 2) Egypt Alexandria 1.400.000 Reverse‐air FF 2009

ALEZZ STEEL AL DEKHILIA (Set 1) Egypt Alexandria 1.400.000 Reverse‐air FF 2009

COJSCO Jordan Amman 600.000 Pulse‐jet FF 2006

YESILYURT DEMIR CELIK A.S. Turkey Samsun 2.000.000 Pulse‐jet FF 2006

CER CELIK ENDUSTRISI A.S. Turkey Izmir 1.200.000 Pulse‐jet FF 2006

NURSAN METALURJI A.S. Turkey Iskenderun 1.000.000 Pulse‐jet FF 2005

CER METAL A.S. Turkey Izmir 1.500.000 Pulse‐jet FF 200561

R E F E R E N C E S   ‐ MH S

Customer Country Location ProductsCustomer Country Location Products

ABINSK ELECTROMET. PLANT Russia Abinsk MHS for EAF,Scrap bucket, LF

CMC SISAK Crotia Sisak MHS for EAF,Scrap bucket, LF

KARDEMIR A.S. Turkey Karabuk MHS for LF

TOSCELIK A.S. Turkey Iskenderun MHS for EAF,Scrap bucket, LF

TAYBAH STEEL CO. Egypt Al Mansura MHS for EAF, LF

COJSCO Jordan Amman MHS for EAF,Scrap bucket, LF

KROMAN  Turkey Kocaeli MHS for LF

62

Page 32: Energy Optimization at Eaf

R E F E R E N C E S   ‐ O F F   G A S   S Y S T E M S

C C i dCustomer Country Location Products

ISDEMIR Turkey Iskenderun Skirt & Moveable Hood & Fixed Hood

THYSSEN‐KRUPP AST Italy Terni WC hood for AOD

ARCELOR MITTAL ANNABA Algeria Annaba SMS 1 ‐Moveable Hood & Fixed Hoodg

ARCELOR MITTAL ANNABA Algeria Annaba SMS 2‐ Skirt & Movable Hood & Fixed Hood

SALZGITTER FLACHSTAHL Germany Dusseldorf Off Gas Stack Cover

63

R E F E R E N C E S   ‐ S PA R E   PA R T S

Customer Country

ACCIAIERIE VALBRUNA Italy EKINCILER DEMIR CELIK Turkey

Customer Country

MITTAL SKOPJE Macedonia

Customer Country

AL RAJHI Saudi Arabia

AL TUWAIRQI Saudi Arabia

ALL EZZ GROUP Egypt

ALSTOM POWER Italy

ELECTROSTAL Ukraine

ELWOOD STEEL Belgium

ENGINEERING STEEL BELGIUM

Belgium

MITTAL SKOPJE Macedonia

MOBARAKEH STEEL Iran

NATIONAL STEEL Saudi Arabia

NOVOROS METALL LTD. Russia

NURSAN METALURJI AS TurkeyAMK ALCHEVSK Ukraine

ARCELOR MITTAL RUHRORT Germany

ARCELOR MITTAL TEMIRTAU Kazakhstan

ARCELORMITTAL France

ERVIN AMASTEEL Belgium

ETEAM Italy

FERRIERE NORD Italy

FOLDER Denmark

NURSAN METALURJI AS Turkey

QATAR STEEL Qatar

REVYAKINO Russia

SALZGITTER FLACHSTAHL Germany

DUNKERQUEFrance

ARCELORMITTAL HAMBURG Germany

ARCELORMITTAL SKOPJE Macedonia

ARCOSTEEL Egypt

GERLAFINGEN Switzerland

GORKY STEEL Russia

G‐STEEL Thailand

HALYVOURGIA THESSALIAS SA Greece

SHARQ SOHAR Oman

SIDENOR SA Greece

SIDERURGICA BALBOA Spain

SIVAS DEMIR CELIK Turkey

BAKU STEEL Azerbaijan

BENTELER Germany

BH STEELBosniaHerzegovina

HALYVOURGIA THESSALIAS SA Greece

HALYVOURGIKI Greece

INDUSTRIAS NACIONALES Dominican Rep.

IZMIR DEMIR CELIK Turkey

JORDAN IRON & STEEL CO J d

SOHAR STEEL Oman

SONASID Morocco

SOVEL Greece

SUEZ STEEL EgyptCARINOX Belgium

CEMTAS Turkey

CER METAL AS Turkey

CHARTER STEEL USA

JORDAN IRON & STEEL CO. Jordan

KAPTAN DEMIR CELIK Turkey

KARABUK DEMIR CELIK Turkey

KOMOTEK Bulgaria

gyp

SWISS STEEL Suisse

THAME STEEL United Kingdom

TIMKEN USA

TOSYALI HOLDING TurkeyCMC SISAK Croatia

COJSCO Jordan

CORUS Holland

DUFERCO Belgium

KREMIKOVSKI Bulgaria

KURUM STEEL Albania

MAKEEVKA STEEL WORKS Ukraine

MED STEEL  Syria

TOSYALI HOLDING Turkey

UNITED IRON & STEEL MGF. CO. Jordan

YESILYURT Turkey

ZELJEZARA NIKSIC AD Montenegro64