79
Energy and GHG Emissions in British Columbia 1990 - 2010 John Nyboer and Maximilian Kniewasser Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser University June 2012 Environment Canada, Natural Resources Canada, Aluminium Industry Association, Canadian Chemical Producers’ Association, Canadian Construction Association, Canadian Foundry Association, Canadian Gas Association, Canadian Petroleum Products Institute, Canadian Steel Producers Association, Cement Association of Canada, Forest Products Association of Canada, Mining Association of Canada, Pacific Institute for Climate Solutions. Sponsors of CIEEDAC:

Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Energy and GHG Emissions in British Columbia1990 - 2010

John Nyboer and Maximilian KniewasserCanadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC)

Simon Fraser University

June 2012

Environment Canada, Natural Resources Canada, Aluminium Industry Association, Canadian Chemical Producers’ Association, Canadian Construction Association, Canadian Foundry Association, Canadian Gas Association, Canadian Petroleum Products Institute, Canadian Steel Producers Association, Cement Association of Canada, Forest Products Association of Canada, Mining Association of Canada, Pacifi c Institute for Climate Solutions.

Sponsors of CIEEDAC:

Page 2: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate SolutionsUniversity of VictoriaPO Box 1700 STN CSCVictoria, BC V8W 2Y2

Phone 250-853-3595 Fax 250-853-3597E-mail [email protected] pics.uvic.ca

The Pacific Institute for Climate Solutions gratefully acknowledges the generous endowment provided by the Province of British Columbia through the Ministry of Environment in 2008. This funding is enabling ongoing independent research aimed at developing innovative climate change solutions, opportunities for adaptation, and steps toward achieving a vibrant low-carbon economy.

Page 3: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  ii    

Executive  Summary  

The  Canadian  Industrial  Energy  End-­‐use  Data  and  Analysis  Centre  (CIEEDAC)  prepared  this  report  on  energy  in  British  Columbia  for  the  Pacific  Institute  for  Climate  Solutions  (PICS).  The  report  is  divided  into  three  sections.  

The  first  section  provides  an  overview  of  information  relating  to  energy  supply  and  use,  greenhouse  gas  emissions  and  energy  efficiency  in  British  Columbia.  It  includes  total  energy  use  and  emissions  data  for  all  sectors  and  some  industries  from  1990  to  2010,  as  well  as  energy  intensity  indicators  based  on  population  and  monetary  production  (Gross  Domestic  Product,  GDP).  Appendix  A  contains  detailed  data  tables  disaggregated  by  economic  sectors,  including  Total  Industrial  (and  its  major  sub-­‐sectors),  Residential,  Commercial/Institutional  and  others.  

The  Statistics  Canada  (STC)  publication  Report  on  Energy  Supply  and  Demand  (RESD)  is  the  primary  data  source  for  energy  used  in  this  report.  It  disaggregates  data  by  province  to  the  3-­‐digit  level  of  the  North  American  Industry  Classification  System  (NAICS)  for  a  limited  number  of  industries.  GHG  emissions  data  were  obtained  from  Environment  Canada’s  annual  National  Inventory  Report  (EC  2011).    This  report  provided  both  the  coefficients  to  calculate  the  GHG  emissions  generated  in  the  various  BC  sectors  and  an  absolute  value  of  emissions  against  which  the  calculated  data  could  be  compared.  Production  and  population  data  were  both  retrieved  from  the  Canadian  Socio-­‐economic  Information  Management  (CANSIM)  system,  an  STC  online  database.  

Between  1990  and  2010,  total  energy  use  in  British  Columbia  rose  15%.  In  2010,  total  use  was  1,070  PJ.  Over  this  time,  population  grew  by  38%  and  GDP  by  82%.    Given  the  greater  growth  rates  in  population  and  GDP  compared  with  energy  use,  energy  intensity  declined  by  16%  per  person  and  37%  per  dollar  from  1990.  

Natural  gas,  electricity  and  refined  petroleum  products  (RPPs)  are  the  major  fuels  of  the  BC  economy.  Use  of  natural  gas  in  2010  was  3%  lower  than  it  was  in  1990  while  electricity  use  increased  12%  and  RPP  use  24%.  Coal  demand,  although  representing  a  small  portion  of  total  energy  use,  increased  the  most,  about  232%.1    Hydroelectricity  continued  to  dominate  electricity  production  but  lost  ground  to  thermal  generation,  which  was  at  its  highest  point  since  1990  (16%).    Electrical  generation  using  heavy  fuel  oil  (HFO)  and  diesel/light  fuel  oil  (LFO)  lost  ground  to  “other”  (a  mix  of  fuels  not  defined  in  RESD).  Natural  gas’s  share  of  generation  decreased  as  well,  but  total  generation  from  natural  gas  plants  more  than  doubled.  

Total  Industrial  energy  use  decreased  by  1%  and  use  in  Total  Manufacturing  decreased  8%.  Energy  use  in  Transportation  increased  43%  while  Agriculture  increased  78%  due  to  a  greater  use  of  natural  gas.  Energy  use  in  the  Commercial/Institutional  sector  stayed  level  compared  to  1990  and  in  the  Residential  sector  energy  use  rose  13%.  

                                                                                                               1  These  data  are  under  review  and  may  change.    Some  provincial  agencies  indicate  that  coal  data  from  STC  do  not  currently  correspond  to  what  has  been  noted  by  these  agencies.  

Page 4: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  iii    

GHG  emissions  fluctuated  over  the  study  period,  peaking  in  2004  and  finishing  the  period  21%  above  1990.    GHG  emissions  intensity  per  capita  decreased  by  12%  since  1990  and  GHG  intensity  based  on  GDP  decreased  25%  over  that  period.  From  2009  to  2010,  GHG  emissions  per  capita  decreased  to  9.79  tonnes  CO2e  from  11.12  tonnes  CO2e.    An  analysis  of  GHG  emissions  by  sector  reveals  that  emissions  in  the  following  sectors  increased  significantly:  Electricity  (24%),  Transportation  (44%)  and  Agriculture  (63%).  GHG  emissions  decreased  noticeably  in  the  following  sectors:  Residential  (15%),  Commercial/Institutional  (27%)  and  Total  Industrial  (30%).    

GHG  emissions  resulting  from  the  production  of  electricity  fluctuated  greatly  over  the  study  period,  mainly  due  to  variations  in  the  generation  of  electricity  in  the  non-­‐utility  sub-­‐sector.  

The  second  section  of  this  report  summarizes  the  latest  version  of  CIEEDAC’s  cogeneration  database  as  of  March  2012.2  It  identifies  the  size  (electrical  capacity,  kWe

3)  and  system  operator/thermal  host  of  industrial,  commercial/institutional  and  district  energy  cogeneration  facilities  in  British  Columbia.  It  also  includes  performance  characteristics  of  cogeneration  systems  operating  in  British  Columbia.  

In  the  past,  CIEEDAC  relied  on  secondhand  data  sources  such  as  Statistics  Canada,  corporate  websites,  private  consultants  and  electric  utilities  to  identify  cogeneration  facilities  and  compile  data  on  their  characteristics.  For  the  last  four  years,  CIEEDAC  has  gathered  data  on  cogeneration  systems  directly  from  the  system  operators.  A  questionnaire  goes  out  to  each  facility,  seeking  verification  of  existing  data  and  requesting  new  information  about  each  site.  The  resulting  database  is  increasingly  reliable  and  contains  data  that  enhances  understanding  of  the  opportunities  for  and  limitations  of  cogeneration  in  Canada  and  its  provinces.  

The  CIEEDAC  database  currently  contains  information  on  6.6  GWe  of  cogeneration  capacity  in  Canada,  with  British  Columbia  contributing  1.02  GWe,  or  16%  of  total  national  capacity.  The  Pulp  and  Paper  sector  accounts  for  54%  of  total  operational  capacity  in  British  Columbia  and  has  a  cogeneration  level  of  0.55  GWe.  

The  third  section  of  this  report  presents  information  on  renewable  energy  in  British  Columbia.  A  database  of  facilities  was  established  in  2002,  using  data  from  Statistics  Canada  and  other  sources.  The  results  are  presented  from  the  most  recent  data  survey  of  two  years  ago,  including  data  on  the  mix  of  renewable  energy  by  resource/technology  type,  scale  (capacity  and  annual  generation),  owner/operator,  green  certification  status  and  vintage.    

Renewable  energy  provided  between  19%  and  21%  of  the  energy  produced  in  BC  in  2009  (based  on  extrapolations  of  data  from  survey  respondents).  The  installed  renewable  electricity  facilities  represented  almost  88%  of  the  provincial  total  electricity  capacity  in  that  year.  The  installed  renewable  electrical  capacity  of  12.8  GW  is  

                                                                                                               2  Refer  to  www.cieedac.sfu.ca  for  more  information  on  cogeneration  data.  3  1,000  W  of  electric  capacity  

Page 5: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  iv    

dominated  by  hydroelectricity  at  96.6%  and  cogeneration  from  biomass  wood  residue  at  3.3%  of  the  total,  with  biogas  and  solar  photovoltaic  sources  accounting  for  only  about  0.1%  of  BC’s  installed  capacity.  

Based  on  data  from  STC’s  RESD  and  CANSIM  databases,  electricity  generation  in  BC  was  the  source  of  about  1.45  Mt  of  greenhouse  gases  (CO2e)  in  2009.  This  is  a  relatively  low  value  compared  with  many  other  provinces  in  Canada  and  is  well  below  the  national  average.  It  results  from  BC’s  high  percentage  of  renewable  sources  of  electricity.  If  these  facilities  were  replaced  with  combined-­‐cycle  gas  turbines,  GHG  emissions  from  electricity  generation  would  likely  be  as  high  as  29.3  Mt  CO2e.  

   

Page 6: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  v    

Acknowledgments  

CIEEDAC  wishes  to  thank  the  Pacific  Institute  for  Climate  Solutions,  Natural  Resources  Canada  and  Environment  Canada  who  support  the  work  of  CIEEDAC  through  their  sponsorship  and  financial  contributions,  part  of  which  funded  this  report.  

                                                       

 This  project  was  undertaken  with  the  financial  support  of  the  Government  of  Canada.  Ce  projet  été  realisé  avec  l’appui  financier  du  Gouvernement  du  Canada.      

Page 7: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  vi    

Table  of  Contents  

Executive  Summary  ......................................................................................................  ii

Acknowledgments  .......................................................................................................  v

Table  of  Contents  ........................................................................................................  vi

Introduction  ..............................................................................................................  viii

1 Energy  Use  and  GHG  Emissions  in  BC’s  Economic  Sectors,  1990  to  2010  ................  1 1.1 Objectives  ...............................................................................................................  1 1.2 Methodology  ..........................................................................................................  1 1.2.1 Data  Sources  .....................................................................................................  1 1.2.2 Sectors  and  Industries  Included  in  This  Section  ................................................  2 1.2.3 Intensity  Indicators  ...........................................................................................  3

1.3 Energy  Intensity,  1990–2010  ..................................................................................  3 1.4 Energy  Use  by  Fuel  Type  .........................................................................................  5 1.5 Energy  Use  by  Sector  ..............................................................................................  6 1.5.1 Energy  Use  in  Industry  ......................................................................................  7 1.5.2 Commercial  and  Residential  Sectors  ..............................................................  10

1.6 Electricity  Production  ...........................................................................................  10 1.6.1 Total  Primary  and  Secondary  Production  .......................................................  10 1.6.2 Utility  and  Non-­‐utility  Production  ..................................................................  13

1.7 Greenhouse  Gas  Emissions,  1990–2010  ...............................................................  14 1.7.1 GHG  Emissions  by  Fuel  ...................................................................................  15 1.7.2 GHG  Emissions  by  Sector  ................................................................................  17 1.7.3 GHG  Emissions  from  Electricity  Generation  ...................................................  18

1.8 Conclusion  and  Summary  .....................................................................................  18

2 Cogeneration  Facilities  in  British  Columbia,  2010  ..................................................  20 2.1 Objectives  .............................................................................................................  20 2.2 Methodology  ........................................................................................................  21 2.2.1 Data  Sources  ...................................................................................................  21

2.3 Cogeneration  Results,  2010  ..................................................................................  21 2.3.1 Sector  Results  .................................................................................................  22 2.3.2 Cogeneration  System  Performance  Characteristics  .......................................  22

2.4 Conclusion  and  Summary  .....................................................................................  23

3 Renewable  Energy  in  British  Columbia  ..................................................................  25 3.1 Objectives  .............................................................................................................  25 3.2 Background  on  Renewable  Energy  Technologies  .................................................  25

Page 8: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  vii    

3.2.1 Hydroelectricity  ..............................................................................................  26 3.2.2 Wind  Power  ....................................................................................................  26 3.2.3 Biomass  and  Biogas  ........................................................................................  26 3.2.4 Solar  Photovoltaic  ...........................................................................................  27 3.2.5 Geothermal  and  Earth  Energy  ........................................................................  27 3.2.6 Others  .............................................................................................................  27

3.3 Methodology  ........................................................................................................  28 3.3.1 Data  Sources  ...................................................................................................  28

3.4 Renewable  Energy  in  British  Columbia,  1990–2009  .............................................  30 3.4.1 Capacity  ..........................................................................................................  30 3.4.2 Annual  Generation  of  Energy  .........................................................................  32 3.4.3 Capacity  Utilization  .........................................................................................  33 3.4.4 Characteristics  of  Electricity  Generators  ........................................................  34 3.4.5 Characteristics  of  Thermal  Energy  Generators  ...............................................  35

3.5 Comparison  with  the  Rest  of  Canada  ...................................................................  36 3.6 Conclusion  and  Summary  .....................................................................................  36

4 Bibliography  .........................................................................................................  37

List  of  Appendices  ......................................................................................................  39

Appendix  A:  Energy  Use  Data  Tables  ..........................................................................  40

Appendix  B:  Cogeneration  Data  Tables,  2010  .............................................................  58

Appendix  C:  Renewable  Energy  Data,  2009  ................................................................  59    

Page 9: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  viii    

Introduction  

The  Canadian  Industrial  Energy  End-­‐use  Data  and  Analysis  Centre  (CIEEDAC)  prepared  this  report  for  the  Pacific  Institute  for  Climate  Solutions  (PICS).  While  CIEEDAC’s  annual  reports  on  energy  efficiency,  cogeneration  and  renewable  energy  contain  some  of  the  information  presented  here,  this  report  provides  information  specific  to  British  Columbia.  

Both  Canadian  industry  and  regional  Canadian  governments  increasingly  see  the  need  for  accurate  data  on  historic  energy  use  and  greenhouse  gas  (GHG)  emissions.  These  data  are  used  to:  

1) determine  trends  in  energy  supply,  energy  use  and  GHG  emissions  within  Canada  as  a  method  of  determining  the  impacts  of  changes  in  technology,  processes  and  attitudes  about  energy;  

2) compare  Canadian  industrial,  residential,  commercial,  transportation,  agricultural  and  utility  performance  to  that  of  other  regions  and  countries;  and  

3) monitor  the  environmental  impacts  of  energy  use,  such  as  levels  of  GHG  emissions.  

To  draw  proper  conclusions  from  the  data,  industry  and  governments  need  to  know  that  the  values  reflect  reality  as  closely  as  possible.  This  report  assesses  the  data  and  interprets  it  in  a  useful  and  accessible  format  in  three  overview  sections:  energy  use  and  emissions  in  BC’s  economic  sectors,  cogeneration  in  British  Columbia  and  renewable  energy  in  British  Columbia.    

The  first  section  draws  on  Statistics  Canada  data  to  track  energy  supply  and  use,  energy  intensity  and  greenhouse  gas  emissions  from  1990  to  2010.  This  section  deals  with  fossil  fuels  and  electricity  generation  for  all  sectors,  with  additional  details  provided  for  selected  industries.  The  second  section  uses  CIEEDAC’s  cogeneration  database  to  describe  cogeneration  in  British  Columbia  from  2000  to  2010.  The  database  draws  on  information  from  operators  of  cogeneration  facilities,  industry  sources  and  Statistics  Canada  data.  The  third  section  describes  the  different  types  of  renewable  energy  sources  and  then  presents  an  overview  of  renewable  resources  and  technology  in  British  Columbia.  The  information  is  drawn  from  a  survey  of  operators,  along  with  data  from  Statistics  Canada  and  other  sources.  However,  owing  to  funding  limitations,  no  survey  was  conducted  this  year.  The  most  recent  data  in  this  section  are  for  2009.    

About  CIEEDAC  

CIEEDAC  focuses  on  energy  information  relevant  to  Canada’s  industrial  sector.  One  of  CIEEDAC’s  primary  goals  is  to  expand  and  improve  the  existing  knowledge  on  energy  supply  and  use,  greenhouse  gas  emissions,  cogeneration  and  renewable  energy  by  establishing  or  enhancing  processes  for  the  regular  and  timely  collection  of  reliable  data.  CIEEDAC  provides  a  range  of  services  to  industry  and  government.  It  performs  specific  retrieval  and  analyses  from  its  databases  based  on  requests  from  interested  parties.  It  also  produces  various  reports  each  year,  presenting  the  latest  data  on  energy  use  and  

Page 10: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

  ix    

related  information  for  the  Canadian  industrial  sector.  When  doing  provincial  reports,  CIEEDAC  broadens  its  scope  to  include  reviews  of  other  sectors  in  addition  to  the  industrial  sector.  These  include  the  commercial,  residential,  agricultural  and  transportation  sectors.  

About  PICS  

PICS  partners  with  governments,  the  private  sector,  other  researchers  and  civil  society  to  research,  monitor  and  assess  the  potential  impacts  of  climate  change  and  to  assess,  develop  and  promote  viable  mitigation  and  adaptation  options  to  better  inform  climate  change  policies  and  actions.  

PICS  is  hosted  and  led  by  the  University  of  Victoria  in  partnership  with  BC’s  other  research-­‐intensive  universities  (Simon  Fraser  University,  the  University  of  British  Columbia  and  the  University  of  Northern  British  Columbia).  Building  on  the  strengths  of  its  partner  universities,  PICS  works  to  develop  innovative  climate  change  solutions,  seek  new  opportunities  for  positive  adaptation  and  lead  the  way  to  a  vibrant  low-­‐carbon  economy.  

 

Page 11: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

1    

1 Energy  Use  and  GHG  Emissions  in  BC’s  Economic  Sectors,  1990  to  2010  This  first  section  of  the  report  presents  information  available  from  Statistics  Canada  (STC)  on  energy  use  in  British  Columbia  and  various  sectors  of  the  BC  economy.  It  includes  a  time  series  of  gross  energy  use  and  provides  energy  and  emissions  intensity  indicators  using  population  and  economic  output  (Gross  Domestic  Product  [GDP])  as  denominators  in  the  intensity  ratios.  Detailed  data  are  provided  in  Appendix  A.  

1.1 Objectives  The  objectives  of  the  first  section  of  this  report  are  to:  

• demonstrate  the  quantity  and  quality  of  data  available  for  all  sectors  and  industries  in  British  Columbia;  

• identify  trends  in  energy  supply,  use  and  greenhouse  gas  (GHG)  emissions  within  aggregate  sectors  and  industries  in  the  region;  and  

• identify  weaknesses  with  respect  to  data  collection  and  the  impact  they  have  on  portraying  a  consistent  picture  of  energy  supply,  use  and  GHG  emissions.  

1.2 Methodology  1.2.1 Data Sources

Energy  Data  STC  receives  its  energy  supply  and  use  data  from  a  number  of  surveys.    Each  supplier  of  energy  (oil  products,  natural  gas,  coal,  electricity,  etc.)  provides  data  on  energy  used  to  prepare  its  product  for  sale.  It  also  provides  distribution  data  on  who  receives  the  energy  product  after  processing.    These  data  are  collectively  aligned  in  an  energy-­‐balanced  Report  on  Energy  Supply  and  Demand  (RESD).    Because  of  the  significant  use  of  energy  in  the  industrial  sector,  STC  obtains  data  from  the  Industrial  Consumption  of  Energy  (ICE)  survey.  Released  in  the  summer  of  every  year  for  the  previous  year,  ICE  data  provides  specific  details  on  energy  use  in  physical  units.  

Recently,  STC  has  worked  to  harmonize  the  RESD  and  ICE  data  more  completely.    This  has  significantly  affected  the  historic  data  as  STC  is  updating  data  back  to  1995  in  the  harmonization  process.  This  report  highlights  some  of  the  changes  that  have  already  occurred  as  a  result  of  STC’s  effort.  

The  RESD  data  are  disaggregated  by  province,  but  industry  disaggregations  are  not  nearly  as  detailed  as  the  North  American  Industry  Classification  System  (NAICS)  allows  or  as  ICE  provides.4  RESD  data  are  used  in  this  report  because  they  form  a  balanced  energy  database.  RESD  attributes  all  energy  produced  and  used  to  the  various  sectors  in  British  Columbia  and  the  other  provinces.  

                                                                                                               4  ICE  data  are  never  released  by  province  or  any  other  region,  only  nationally.  

Page 12: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

2    

GHG  Emissions  Data  Environment  Canada  (EC)  publishes  its  National  Inventory  Report  (EC  2011)  annually,  17  months  after  the  end  of  the  year.    This  publication  provides  data  on  process  emissions  of  GHGs,  as  well  as  coefficients  that  can  be  used  to  determine  CO2,  CH4  and  N2O  emissions  based  on  fuels  used.    The  coefficients  are  defined  in  units  of  emissions  per  physical  unit  of  energy.  In  the  analysis  used  in  this  report,  physical  units  of  energy  are  multiplied  by  these  coefficients  to  determine  the  emissions  generated  in  the  use  of  the  fuel.  

There  are  a  number  of  issues  related  to  the  analysis  of  GHG  emissions.    These  include  the  definition/handling  of  process  versus  fuel-­‐based  GHG  emissions;  the  degree  to  which  the  energy  (and  thus  estimated  GHG)  data  are  considered  confidential;  the  calculation  of  indirect  emissions  from  the  purchase  of  steam  or  electricity;5  the  role  of  electricity  production  in  the  industry;  and  the  difference  in  levels  of  energy  use.    Some  of  these  are  addressed  throughout  the  section.  

Economic  Output  Data  The  Canadian  Socio-­‐economic  Information  Management  (CANSIM)  system  is  a  computerized  database  and  information  retrieval  system  updated  weekly  by  STC.  The  database  contains  nearly  600,000  time  series  of  data  covering  a  wide  variety  of  social  and  economic  aspects  of  Canadian  life  that  can  be  viewed  in  a  number  of  different  dimensions  including  geographical  regions.  CANSIM  Table  379-­‐0025  contains  GDP  in  2002  constant  dollars,  disaggregated  by  province,  and  organized  according  to  the  NAICS  system.  Data  that  populate  this  database  come  from  a  survey  circulated  annually  by  STC.  Constant  dollar  data  is  derived  by  multiplying  current-­‐period  quantities  of  production  by  their  prices  in  the  base  year.  

This  report  includes  information  on  industry  output  in  monetary  units,  which  represents  industry’s  contribution  to  GDP  and  was  used  to  calculate  intensity  ratios.  CIEEDAC  did  not  review  or  critique  these  data,  unlike  the  energy  and  emissions  data  used  in  the  report.  

1.2.2 Sectors and Industries Included in This Section Table  1.1  lists  the  BC  sectors  and  industries  that  are  included  in  this  section  of  the  report.  Energy  use  data  are  available  for  these  sectors  and  industries  and  were  used  to  calculate  GHG  emissions.  

                                                                                                               5  While  data  are  available  to  calculate  emissions  per  unit  of  electricity  generated,  determining  the  carbon  content  of  imported  energy  and  its  role  in  the  total  energy  picture  increases  the  complexity  of  the  calculation.    Further,  credit  for  exported  electricity,  if  that  is  allowed  to  form  part  of  the  calculation,  complicates  the  estimation  even  more.  

Page 13: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

3    

Table  1.1.  British  Columbia  Sectors  and  Industries  Included  in  This  Report  

Sector/Industry   Sector/Industry  Primary  and  Secondary  Production  of  Electricity    Total  Industrial   Total  Manufacturing,  cont.  Total  Mining,  Oil  and  Gas  Extraction   Other  Manufacturing  Total  Manufacturing   Forestry  

Pulp  and  Paper   Construction  Smelting  and  Refining,  Non-­‐ferrous   Transportation  Cement   Agriculture  Petroleum  Refining   Residential  Chemicals   Commercial,  Institutional  and  Public  Administration  

1.2.3 Intensity Indicators Intensity  ratios  (energy  over  output,  population  over  output)  are  useful  for  illustrating  general  trends  over  time.  Indicators  based  on  physical  rather  than  monetary  units  tend  to  be  a  better  proxy  for  technological  or  process  innovations  because  monetary  units  are  affected  by  many  factors  not  associated  with  energy,  such  as  costs  of  labour  or  selling  price  of  the  final  product.6  However,  monetary  data  are  generally  more  available  and  provide  a  generic  unit  for  estimating  intensity  of  a  combination  of  industries  that  have  different  physical  units  (e.g.,  tonnes  of  cement  compared  to  numbers  of  cars).  Although  physical  production  values  are  available  for  some  sectors,  further  research  is  required  before  these  data  can  be  used.  Measures  of  energy  intensity  provided  in  this  report  should  be  viewed  with  caution  as  they  are  based  on  monetary  measures  of  output.  

1.3 Energy  Intensity,  1990–2010  This  section  reports  on  changes  in  total  energy  use  and  GDP  for  BC  industries  from  1990  to  2010.  It  also  includes  a  brief  discussion  of  population  growth  in  relation  to  these  changes.  Appendix  A  contains  detailed  tables  of  the  data  used.  

Figure  1.1  presents  BC’s  energy  use  (PJ),  population  growth  (millions)  and  GDP  (in  2002  $billions)  for  1990  to  2010.  Total  energy  use  includes  confidential  consumption,  biomass  used  in  the  Pulp  and  Paper  sector,  and  energy  used  to  make  secondary  electricity.  

                                                                                                               6See  An  Assessment  of  Data  on  Output  for  Industrial  Sub-­‐Sectors  (CIEEDAC,  1993)  for  more  information  on  the  issues  of  physical  versus  monetary  units  for  calculating  intensity  indicators  and  on  CIEEDAC's  recommendations  of  appropriate  units.  

Page 14: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

4    

Figure  1.1.  Energy  Use,  Population  and  GDP  for  BC,  1990–2010  

Sources:  STC  RESD;  CANSIM  Table  379-­‐0025  and  Table  051-­‐0001  

Total  energy  use  increased  steadily  until  2000  and  then  appears  to  have  levelled  off  somewhat  from  2002  until  2007.  Energy  use  decreased  after  2007  when  the  economy  (GDP)  flattened  and  dropped.  Energy  use  finished  the  period  15%  above  1990  levels  and  2.6%  above  2009.  

Both  population  and  GDP  grew  consistently  over  the  study  period.  Population  increased  with  an  average  annual  growth  rate  of  just  over  1.5%,  ending  the  period  at  37.6%  above  1990.  GDP  had  an  average  annual  growth  rate  of  just  over  2.9%  and  ended  the  period  at  82.4%  above  its  1990  level.  The  population  grew  1.6%  during  2010,  while  GDP  rose  by  3.2%  (8%  in  industrial  sectors).  

CIEEDAC  used  GDP  and  population  data  to  calculate  the  energy  intensity  indicators  plotted  in  Figure  1.2.  These  values  are  ratios  of  energy  use  per  unit  of  GDP  or  population.  Intensities  are  presented  as  indices,  normalized  to  1990,  which  helps  demonstrate  changes  from  the  base  line.  The  indices  show  different  rates  of  change,  although  both  are  trending  downward  (becoming  less  intense).  Between  1990  and  2010,  energy  intensity  based  on  population  decreased  16%,  while  the  intensity  based  on  GDP  decreased  37%.  From  2009  to  2010,  energy  intensity  based  on  population  increased  marginally  (1%),  while  intensity  based  on  GDP  decreased  marginally  (<1%).  These  indicators  suggest  that,  since  1990,  energy  use  per  person  and  per  dollar  produced  both  decreased  but  at  different  rates.  This  may,  in  fact,  be  true,  but  other  factors  may  also  have  caused  the  change  (e.g.,  changes  in  industry  structure,  changes  in  service  economy  versus  manufacturing  economy,  changes  to  value-­‐added  that  do  not  affect  energy).  

Page 15: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

5    

Figure  1.2.  Energy  Intensity  Indicators  for  BC,  1990–2010  

Sources:  Calculated  from  STC  RESD;  CANSIM  Table  379-­‐0025  and  Table  051-­‐0001  

1.4 Energy  Use  by  Fuel  Type  

Figure  1.3  presents  energy  use  by  fuel  type.  Refined  petroleum  product  (RPP)  use  declined  marginally  during  the  2008  downturn  but  increased  in  2010  and  is  now  24%  above  1990  levels.    Of  all  energy  sources,  this  one  appears  to  have  been  the  least  affected  by  the  economic  changes  in  2008  and  2009.    That  said,  most  RPPs  dropped  in  2008  but  diesel  and  jet  fuel  were  up,  while  in  2009  most  RPPs  were  up  while  diesel  and  jet  fuel  dropped.  Natural  gas  use  in  2010  was  3%  lower  than  it  was  in  1990,  down  nearly  5%  from  2009.  Electricity  use  increased  steadily  from  1990  to  2007,  a  peak  year,  and  declined  10%  in  2008,  remaining  relatively  flat  since  then  at  a  level  12%  higher  than  1990.    

Figure  1.3.  Energy  Use  by  Fuel  Type  in  BC,  1990–2010  

Note:  “Petroleum  Products”  (=  RPPs)  includes  still  gas,  gasoline,  kerosene,  diesel,  light  and  heavy  fuel  oil,  petroleum  coke,  aviation  gasoline  and  aviation  turbo  fuel;  “Other”  includes  coal,  coke,  gas  plant  natural  gas  liquids  (NGLs),  steam,  wood  waste  (hog  fuel)  and  spent  pulping  liquor.  Source:  STC  RESD  

Page 16: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

6    

Not  visible  in  Figure  1.3  as  a  separate  category,  coal  use  increased  dramatically  between  1990  and  2010.  Although  proportionally  smaller  than  RPPs  and  natural  gas,  it  had  the  greatest  increase  (232%)  over  the  period  but  declined  nearly  35%  from  its  peak  in  2006.7    While  RESD  provides  no  indication  of  which  industry  uses  this  fuel  type  (due  to  confidentiality),  it  is  likely  the  cement  industry,  which  began  using  coal  instead  of  natural  gas  at  the  beginning  of  the  millennium.  Appendix  A  contains  a  table  of  energy  use  by  fuel  type.  

1.5 Energy  Use  by  Sector  Figure  1.4  presents  a  comparison  of  energy  use  in  British  Columbia’s  major  economic  sectors.  All  sectors  display  some  variation  in  use  between  1990  and  2010.    The  impact  of  the  economic  downturn  of  2008–2009  is  most  obvious  in  the  Total  Industrial  and  Commercial/Institutional  sectors.  

Figure  1.4.  Energy  Use  in  the  Major  Economic  Sectors  of  BC,  1990–2010  

Source:  STC  RESD  

The  Total  Industrial  sector’s  variable  but  generally  rising  trend  in  energy  use  fell  dramatically  from  2007  to  2008.    It  showed  signs  of  increase  again  in  2010  to  a  point  1%  lower  than  1990.  The  sector  is  an  aggregation  of  Construction,  Forestry,  Total  Manufacturing,  and  Mining/Oil  and  Gas  Extraction.  It  increased  energy  use  marginally  in  2009  and  2010  but  was  still  18%  below  peak  levels  in  2000.    The  Commercial/Institutional  sector  also  increased  until  the  economic  downturn  where,  like  the  Total  Industrial  sector,  consumption  fell  to  a  point  about  the  same  as  1990.  Sectors  that  showed  relatively  significant  increases  over  the  period  were:  Residential  at  13%,  Transportation  at  43%,  Electricity  generation  at  70%  and  Agriculture  at  78%.  The  data  for  the  Agriculture  sector  showed  a  significant  increase  in  2010  due  to  a  10-­‐fold  increase  in  the  use  of  natural  gas.  Because  of  changes  in  STC’s  methodology,  these  data  should  be  treated  with  caution.  Since  2000,  energy  use  in  the  Agriculture  sector  has  been  quite  flat.                                                                                                                  7  We  see  various  views  on  the  increase  in  coal  amongst  reviewers  of  this  report.    These  data  will  be  reviewed.  

Page 17: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

7    

Energy  use  for  secondary  electricity  generation  fluctuated  significantly,  increasing  by  64%  over  the  report  period  and  by  5%  in  2010.8  In  2010,  16%  of  BC’s  electricity  came  through  thermal  generation,  representing  a  total  increase  in  thermal-­‐sourced  electricity  production  of  168%  over  the  study  period.  

1.5.1 Energy Use in Industry

Figure  1.5  presents  the  contributions  of  BC’s  industrial  sectors  to  Total  Industrial  energy  use.  Total  Industrial  use  was  1.2%  below  1990  levels  at  the  end  of  2010  but  had  increased  6.6%  from  2009.  Energy  use  by  Total  Manufacturing,  which  includes  Pulp  and  Paper,  by  far  its  largest  component,  was  7.7%  lower  than  1990  levels,  but  increased  4%  over  2009.  

Figure  1.5.  Energy  Use  by  Industry  in  BC,  1990–2010  

Source:  STC  RESD  

The  non-­‐manufacturing  industries  are  relatively  tiny  in  comparison.  They  experienced  changes  in  consumption  over  the  period,  but  these  are  not  obvious  in  Figure  1.5  because  of  the  graph’s  scale.  For  example,  he  Forestry  and  logging  and  support  activities  for  forestry  9(hereafter  “Forestry”)  energy  use  increased  fairly  consistently  until  2000  when  a  significant  jump  of  42%  occurred  in  2001.  After  that,  it  was  relatively  flat  until  2008,  when  it  dropped  again  to  2000  levels  and  then  nearly  doubled  that  level  in  2010.  It  finished  the  period  243%  higher  than  1990.  Most  of  the  expansion  occurred  in  diesel  fuel.  The  shifts  seem  to  have  coincided  with  changes  in  STC  data  as  mentioned  earlier  (reconciliation  of  ICE  and  RESD).  

                                                                                                               8  Secondary  electricity  production  is  mainly  from  burning  fuels  (natural  gas,  oil,  diesel,  coal  or  other  fuels)  to  create  steam  in  a  thermal  generation  process.  For  Figure  1.4,  we  also  included  the  electricity  used  by  the  industry  during  its  production  and  distribution.  9  The  industry  designated  Forestry  and  logging  and  support  activities  for  forestry  covers  only  the  extraction  of  forest  products  and  does  not  include  any  processing  that  would  otherwise  be  defined  as  Wood  Products  (dimension  lumber,  panel  board,  plywood,  shakes,  and  the  like)  or  Pulp  and  Paper.  

Page 18: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

8    

Energy  use  in  the  Mining/Oil  and  Gas  Extraction  industry  increased  dramatically  in  recent  years,  finishing  the  period  92%  above  1990  levels.  The  rapid  expansion  of  the  gas  extraction  industry  in  BC  may  be  in  part  responsible  for  this  increase.10  

Energy  use  in  the  Construction  industry  rose  nearly  17%  in  2010  from  2009  (a  very  low  year  due  to  the  economic  decline  of  2008–2009).  Despite  this  rise,  the  Construction  industry  used  23%  less  energy  than  it  did  in  1990.  

Figure  1.6  disaggregates  use  in  Total  Manufacturing  by  each  manufacturing  industry.  Note  that  all  or  most  of  the  data  for  Cement,  Petroleum  Refining  (since  1999),  Chemical  Production  and  Metal  Smelting  are  not  available.  These  industries  contain  too  few  firms  to  allow  for  the  release  of  the  data.    The  aggregate  of  these  in  Total  Manufacturing  showed  use  levels  8%  lower  than  1990.  

Figure  1.6.  Energy  Use  in  Manufacturing  in  BC,  1990–2010  

Source:  STC  RESD  

Pulp  and  Paper,  the  largest  manufacturing  industry  by  far,  consumes  significant  amounts  of  biomass  energy  (spent  pulping  liquor  and  solid  wood  waste).11  Over  the  study  period,  Pulp  and  Paper  showed  cyclical  energy  use  patterns  until  2008,  when  the  drop  was  considerable.  Data  for  the  last  two  years  of  the  period  seem  to  indicate  some  recovery.  At  the  end  of  2010,  energy  use  in  the  Pulp  and  Paper  industry  was  7%  below  1990  levels.  

                                                                                                               10  Data  from  the  Annual  Census  of  Mines,  which  looks  at  the  extraction  of  metal  ores,  non-­‐metallic  ores,  and  sand  and  gravel  pits/quarries,  does  not  show  any  significant  change  in  energy  consumption  in  BC.  While  the  data  source  is  different  than  that  used  in  the  RESD,  it  is  collected  by  STC  on  behalf  of  Natural  Resources  Canada  and  can  be  used  to  indicate  trends.  11  There  are  some  uncertainties  regarding  data  for  spent  pulping  liquor  and  solid  wood  waste  for  1990  and  1991.  Because  of  the  impact  on  energy  consumption  levels,  these  data  were  extrapolated  in  order  to  present  a  more  complete  picture  of  energy  consumption  in  British  Columbia.  

Page 19: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

9    

With  the  most  recent  update  of  STC  RESD  data,  natural  gas  use  in  the  Other  Manufacturing  group  (Food  Processing,  Textiles,  Clothing,  Printing,  Furniture,  Electronics,  etc.)  declined  significantly.    Electricity  and  RPP  use  rose.    As  this  is  the  first  assessment  of  the  reconciliation  of  ICE  and  RESD  data,  a  number  of  uncertainties  arise.    Currently,  it  appears  that  Other  Manufacturing  increased  use  by  14%  over  1990  levels,  rose  6%  from  2009  but,  at  the  end  of  2010,  was  still  58%  below  the  peak  year  of  2001.    Data  show  that  natural  gas  use  in  this  sub-­‐sector  dropped  by  66%  in  2006  from  2007  while  other  fuels  remained  roughly  at  the  same  level.  

Figure  1.7  presents  indicators  of  energy  intensity  by  sector  based  on  GDP,  indexed  to  1990.  Between  1990  and  2010,  energy  intensity  in  the  Total  Industrial  sector  decreased  by  28.5%.  Within  the  sector,  Total  Manufacturing  decreased  by  24%,  and  Construction  decreased  by  54%.  The  energy  intensities  for  Forestry  and  Mining/Oil  and  Gas  Extraction  increased.  The  rapid  increase  in  the  energy  intensity  in  Forestry  was  due  to  very  large  changes  in  diesel  fuel  use  without  any  commensurate  change  in  GDP.    Forestry’s  energy  intensity  climbed  dramatically  between  1995  and  2001  and  again  from  2009  onwards,  finishing  the  period  313%  above  1990  levels. 12  

Figure  1.7.  Industrial  Energy  Intensity  Based  on  GDP  in  BC,  1990–2010  

Sources:  STC  RESD;  CANSIM  Table  379-­‐0025  —  Gross  Domestic  Product  (GDP)  at  basic  prices,  by  NAICS  

As  noted  in  the  methodology  section  1.2,  the  intensity  indicators  provided  here  should  be  treated  with  caution  because  they  are  based  on  monetary  measures  of  output.    As  such,  any  decreases  in  intensity  may  not  be  a  consequence  of  efficiency  improvement  but,  for  example,  may  be  due  to  shifts  in  industry  structure.  

                                                                                                               12  The  rather  significant  rise  in  intensity  is  not  well  understood.    Further  review  with  industry  specialists  is  warranted.  

Page 20: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

10    

1.5.2 Commercial and Residential Sectors

To  calculate  energy  intensity  indicators,  measures  of  production  are  necessary.  However,  no  STC  or  Natural  Resources  Canada  (NRCan)  series  (i.e.,  1990  to  present)  data  on  production,  could  be  found  for  BC’s  commercial  and  residential  sectors.13  There  are  GDP  data  associated  with  commercial  and  residential  activities  that  can  be  used  as  a  surrogate.  The  former  BC  Ministry  of  Energy,  Mines  and  Petroleum  Resources  provided  information  from  BC  Hydro  billing  statistics  as  a  single  point  estimation  of  intensity  based  on  floor  space  for  the  commercial  sector  and  number  of  housing  units  for  the  residential  sector.  In  2001,  the  energy  intensity  levels  for  the  commercial  sector,  based  on  51.94  million  m2  of  commercial  floor  space  and  134  PJ  consumed,  was  2.58  GJ/m2.  

The  first  Commercial  and  Institutional  Building  Energy  Use  Survey  (CIBEUS)  of  2001,  providing  2000  data,  showed  much  less  floor  space  in  the  commercial  sector  (about  27  million  m2)  and  lower  energy  use  (45  PJ),  resulting  in  a  significantly  lower  energy  intensity.    CIEEDAC  is  investigating  the  definition  of  both  floor  space  and  energy  use  in  this  sector.    

For  the  residential  sector,  energy  intensity  in  2001  based  on  1.47  million  residential  units  and  141  PJ  consumed  was  95.86  GJ/unit.  

Energy  use  levels  in  these  two  sectors  are  shown  in  Figure  1.4  above.    

1.6 Electricity  Production  

1.6.1 Total Primary and Secondary Production Electricity  production  is  classified  as  primary  or  secondary.  Primary  electricity  production  is  from  natural  sources,  such  as  hydro,  wind  and  solar  power.  Secondary  electricity  production  is  mainly  from  burning  fuels  (natural  gas,  oil,  diesel,  coal,  biomass  or  other  fuels)  often  to  create  steam  in  a  thermal  generation  process.  

Figure  1.8  shows  that  hydro  electricity  dominates  BC’s  generation  system.  Total  electricity  production  fluctuated  over  time  and,  in  2010,  reached  a  level  4.3%  higher  than  in  1990.  Between  2009  and  2010,  primary  electricity  production  decreased  by  4.9%,  and  secondary  production  increased  by  16%.  

                                                                                                               13  STC  does  have  data  on  number  of  mortgages  approved  by  month  by  region  on  existing  and  new  homes  but  there  are  no  readily  available  data  on  house  numbers  or  area,  commercial  area  or  the  like.  

Page 21: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

11    

Figure  1.8.  Primary  and  Secondary  Electricity  Production  in  BC,  1990–2010  

Source:  STC  RESD  

Figure  1.9  compares  the  mix  of  fossil  and  biomass  fuels  used  to  generate  secondary  electricity  in  BC  between  1990  and  2010.  Over  that  period,  the  major  changes  were  the  increased  use  of  “Other”  fuels  and  the  decreased  use  of  the  remaining  fuels  for  thermal  generation.  “Other”  includes  manufactured  gases,  other  petroleum  products  including  refinery  fuel  gas,  and  other  fuels  not  defined  by  STC.  The  figure  indicates  that  natural  gas  share  decreased  considerably.    In  spite  of  the  reduced  share,  total  generation  from  natural  gas  still  doubled  to  3,400  GWh  in  2010,  rising  marginally  from  2009.  The  market  share  of  wood-­‐  and  spent  pulping  liquor-­‐fired  electricity  plants  decreased  from  42%  in  1990  to  28%  in  2010.  Even  so,  total  electricity  from  wood  and  spent  pulping  liquor  (SPL)  increased  28%  from  2009  (indicating  increased  activity  in  the  industry)  and  79%  from  1990.  The  market  share  of  heavy  and  light  fuel  oil-­‐fired  (HFO,  LFO)  plants  decreased  significantly.  The  market  share  of  HFO-­‐fired  plants  was  less  than  0.5%  and  that  of  diesel/LFO-­‐fired  plants  was  only  1%  of  thermal  generation  in  2010.  

Page 22: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

12    

Figure  1.9.  Electricity  Generation  Mix  by  Fossil  and  Biomass  Fuels  in  BC,  1990  and  2010  

Note:  HFO:  heavy  fuel  oil;  LFO:  light  fuel  oil;  NG:  natural  gas;  SPL:  spent  pulping  liquor  Source:  STC  RESD,  supplemented  by  STC  Electricity  Power  Statistics  

Figure  1.10  shows  annual  production  of  electricity  from  these  secondary  sources  by  utilities  and  by  industry.  Generation  of  this  type  has  been  increasing  over  time  in  both  sectors.  

Figure  1.10.  Generation  of  Secondary  Electricity  from  Fossil  and  Biomass  Fuels  in  BC,  1990  and  2010  

 Note:  Data  for  1997  were  not  published  by  STC.  Source:  STC  RESD,  supplemented  by  STC  Electricity  Power  Statistics  

Page 23: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

13    

1.6.2 Utility and Non-utility Production

Figure  1.11  shows  annual  production  of  electricity  by  utilities  from  1990  to  2010.  During  this  period,  utility  production  ranged  from  74%  to  82%  of  total  grid-­‐connected  electricity  generation  in  British  Columbia.  Fluctuations  in  utility  production  reached  a  peak  in  200714  and  then  decreased  in  2010  to  a  point  7%  above  1990.  Hydroelectric  generation  dominated  BC’s  utility  generation  mix;  its  share  fluctuated  between  87%  and  98%  during  the  study  period.  Total  utility  generation  decreased  1.2%  from  2009,  and  total  hydro  generation  decreased  by  4%.    

Wind  generation  and  independent  power  producers  (IPPs)  have  increasingly  contributed  to  the  province’s  electricity  generation,  first  appearing  in  2009.  IPPs  generated  5%  of  total  electricity  produced  in  the  province  in  2010.  STC  considers  them  part  of  the  utility  classification.  

Figure  1.11.  Utility  Electricity  Production  in  BC,  1990–2010  

Note:  Comb  Turbine:  combustion  turbine,  ICE:  internal  combustion  engine.  Source:  STC  CANSIM  Table  127-­‐0007,  Electric  power  generation,  by  class  of  electricity  producer,  annual  (megawatt  hour)    

Figure  1.12  shows  that  non-­‐utility  production  fluctuated  over  the  study  period  and  reached  its  lowest  level  in  2001.  In  2010,  total  non-­‐utility  production  was  4%  lower  than  1990.    Between  2009  and  2010,  total  non-­‐utility  generation  decreased  6%.  The  dominance  of  hydroelectricity  in  non-­‐utility  generation  diminished  over  time,  from  84%  in  1990  to  74%  in  2010.  Conventional  steam  plants,  however,  increased  in  share  over  the  study  period  and  by  2010  provided  26%  of  total  electricity.  

                                                                                                               14  Figure  1.8  and  Figure  1.10  are  based  on  different  STC  publication  series;  data  discrepancies  may  exist.  

Page 24: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

14    

Figure  1.12.  Non-­‐utility  Electricity  Production  in  BC,  1990–2010  

Note:  Comb  Turbine:  combustion  turbine,  ICE:  internal  combustion  engine.  Source:  STC  CANSIM  Table  127-­‐0007,  Electric  power  generation,  by  class  of  electricity  producer,  annual  (megawatt  hour)    

According  to  STC’s  RESD,  BC’s  non-­‐utility  electricity  generation  by  fossil  fuels  and  wood  fuel  in  2010  was  6,090  GWh.  Most  of  this  electricity  was  cogenerated  at  industrial  plants  (e.g.,  pulp  production  plants)  and  roughly  corresponds  to  the  CIEEDAC  database  on  cogeneration.  

1.7 Greenhouse  Gas  Emissions,  1990–2010  This  section  reports  on  changes  in  fuel-­‐sourced  GHG  emissions  and  GDP  for  BC  economic  sectors  from  1990  to  2010.  It  also  includes  a  brief  discussion  of  population  growth  in  relation  to  these  changes.  Appendix  A  contains  detailed  tables  of  the  data  used.    

CIEEDAC  compared  data  calculated  using  RESD  values  and  the  values  provided  by  Environment  Canada  in  their  National  Inventory  Report  (EC  2011).    The  values  differed  by  an  average  of  about  2.7%  with  a  range  of  0  to  9%.  

Figure  1.13  compares  BC’s  population  growth  (millions),  GDP  (2002  $billions)  and  GHG  emissions  (Mt)  for  the  period  1990  to  2010.  Total  energy  use  from  which  the  emissions  are  calculated  includes  estimates  of  confidential  consumption,  biomass  used  in  the  Pulp  and  Paper  sector15  and  energy  used  to  generate  secondary  electricity.  

As  noted  earlier,  population  and  GDP  grew  consistently  over  the  study  period.  Population  increased  by  38%,  growing  annually  at  a  rate  of  1.5%,  while  GDP  increased  by  82%,  with  an  annual  growth  rate  of  2.9%.  GHG  emissions  fluctuated  over  time,  peaking  in  2004  and  finishing  the  period  21%  above  1990  levels. Emissions  in  2010  were  13%  higher  than  in  2009.  

                                                                                                               15  Biomass  data  are  used  to  calculate  non-­‐CO2  GHG  emissions.    CO2  emissions  from  biomass  are  not  included  because  they  are  considered  neutral  by  convention.  

Page 25: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

15    

Figure  1.13.  Population,  GDP  and  GHG  Emissions  for  BC,  1990–2010  

Sources:  STC  RESD  energy  data  converted  to  GHGs  with  EC  coefficients.  (EC  2011);  CANSIM  Table  379-­‐0025  and  Table  051-­‐0001  

CIEEDAC  used  GDP  and  population  data  to  calculate  the  GHG  emission  intensity  indicators  plotted  as  an  index  in  Figure  1.14.  These  values  are  an  index  of  the  ratios  of  emissions  generated  per  capita  or  unit  of  GDP  and  help  to  demonstrate  changes  from  the  base  year.  The  indices  show  different  rates  of  change.  Between  1990  and  2010,  the  GHG  emissions  intensity  indicator  based  on  population  decreased  12%  and  the  indicator  based  on  GDP  decreased  25%.  These  data  suggest  that,  while  considerably  less  GHG  emissions  were  generated  per  unit  of  value  added,  emissions  per  person  did  not  change  as  much.    It  is  difficult  to  speculate  on  the  reasons  for  these  changes  as  the  link  between  energy  and  GHG  emissions  is  not  always  straightforward.  As  noted  earlier,  issues  related  to  the  analysis  of  GHG  emissions  include  the  definition  of  process  versus  fuel-­‐based  GHG  emissions,  confidentiality  of  energy  and  estimated  GHG  data,  and  the  estimation  of  indirect  emissions  from  steam  or  electricity  purchases.  

Figure  1.14.  GHG  Intensity  Indices  for  BC,  1990–2010  

Sources:  STC  RESD;  CANSIM  Table  379-­‐0025  and  Table  051-­‐0001  

1.7.1 GHG Emissions by Fuel

Figure  1.15  presents  GHG  emissions  by  fuel  type  between  1990  and  2010.    Coal  emissions,  although  proportionally  smaller  than  those  from  RPPs  and  natural  gas,  showed  the  greatest  

Page 26: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

16    

increase  (596%).    Coal-­‐based  GHG  emissions  stand  out  in  that  they  appear  to  be  negative.  This  is  due  to  the  method  used  to  determine  net  supply  for  coal,  which  takes  into  account  exports  and  imports  as  well  as  use.  In  years  when  exports  exceed  availability  (e.g.,  shipment  of  previous  year’s  stock),  the  value  becomes  negative.16    Natural  gas  emissions  increased  3%  in  that  period  but  were  4%  below  2009.  RPP  emissions  increased  15%,  with  a  5%  increase  from  2009  to  2010.  

Figure  1.15.  GHG  Emissions  by  Type  of  Energy  in  BC,  1990–2010    

Source:  STC  RESD  energy  data  converted  to  GHG  emissions  using  EC  coefficients  (EC,  2011)  

Figure  1.16  shows  the  contributions  of  the  different  types  of  fuels  to  GHG  emissions  in  2010,  highlighting  the  contributions  of  RPPs.  

                                                                                                               16  CIEEDAC  is  still  reviewing  these  negative  values  with  STC.  

Page 27: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

17    

Figure  1.16.  Fuel  Types  Contributing  to  GHG  Emissions  in  BC,  2010  

Note:  HFO:  heavy  fuel  oil;  LFO:  light  fuel  oil;  Pet  coke:  petroleum  coke;  Ref  LPG:  refined  liquid  petroleum  gas  Source:  STC  RESD  

1.7.2 GHG Emissions by Sector Figure  1.17  compares  GHG  emissions  in  BC’s  major  economic  sectors.  Most  sectors  displayed  noticeable  changes  in  energy  use  and  thus  in  GHG  emissions  between  1990  and  2010.  The  following  sectors  showed  relatively  significant  increases  in  GHG  emissions:  Electricity  (24%),  Transportation  (44%)  and  Agriculture  (63%).    Sectors  that  showed  appreciable  decreases  included  Residential  (15%),  Commercial/Institutional  (28%),  and  Total  Industrial  (30%).  

Figure  1.17.  GHG  emissions  in  Major  Sectors  of  BC,  1990–2010    

Source:  STC  RESD  energy  data  converted  to  GHG  emissions  using  EC  coefficients  (EC,  2011)  

Page 28: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

18    

1.7.3 GHG Emissions from Electricity Generation All  RESD  data  on  energy  used  by  utility  and  non-­‐utility  electricity  generators  have  not  yet  been  updated  or  are  under  review  by  STC.  While  some  data  have  been  extrapolated  for  overall  generation,  the  data  for  2010  (and  some  other  years)  are  suspect.  Because  of  the  level  of  uncertainty  and  the  current  restructuring  of  the  ICE  and  RESD  data  sets,  CIEEDAC  advises  caution  in  using  these  data.  

Figure  1.18  shows  that  CO2  emissions  resulting  from  the  production  of  electricity  have  fluctuated  greatly  over  the  study  period.  This  was  primarily  because  of  changes  in  fossil  fuel  use  by  electricity  utilities.    Emissions  show  peaks  in  various  years,  the  highest  in  2001.    Since  2002,  levels  have  been  fairly  consistent,  roughly  equivalent  to  1990  values.  In  2009,  emissions  levels  dropped  appreciably  but  rose  again  in  2010  to  a  point  24%  higher  than  1990  levels.    Although  there  was  a  12%  decrease  in  intensity  of  CO2  emissions  per  unit  of  electricity  generated  between  2008  to  2010,  the  intensity  was  18%  higher  in  2010  than  it  was  in  1990.  

Figure  1.18.  CO2  Emissions  from  Electricity  Generation  in  BC,  1990–2010  

Source:  STC  CANSIM  Table  127-­‐0007,  Electric  power  generation,  by  class  of  electricity  producer,  annual  (megawatt  hour);  RESD,  energy  consumed  by  fuel  type  converted  to  CO2e  using  EC  coefficients  (EC,  2011)  

1.8 Conclusion  and  Summary  In  2010,  BC’s  total  energy  use  (including  energy  used  to  make  secondary  electricity)  reached  1,070  PJ,  an  increase  of  15%  above  1990.  With  both  GDP  and  population  growing  faster  than  energy  use,  intensity  indicators  based  on  these  two  measures  diminished  (GDP  by  37%  and  population  by  16%).  

Use  of  most  fuels  in  2010  was  considerably  higher  than  in  1990.    Electricity  and  RPPs  are  the  major  fuels  of  the  BC  economy.  Use  of  electricity  was  up  by  12%,  and  use  of  RPPs  was  24%  higher.  Coal  use  increased  the  most  but  was  an  extremely  small  portion  of  total  energy  use.  Natural  gas,  with  a  drop  of  3%,  was  the  only  major  fuel  type  to  show  a  lower  consumption  in  2010  than  in  1990.  

Page 29: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

19    

Hydroelectricity  continued  to  dominate  electricity  production,  although  generation  of  thermal  secondary  electricity  increased  significantly.  In  2010,  secondary  generation  provided  16%  of  electricity,  a  greater  share  than  in  any  other  year  since  1990.  In  thermal  electricity  generation,  the  market  shares  of  HFO-­‐  and  diesel/LFO-­‐fired  sources  declined  significantly  over  the  study  period  and  the  share  of  natural  gas-­‐fired  plants  also  decreased.    “Other”  fuel  (manufactured  gases,  other  petroleum  products  and  other  fuels  not  defined  in  the  data  source)  grew  significantly.  

Total  Industrial  energy  use  decreased  1.2%  since  1990  but  increased  7%  from  2009.  Energy  use  in  Total  Manufacturing  was  down  8%  from  1990  but  increased  5%  from  2009.  Relatively  significant  consumption  increases  occurred  in  the  Residential  (13%),  Transportation  (43%)  and  Agriculture  (78%)  sectors  between  1990  and  2010.  

Total  GHG  emissions  increased  steadily  before  2000  and  then  rose  and  fell  with  a  peak  in  2004  at  46.8  Mt.    In  2010,  emissions  rose  to  a  level  of  44.4  Mt,  21%  above  1990  but  down  from  the  peak.    

British  Columbia’s  major  economic  sectors  showed  different  energy  use  patterns  and  therefore  GHG  emission  trends.  Transportation,  Electricity  and  Agriculture  had  increasing  levels  of  emissions  compared  to  1990  levels,  while  the  Residential,  Commercial/Institutional  and  Total  Industrial  sectors  showed  decreasing  GHG  emission  trends.  Coal  showed  the  greatest  increase  in  emissions,  reflecting  its  growth  in  use  as  a  fuel.    Even  though  the  increase  is  significant,  coal  plays  a  minor  role  in  total  emissions  generation  because  its  consumption  is  such  a  small  part  of  total  consumption  in  British  Columbia.  The  bulk  of  GHG  emissions  come  from  RPPs,  of  which  gasoline  has  the  largest  share.    Among  all  the  various  petroleum  products,  natural  gas,  and  coal,  RPP  combustion  generates  the  greatest  amount  of  CO2  in  the  province,  about  64%.  

In  the  future,  CIEEDAC  will  continue  to  update  this  section  with  the  objective  of  improving  and  refining  the  accuracy  of  the  data.  Thus  far,  our  analysis  has  only  concerned  itself  with  highly  aggregated  economic  sectors  as  the  data  are  not  available  for  more  disaggregated  analyses.  This  is  especially  true  of  industry,  where  it  is  clear  from  ICE  data  that  further  disaggregation  might  be  possible.  As  with  all  reports  published  by  CIEEDAC,  we  encourage  and  appreciate  any  feedback  from  our  readers.  

As  noted  at  the  beginning  of  this  report,  the  RESD  has  undergone  a  significant  update  to  allow  it  to  reflect  more  closely  the  data  obtained  from  industry  using  the  ICE  survey.    These  changes  have  altered  historic  trends  in  BC’s  industrial  sector  and  have  affected  data  in  other  sectors  as  well.    Because  the  process  of  updating  the  RESD  is  ongoing,  the  values  as  represented  here  should  be  used  with  caution.  

   

Page 30: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

20    

2 Cogeneration  Facilities  in  British  Columbia,  2010  CIEEDAC  defines  cogeneration  as  the  simultaneous  generation  of  electricity  and  useful  thermal  energy  from  a  single  fuel.17  Cogeneration  is  also  referred  to  as  combined  heat  and  power  (CHP)  generation.  By  making  use  of  the  waste  from  one  process  in  the  production  of  the  other,  cogeneration  realizes  substantial  gains  in  energy  efficiency  compared  with  the  independent  production  of  both  products.  The  efficiency  of  cogeneration  in  converting  primary  energy  into  electrical  and  thermal  energy  places  the  technology  at  the  forefront  of  many  CO2  emission  reduction  strategies.  National  and  international  commitments  to  reducing  CO2  emissions  have  increased  interest  in  cogeneration.  

The  thermal  energy  from  cogeneration  can  be  used  in  heating  or  cooling  applications.  Heating  applications  include  generation  of  steam  or  hot  water.  Cooling  applications  require  the  use  of  absorption  chillers  that  convert  heat  to  cooling.  A  range  of  technologies  can  be  used  to  achieve  cogeneration,  but  the  system  must  always  include  a  power  generator  (either  electric  power  or  drive  power)  and  a  heat  recovery  system.  The  heat-­‐to-­‐power  ratio,  overall  efficiency  and  characteristics  of  the  heat  output  are  key  attributes  of  cogeneration  systems.  

Cogeneration  systems  are  classified  by  the  type  of  prime  mover  used  to  drive  the  electrical  generator.  The  five  main  types  currently  in  use  in  Canada  are  steam  turbines,  gas  turbines,  reciprocating  engines,  microturbines  and  combined-­‐cycle  gas  turbines.  New  systems  currently  under  development  include  fuel  cells  and  Stirling  engines.  

The  attributes  and  prime  movers  referred  to  here  and  the  information  in  the  following  sections  (as  well  as  a  copy  of  the  survey)  are  described  in  more  detail  in  CIEEDAC’s  report,  A  Review  of  Existing  Cogeneration  Facilities  in  Canada  (www.cieedac.sfu.ca).  

2.1 Objectives  CIEEDAC’s  Canadian  Cogeneration  Database  aims  to  provide  a  comprehensive  list  of  cogeneration  projects  in  Canada’s  provinces  and  present  unbiased  data  on  the  performance  of  cogeneration  systems.  To  date,  no  other  comprehensive  list  of  Canadian  cogeneration  projects  has  been  identified.  This  task  is  becoming  increasingly  challenging  as  cogeneration  capacity  expands  rapidly  under  deregulation.  Future  updates  of  this  report  will  continue  to  refine  existing  data  and  include  new  additions.  

This  report  contains  the  following  sections:  • The  methodology  used  to  identify  cogeneration  projects  in  British  Columbia;  • A  summary  of  cogeneration  facilities  in  British  Columbia  by  sector  and  system  average  

performance  characteristics;  and  • Conclusions.  

                                                                                                               17  A  Review  of  Existing  Cogeneration  Facilities  in  Canada,  CIEEDAC,  2012  

Page 31: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

21    

2.2 Methodology  Since  2004,  CIEEDAC  has  gathered  data  on  Canadian  cogeneration  systems  by  means  of  a  survey  sent  to  all  facilities  listed  in  our  database. Through  this  process,  we  are  able  to  identify  cogeneration  systems  across  the  country  that  are  no  longer  operational,  sites  that  were  never  cogeneration  facilities  and  duplicate  listings.  We  also  gather  new  data  on  the  performance  characteristics  of  cogeneration  systems  operating  in  Canada’s  provinces  and  territories.  The  resulting  database  has  become  more  reliable  each  year.  In  addition,  we  identify  new  cogeneration  systems  through  websites,  industry  contacts  and  utility  personnel.  Thus,  the  database  contains  data  that  enhances  understanding  of  the  opportunities  for  and  limitations  of  cogeneration  in  Canada  and,  for  this  report,  British  Columbia.  

2.2.1 Data Sources The  key  sources  of  data  for  this  year’s  update  of  the  Canadian  Cogeneration  Database  are  the  completed  questionnaires  received  from  cogeneration  facilities  across  Canada.  New  cogeneration  systems  were  identified  through  websites  and  industry  contacts.  Historical  sources  of  data  include:  the  Canadian  Gas  Association,  EC,  consultants,  independent  associations,  electric  and  gas  utilities,  STC,  corporate  and  government  websites,  cogeneration  equipment  manufacturers’  brochures  and  industry  journals.  

2.3 Cogeneration  Results,  2010  This  section  summarizes  the  results  of  the  current  cogeneration  database  survey  for  British  Columbia,  which  updates  data  to  2010.  Table  2.1  presents  BC’s  known  cogeneration  capacity  from  2000  to  2010  and  compares  BC’s  share  in  Canada.  In  2010,  the  total  electrical  cogeneration  capacity  in  British  Columbia  dropped  to  1,018  MWe,  16%  of  Canada  total.  This  was  due  to  the  closing  of  a  number  of  paper  mills.  BC’s  thermal  capacity  was  4,848  MWt,  about  24%  of  Canada’s  total.  Despite  the  drop  in  electrical  capacity,  BC  still  had  the  third  largest  electrical  and  thermal  cogeneration  capacity  in  Canada,  after  Alberta  and  Ontario.    

Note  that  not  all  survey  respondents  provided  all  information.  As  a  result,  thermal  capacities  for  both  BC  and  Canada  are  deemed  to  be  underestimated.  

Table  2.1.  Cogeneration  Capacity  in  BC,  2000–2010  

Region   2000   2001   2002   2004   2005   2006   2007   2008   2009   2010  

Electrical  Capacity  (MWe)  British  Columbia   1,373   1,408   1,408   1,408   1,408   1,468   1,468   1,468   1,468   1,018  Canada   4,525   5,267   6,352   6,743   6,789   6,936   7,007   7,007   7,007   6,553  %  BC  of  Total   30.3   26.7   22.2   20.9   20.7   21.2   21.0   21.0   21.0   15.5  

Thermal  Capacity  (MWt)  British  Columbia   4,156   4,433   4,433   4,433   4,433   4,433   4,433   4,433   4,433   4,848  Canada   27,200   27,846   28,937   29,063   29,127   29,159   29,473   29,473   29,473   20,056  %  BC  of  Total   15.3   15.9   15.3   15.3   15.2   15.2   15.0   15.0   15.0   24.2  

Source:  Canadian  Cogeneration  Database,  CIEEDAC.  Current  values  for  all  components  are  still  under  review.  

Page 32: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

22    

2.3.1 Sector Results In  Figure  2.1,  cogeneration  capacity  is  allocated  according  to  system  operator/thermal  host.  The  facilities  are  coded  using  the  NAICS  system.    At  least  one  facility  in  BC  provides  district  energy  as  a  result  of  its  cogeneration  activity  —  Metro  Vancouver’s  water  treatment  facility  on  Iona  Island  is  listed  as  providing  this  service.  

Figure  2.1.  Cogeneration  Capacity  by  System  Operator/Thermal  Host  in  BC,  2010  

 Source:  Canadian  Cogeneration  Database,  2010,  CIEEDAC    

2.3.2 Cogeneration System Performance Characteristics The  data  presented  in  Table  2.2  are  from  the  most  recent  cogeneration  database  and  are  based  on  data  from  22  sites.  We  have  data  on  average  annual  electricity  generation  from  16  sites,  data  on  heat  rate18  from  9  sites  and  data  on  heat-­‐to-­‐power  ratio  from  15  sites.    The  data  on  heat  rate  were  not  found  to  be  reliable  and  are  under  review.    Forthcoming  editions  of  this  report  may  contain  more  data  on  heat  rate.  

Table  2.2  displays  the  average  performance  characteristics  of  cogeneration  systems  currently  in  operation  in  British  Columbia.  The  average  amount  of  electricity  generated  per  kWe  of  installed  capacity  is  5,098  kWh/kW/y.  The  highest  rate  of  electricity  production  occurs  in  the  Utilities  sector.  These  levels  of  output  give  an  indication  of  capacity  utilization  of  cogeneration  systems  in  the  various  sectors.  

                                                                                                               18  In  this  study,  heat  rate  is  defined  as  the  energy  content  of  fuel  used  in  kilojoules  (KJ),  divided  by  the  sum  of  the  electricity  output  in  kWh  and  the  thermal  output  in  kWh.    

Page 33: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

23    

Table  2.2.  Cogeneration  System  Performance  Characteristics  in  BC,  2010  

Sector   Electricity  Generation  (kWh/kW  per  year)  

Average  Efficiency   Heat-­‐to-­‐Power  Ratio  

Oil  and  Gas  Extraction   0   0.0%   0.0  Utilities   5,862   48.1%   0.3  Food  Manufacturing   1,333   n/a   4.4  Wood  Products  Manufacturing   4,785   51.2%   5.4  Pulp  and  Paper  Manufacturing   5,681   61.3%   7.6  Waste  Management  and  Remediation  Services     3,210   n/a   1.0  Average   5,098   57.4%   6.0  

Source:  Canadian  Cogeneration  Database,  CIEEDAC  

The  average  heat-­‐to-­‐power  ratio  of  systems  operating  in  BC  is  6.0.  This  means  that  for  every  kWh  of  electricity  that  could  be  produced  by  cogeneration  systems,  6  kWh  of  useful  thermal  energy  would  be  produced  (i.e.,  these  are  not  based  on  actual  production  figures  but  on  system  design).  Table  2.2  shows  that  the  Pulp  and  Paper  Manufacturing  sector  has  the  highest  average  heat-­‐to-­‐power  ratio  of  all  sectors.  The  Wood  Products  Manufacturing  sector  has  the  second  highest  ratio.  These  industries  demand  high  quality  thermal  energy,  leaving  less  energy  available  to  produce  electricity.  The  Utilities  and  Food  Manufacturing  sectors  have  low  heat-­‐to-­‐power  ratios.  Utilities  have  low  heat-­‐to-­‐power  ratios  because  their  systems  are  designed  to  maximize  electrical  output.  

Table  2.3  presents  known  and  estimated  annual  cogenerated  electricity  generation  by  sector.  The  values  shown  for  known  electricity  generation  include  only  those  data  reported  by  system  operators.  Using  these  data,  CIEEDAC  derived  an  average  capacity  utilization  factor.  Applying  this  factor,  we  estimated  the  electricity  generation  for  all  cogenerators.  Total  electricity  generation  in  2010  in  BC  was  63,637  GWh,  of  which  12,429  GWh  was  non-­‐utility.  The  bulk  of  this  (9,000  GWh)  was  from  hydro.  The  remainder,  roughly  3,500  GWh,  can  be  accounted  for  in  cogeneration  by  the  industries  other  than  Utilities  in  Table  2.3.  

Table  2.3.  Cogenerated  Electricity  Generation  in  BC,  2010  

Sector   Known  Electricity  Generation  (MWh/year)  

Estimated  Electricity  Generation  (MWh/year)  

Oil  and  Gas  Extraction   0   601,565  Utilities   1,700,000   1,745,882  Food  Manufacturing   4,000   4,000  Wood  Products  Manufacturing   234,592   234,592  Pulp  and  Paper  Manufacturing   2,608,388   2,949,954  Waste  Management  and  Remediation  Services     13,000   53,274  British  Columbia   4,559,980   5,589,267  

Source:  Canadian  Cogeneration  Database,  2010,  CIEEDAC  

2.4 Conclusion  and  Summary  CIEEDAC  defines  cogeneration  as  the  simultaneous  production  of  electrical  and  useful  thermal  energy  from  a  single  fuel.  By  making  use  of  the  waste  from  one  process  in  the  production  of  the  other,  substantial  gains  in  energy  efficiency  can  be  realized  compared  with  the  independent  production  of  both  products.  The  thermal  energy  can  be  used  in  heating  or  cooling  applications.    

Page 34: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

24    

A  range  of  technologies  can  be  used  to  achieve  cogeneration,  but  the  system  must  always  include  a  power  generator  (either  electric  power  or  drive  power)  and  a  heat  recovery  system.  

CIEEDAC  has  completed  seven  annual  reviews  of  cogeneration  in  Canada.  The  database  contains  information  on  6,553  MWe  of  cogeneration  capacity  in  Canada.  

Currently,  British  Columbia  has  the  third  largest  electrical  cogeneration  capacity,  1,018  MWe,  after  Alberta  and  Ontario.  British  Columbia  accounts  for  16%  of  total  electrical  cogeneration  capacity  in  Canada.  When  classified  by  system  operator,  the  Pulp  and  Paper  Manufacturing  sector  has  the  most  cogeneration,  545  MWe,  or  almost  54%  of  total  operational  capacity  in  British  Columbia.  The  Utilities  sector  has  the  next  highest  cogeneration  capacity  of  299  MWe,  which  represents  about  29%  of  capacity.  

Because  not  all  survey  respondents  provided  information  on  thermal  capacity,  our  estimates  of  thermal  capacity  for  both  BC  and  Canada  are  likely  too  low.    According  to  the  data  collected,  British  Columbia  has  at  least  4,848  MWt,  about  24%  of  Canada’s  total  of  20,000  MWt.  

CIEEDAC  will  continue  to  track  and  update  this  database  with  the  objective  of  improving  and  refining  the  accuracy  of  the  data.  Given  sufficient  funding,  a  revised  report  will  be  released  annually.  We  encourage  and  appreciate  any  feedback  from  our  readers.  

   

Page 35: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

25    

3 Renewable  Energy  in  British  Columbia  CIEEDAC  normally  surveys  renewable  energy  facilities  for  their  data  but  was  able  to  complete  this  task  for  2010  due  to  lack  of  funding.  Therefore  the  discussion  in  this  section  has  not  been  updated  to  include  data  for  2010;  the  most  recent  data  are  for  2009.  

Renewable  energy  resources  are  derived  from  naturally  regenerating  energy  resources  such  as  the  sun,  wind,  moving  water,  earth  energy  and  biomass  (i.e.,  hog  fuel,  wood  waste,  black  liquor,  etc.).  The  majority  of  renewable  energy  forms  are  ultimately  derived  from  the  sun  with  the  exception  of  geothermal  and  tidal  energy.19  

These  resources  can  be  used  for  electricity  generation,  heating  and  cooling  services,  and  other  purposes.  Both  low  and  high  temperature  thermal  energy  can  be  produced,  depending  on  the  resource.  Some  technologies  can  be  used  for  cogeneration.  In  addition,  renewable  power  can  be  used  in  water  electrolysis  technologies  to  generate  hydrogen  that  would  be  used  as  a  mobile  (i.e.,  transportation)  or  stationary  fuel  through  fuel  cells  or  direct  combustion.  Renewable  energy  resources  can  also  be  used  to  produce  liquid  bio-­‐fuels  such  as  ethanol  or  biodiesel,  both  of  which  can  serve  as  mobile  or  stationary  fuels.  

3.1 Objectives  This  section  of  the  report  considers  renewable  resources  and  technologies  used  for  power  generation  or  cogeneration,  heating  systems,  hydrogen  generation  and  transportation  fuels.  

The  purpose  of  this  part  of  the  report  is  to:  

• provide  a  comprehensive  database  of  renewable  energy  facilities  in  British  Columbia.  • provide  summary  information  on  the  mix  of  renewables  by  resource/technology  type,  scale  

(capacity  and  annual  generation),  owner/operator,  green  certification  status  and  vintage.  

3.2 Background  on  Renewable  Energy  Technologies  Renewable  energy  technologies  convert  naturally  regenerating  resources  into  useful  energy  “currencies”  such  as  electricity,  thermal  energy,  hydrogen  or  bio-­‐fuels.  These  currencies  can  then  be  used  to  produce  energy  services.  This  section  provides  an  overview  of  renewable  power  generating  technologies.  

These  renewable  energy  technologies  are  found  at  a  variety  of  scales,  from  a  household  level  for  supplying  a  proportion  of  a  household  load  to  power  plants  that  can  supply  a  large  proportion  of  an  electrical  grid’s  power.  

Several  renewable  energy  technologies  are  technically  mature  and  have  been  extensively  commercialized,  having  been  used  in  industrial  and  pre-­‐industrial  societies  for  hundreds  of  years.  Many  Canadian  electricity  companies  started  with  hydroelectricity  plants  at  the  turn  of  the  20th  century,  generating  electricity  from  moving  water  in  rivers.  Some  other  technologies,  

                                                                                                               19  Tides  are  somewhat  associated  with  the  sun  in  that  they  are  the  result  of  an  interaction  between  solar  and  lunar  gravity.  

Page 36: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

26    

such  as  those  capturing  tidal  or  wave  energy,  are  in  early  stages  of  commercialization  with  cost  levels  being  higher  than  competing  sources  of  energy.  

3.2.1 Hydroelectricity Hydroelectric  technologies  generate  electricity  from  moving  water  through  a  turbine  and  generator  to  produce  power.  The  water  may  be  flowing  in  a  river  or  stream  or  may  be  transferred  through  a  pipeline  from  a  lake  to  a  lower  elevation.  The  water  upstream  of  the  project  could  be  free  flowing  (i.e.,  run-­‐of-­‐river  hydro)  or  stored  behind  a  dam  in  a  reservoir  (i.e.,  storage  hydro)  to  permit  flexibility  to  meet  varying  electrical  loads.  Hydroelectricity  projects  are  located  in  areas  where  large  volumes  of  water  are  available,  in  mountainous  areas  or  where  there  is  abundant  rainfall.  Storage  hydroelectricity  facilities  are  fully  dispatchable,  meaning  that  they  can  provide  power  consistently  for  8,760  hours  of  the  year,  following  loads  with  great  precision  if  the  reservoir  is  large  enough  and  full  enough.  Run-­‐of-­‐river  facilities,  where  water  is  used  at  a  rate  no  greater  than  the  river’s  flow,  are  also  dispatchable  at  times  of  year  when  water  flows  are  sufficient.  In  our  report,  we  have  distinguished  between  large  hydro  (greater  than  50  MW)  and  small  hydro.  

3.2.2 Wind Power Wind  power  is  the  generation  of  electricity  from  the  kinetic  energy  of  winds.  Wind  passes  through  turbine  blades  that  turn  a  shaft  connected  to  an  electricity  generator.  Wind  energy  facilities  are  common  in  areas  with  consistent  winds  with  high  average  wind  speeds  or  areas  with  substantial  gusts  of  wind  on  a  predictable  basis.  These  facilities  tend  to  be  located  in  coastal  areas,  at  high  elevations  or  in  valleys  or  plains  near  mountainous  areas.  Wind  power  facilities  are  not  readily  dispatchable,  although  their  output  is  often  predictable  based  on  daily  wind  patterns.  They  require  back  up  through  electrical  grids  with  dispatchable  supplies  online  or  energy  storage  devices  such  as  batteries.  

3.2.3 Biomass and Biogas Biomass  energy  is  derived  from  the  combustion  of  organic  matter  such  as  the  waste  products  in  a  forestry  operation  or  other  plant  matter.  Biomass  can  be  combusted  in  a  boiler  to  produce  steam  for  turbines  to  produce  power.  In  cogeneration  applications,  the  residual  heat  (thermal  energy)  is  used  as  energy  for  other  end-­‐uses,  such  as  heating  buildings.  Biomass  power  generation  is  primarily  connected  to  the  Pulp  and  Paper  Manufacturing  and  Wood  Products  Manufacturing  sectors  through  the  combustion  of  wood  residue  products  from  those  industries.  Biomass  power  plants  are  fully  dispatchable  provided  that  wood  resources  are  available,  although  there  is  a  lagged  start  up  time  (the  start  up  is  not  “instant”  as  it  is  with  hydro  power).  Burning  biomass  may  cause  air  pollution,  but  technologies  can  be  used  to  minimize  particulate  matter  release.  

Biogas  energy  is  derived  from  biomass  but  is  combusted  as  a  gas  composed  primarily  of  methane,  also  the  most  common  constituent  of  natural  gas.  Biogas  is  commonly  generated  from  biomass  waste  products  at  sewage  treatment  plants  and  solid  waste  landfills  and  through  forest  sector  activities  and  agricultural  operations.  Biogas  can  be  produced  through  a  biological  process  that  “digests”  the  biomass  in  a  chamber  with  no  oxygen,  through  a  chemical  process  or  through  heating  in  the  absence  of  oxygen  (destructive  distillation).  The  biomass  products  are  

Page 37: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

27    

converted  to  a  gaseous  fuel.  This  biogas  is  then  combusted  in  a  boiler  to  produce  steam  for  power  generation  through  a  steam  turbine  or  through  a  combustion  turbine  directly.  In  both  instances,  under  cogeneration  applications,  the  residual  heat  is  used  as  energy  for  other  applications  (thermal  energy).  Biogas  generators  are  fully  dispatchable  provided  that  resources  are  available.  

3.2.4 Solar Photovoltaic Solar  photovoltaic  (PV)  technologies  use  semiconductor  devices  to  generate  electricity  directly  from  solar  radiation.  They  produce  direct  current  electricity  that  can  be  converted  to  alternating  current  through  inverters.  Solar  PV  is  used  throughout  Canada  on  many  different  types  of  buildings.  Solar  modules  are  installed  as  attachments  on  rooftops  or  through  building-­‐integrated  configurations.  Solar  electricity  is  available  only  during  daylight  hours  and  is  reduced  under  cloudy  conditions  so  it  is  not  dispatchable.  Thus  solar  PV  modules  require  a  connection  to  an  electrical  grid  with  dispatchable  supplies  online  or  energy  storage  devices  such  as  batteries  to  back  them  up.  

3.2.5 Geothermal and Earth Energy The  earth  is  naturally  heated  by  the  decay  of  radioactive  elements  in  its  mantle.  Geothermal  energy  and  earth  energy  make  use  of  this  heat  source.  CIEEDAC’s  renewable  database  uses  “geothermal”  to  define  operations  that  use  steam  or  hot  water  in  the  earth’s  crust  (either  from  drilled  wells  or  natural  fissures)  to  power  turbines  that  generate  electricity.  This  is  only  possible  where  there  is  a  high  temperature  gradient,  generally  in  areas  with  recent  volcanic  activity  such  as  the  BC  coast.  “Earth  energy”  installations,  on  the  other  hand,  use  the  earth  for  direct  heating  (such  as  for  hot  water  or  space  heating)  or  cooling.  A  medium  or  low  temperature  gradient  is  adequate  for  earth  energy.  

3.2.6 Others Other  renewable  technologies  and  resources  are  not  currently  used  commercially  in  British  Columbia  or  are  not  included  in  the  database.  Many  exist  or  are  under  development  in  BC  or  elsewhere  in  Canada.  These  include:  

• Tidal  energy:  Use  of  moving  seawater  to  generate  electricity.  Tidal  energy  is  abundant  in  coastal  areas,  particularly  on  the  BC  coast  when  there  are  narrow  passages  with  large  volumes  of  water.  

• Wave  power:  Conversion  of  the  kinetic  energy  of  ocean  waves  into  electricity.  

• Solar  thermal:  Use  of  the  sun’s  energy  to  heat  water  or  air  directly.  This  technology  is  well  established.  There  are  installations  in  BC  but  these  are  not  yet  recorded  in  the  renewables  database.  

• Biodiesel  fuel:  A  fuel  derived  from  renewable  sources  such  as  vegetable  oil.  Biodiesel  has  been  sold  in  BC  since  2005;  it  is  typically  blended  with  regular  diesel.  The  source  of  the  biodiesel  is  waste  vegetable  oil  from  food  preparation  facilities  such  as  restaurants;  CIEEDAC  has  no  records  of  commercial  production  of  biodiesel  from  oil  crops  such  as  canola.  

Page 38: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

28    

• Ethanol  fuel:  An  alcohol  fuel  that  can  be  mixed  with  or  used  instead  of  gasoline.  It  is  made  by  distilling  fermented  sugars  derived  from  biomass  sources  such  as  corn  or  wheat.  

• Hydrogen  fuels  and  fuel  cell  systems:  Hydrogen  fuel  is  only  renewable  when  the  electricity  used  for  electrolysis  to  produce  the  hydrogen  is  from  a  renewable  source.  Renewable  hydrogen  generation  is  being  proposed  at  several  locations  in  Canada  and  is  currently  being  tested  in  British  Columbia  by  BC  Transit,  using  hydrogen-­‐fuelled  buses.  

Certain  types  of  renewable  energy  technologies  that  produce  few  environmental  and  social  impacts  are  often  categorized  as  “green  energy”  sources.  These  supplies  are  being  used  to  meet  regulatory  requirements  connected  with  environmental  policy  goals  or  sold  to  consumers  as  a  premium  product  for  a  higher  price  than  conventional  energy  supplies.  Green  energy  is  typically  defined  through  facility  certification  standards  such  as  those  applied  by  the  federal  government-­‐sanctioned  Environmental  Choice  Eco-­‐Logo  Program,20  BC  Hydro21  and  the  Canadian  Electricity  Association.22    In  British  Columbia,  “clean  energy”  is  defined  in  a  set  of  guidelines  entitled  BC  Clean  Electricity  Guidelines,  published  in  2005  and  available  from  the  BC  Ministry  of  Energy  and  Mines.  

3.3 Methodology  This  section  provides  an  overview  of  the  methodology  used  for  the  development  of  the  data  on  BC’s  renewable  energy.  The  BC  data  are  part  of  a  larger  database  containing  information  on  renewable  energy  facilities  throughout  Canada.  This  database  aims  to  bring  together  information  on  all  renewable  power  operations  in  Canada  over  a  scale  of  100  kW  of  rated  capacity.  In  the  case  of  run-­‐of-­‐river  hydro  and  earth,  wind  and  solar  power,  smaller  applications  have  also  been  included,  provided  they  are  connected  to  a  regional  or  community  electrical  grid  or  an  industrial  load.  In  2009,  there  were  1,228  records  for  renewable  energy  facilities  in  Canada,  191  of  which  were  in  British  Columbia.  

The  following  information  is  provided  in  the  database  for  each  facility:  renewable  resource  type  (e.g.,  wind,  hydro,  biomass);  capacity  (electrical,  thermal,  litre  production,  etc.);  number  of  generating/production  units;  average  annual  electricity  or  thermal  heat  generation  if  applicable;  start  year  and  capacity  upgrades;  grid  connection;  green  certification  status;  conversion  technology;  market;  installation  and  operating  costs;  employment;  annual  revenue;  government  incentives  used;  tax  payments;  and  responses  to  questions  on  energy  policy.  

3.3.1 Data Sources The  original  data  were  collected  from  a  number  of  sources,  including  the  following:  

                                                                                                               20  See  http://terrachoice.com  and  the  “Renewable  Low-­‐Impact  Electricity”  label  21  BC  Hydro  Green  Criteria.  See  http://www.bchydro.com/energy_in_bc/energy_technologies.html  22  CEA’s  Environmentally  Preferable  Electricity  Portfolio  certification  system  is  based  on  the  methodology  developed  by  Scientific  Certification  Systems  (SCS),  based  in  Oakland,  California.  

Page 39: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

29    

• Renewable  energy  industry  association  publications  and  statistics  (i.e.,  Canadian  Wind  Energy  Association,  Canadian  Hydropower  Association,  Canadian  Bioenergy  Association,  Independent  Power  Producers  of  Ontario);  

• Renewable  energy  publications  from  government  and  institutional  sources;    • STC  report,  Electric  Power  Generating  Stations:  2000  (Catalogue  No.  57-­‐206-­‐XIB),  which  

provided  by  far  the  bulk  of  the  initial  data  on  specific  sites;  • Communications  with  and  materials  from  power  plant  owners  and  developers;  • Electrical  utility  and  retailer  information  sources;  and  • The  authors’  personal  knowledge  of  power  plants  in  Canada.  

The  survey  is  conducted  online  at  CIEEDAC’s  website.  The  information  automatically  enters  into  a  Microsoft  Access  database.  A  report  generator  prints  the  database  information  in  the  tables  that  appear  in  Appendix  C  of  this  report.  

The  database  has  several  limitations  and  sources  of  error,  including  the  following:  

• Despite  efforts  to  make  the  database  comprehensive,  it  may  be  missing  several  power  plants.  In  particular,  hydroelectricity,  biomass,  and  biogas  plants  built  after  the  year  2000  may  not  be  present,  given  that  the  STC  source  included  information  only  up  to  that  year  and  the  industry  associations  for  those  sources  of  energy  do  not  publish  a  power  plant  listing.  In  contrast,  the  Canadian  Wind  Energy  Association  has  an  up-­‐to-­‐date  list  of  wind  generation  facilities  in  Canada  and  the  STC  releases  data  annually  on  wind  and  solar  power  plants  (by  special  request).  

• Distributed  energy  sources  such  as  solar  photovoltaics,  solar  thermal  and  geothermal  are  by  nature  small  and  difficult  to  track.  The  database  currently  does  not  accurately  reflect  their  contribution  to  renewable  energy  generation  in  British  Columbia.  In  the  future,  efforts  will  be  made  to  obtain  records  from  those  selling  and  installing  these  systems.  

• Annual  electricity  generation  data  are  incomplete,  as  many  companies  chose  not  to  reveal  this  information.  The  response  rate  will  likely  improve  as  a  level  of  trust  is  built  with  survey  respondents.  

• For  those  biomass  and  biogas  facilities  that  mix  renewable  fuels  (e.g.,  spent  pulping  liquor)  with  non-­‐renewable  fuels  (e.g.,  natural  gas),  renewable  capacity  and  annual  generation  were  calculated  by  simply  multiplying  the  total  energy  or  power  by  the  proportion  of  renewable  fuel.  For  example,  a  10  MW  total  capacity  with  60%  of  the  combusted  fuel  from  renewable  spent  pulping  liquor  and  40%  from  natural  gas  would  be  recorded  as  6  MW  of  renewable  capacity.  This  simplification  disregards  differences  in  boiler  types  and  efficiencies  and  any  interdependencies  between  the  fuel  sources.  

The  tables  and  figures  in  the  remainder  of  this  section  are  generated  directly  from  the  data  contained  in  the  CIEEDAC  Renewable  Energy  Database  as  described  above.  

Page 40: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

30    

3.4 Renewable  Energy  in  British  Columbia,  1990–2009  Because  funding  was  limited  this  year,  CIEEDAC  could  not  perform  its  usual  survey  of  renewable  energy  generation.  The  data,  therefore,  are  only  up  to  2009.  

3.4.1 Capacity BC  currently  has  an  installed  renewable  capacity  to  produce  electricity  and  heat  of  14.2  GW.  About  90%  of  renewable  energy  capacity  was  electrical  capacity  with  the  remainder  being  thermal  capacity  (10%).  Although  we  also  collect  information  on  generators  of  renewable  liquid  fuels  such  as  ethanol  and  biodiesel,  the  database  does  not  list  any  for  British  Columbia.  Figure  3.1  below  divides  renewable  energy  capacity  by  resource  types.  The  figure  shows  that  hydroelectricity  dominates  BC’s  renewable  energy  power  market,  with  large  hydro  contributing  about  83%  of  BC’s  renewable  energy  power  capacity  and  small  hydro  contributing  about  4.1%.  About  12%  of  renewable  energy  power  capacity  is  derived  from  biomass  wood  residue  sources  (both  electrical  and  thermal),  and  about  1%  is  from  biogas,  municipal  solid  waste  and  solar  (both  electrical  and  thermal).  Renewable  energy  sources  provide  about  85%  of  BC’s  total  installed  electrical  capacity  (non-­‐renewable  and  renewable)  of  15.2  GW.  

Figure  3.1.  Total  Renewable  Energy  Capacity  (kW)  by  Resource  Type,  BC,  2009  

 Source:  CIEEDAC  Renewable  Energy  Database,  2010  

It  is  worthwhile  to  look  more  carefully  at  those  resources  considered  lower  impact.  Figure  3.2  illustrates  the  capacity  share  of  the  different  resources  with  large  hydroelectric  facilities  excluded.  We  note  that  there  are  also  small-­‐scale  facilities  using  earth  energy  and  landfill  gas  about  which  we  have  no  information  on  capacity  levels.  They  are  assumed  to  make  up  a  very  small  proportion  of  renewable  energy  capacity.  

Page 41: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

31    

Figure  3.2.  Total  Renewable  Energy  Capacity  (kW)  by  Resource  Type,  Excluding  Large  Hydro,  BC,  2009  

 Source:  CIEEDAC  Renewable  Energy  Database,  2010  

Figure  3.3  illustrates  the  total  quantity  of  new  electrical  generating  capacity  added  in  British  Columbia  during  each  decade  of  the  last  century,  broken  down  by  renewable  resource  type.  Each  decade  up  to  the  1970s  saw  increasing  levels  of  capacity  expansion  (except  during  the  1920s).  Since  then,  capacity  additions  have  dropped  off  dramatically.  Since  1991,  new  capacity  has  come  primarily  from  sources  such  as  biomass  and  small  hydro.  

Figure  3.3.  New  Renewable  Energy  Capacity  by  Project  Start  Year,  BC  

Source:  CIEEDAC  Renewable  Energy  Database,  2010  

Page 42: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

32    

It  should  be  noted  that  the  composite  chart  of  Figure  3.3  includes  only  one  entry  for  each  power  plant  based  on  the  original  year  of  operation.  It  therefore  allocates  upgraded  capacity  to  the  start  year.  Nevertheless,  it  provides  us  with  a  useful  overview  of  installation  activity.  

Figure  3.4  presents  the  number  of  facilities  built  rather  than  their  capacity.  It  highlights  recent  efforts  to  add  lower  impact  energy  facilities.  The  “Other”  category  consists  primarily  of  solar  and  earth  energy  installations.    Many  of  these  new  facilities  are  small;  it  indicates  a  move  toward  increasingly  distributed  generation.  

Figure  3.4.  Number  of  Renewable  Energy  Facilities  Installed  by  Project  Start  Year,  BC  

Source:  CIEEDAC  Renewable  Energy  Database,  2010  

3.4.2 Annual Generation of Energy The  survey  asked  facility  operators  to  report  their  annual  energy  generation.  The  sums  of  these  figures  are  listed  in  the  first  column  of  Table  3.1  below  (in  GWh).  However,  some  facilities  reported  only  their  rated  capacity  and  not  their  annual  energy  generation.  Thus,  data  from  39.5%  of  the  facilities  in  the  database  that  provide  information  on  both  their  rated  capacity  and  annual  energy  generation  are  used  to  calculate  capacity  factors  for  each  renewable  resource  type.  These  capacity  factors  are  then  applied  to  all  of  the  facilities  in  the  database  that  have  reported  their  capacity  to  generate  the  second  column  in  Table  3.1.  

The  2009  renewable  energy  survey  for  British  Columbia  revealed  that  at  least  19%  of  the  energy  produced  in  the  province  was  from  renewable  resources  and  estimates  show  it  could  have  been  as  high  as  21%.23  

The  associated  quantities  of  GHG  emissions  avoided  are  also  listed  in  Table  3.1  (in  CO2  equivalent).  These  calculations  assume  that  the  alternative  to  renewable  electricity  generation                                                                                                                  23  Based  on  2009  renewable  energy  generation  and  2009  total  primary  energy  production  for  BC  from  STC’s  Report  on  Energy  Supply  and  Demand  taken  from  CANSIM.  

Page 43: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

33    

would  be  combined-­‐cycle  gas  turbines  and  that  the  alternative  to  burning  wood  residue  for  thermal  energy  would  be  burning  natural  gas  in  a  boiler.  As  the  estimated  figures  below  might  deviate  significantly  from  real  energy  generation  and  GHG  emissions  avoided  in  2009,  they  should  be  cited  with  caution.  

Table  3.1.  Annual  Renewable  Energy  Generation  (GWh)  and  Avoided  Greenhouse  Gas  Emissions  (1000  tonnes  CO2  equivalent),  BC,  2009  

Fuel  Type   Known  Energy  

Generation  

Estimated  Energy  

Generation  

Potential  Total  Energy  Generation  

Confirmed  GHG  

Emissions  Avoided  

Estimated  GHG  

Emissions  Avoided  

Potential  Total  GHG  Emissions  Avoided  

Biogas   16   89   105   3   29   33  Biomass   4,997   1,980   6,976   1,415   636   2,051  Large  Hydro   60,090   2,022   62,112   26,440   890   27,329  Small  Hydro   3,058   137   3,195   1,345   60   1,406  Solar       0   0   0   0   0   0  Other   1   43   44   1   19   19  Total   68,161   4,271   72,432   29,204   1,634   30,838  

Source:  CIEEDAC  Renewable  Energy  Database,  2010  

Due  to  the  high  proportion  of  renewable  electricity  generation,  British  Columbia  emitted  only  1.45  Mt  of  CO2  from  the  production  of  electricity  in  2009.  If  these  renewable  energy  facilities  were  replaced  with  combined-­‐cycle  gas  turbines,  CO2  emissions  from  electricity  would  be  as  high  as  29.3  Mt.24  

3.4.3 Capacity Utilization By  obtaining  both  capacity  and  annual  generation  data,  we  were  able  to  estimate  the  average  capacity  utilization  of  each  resource  type,  presented  in  Figure  3.5.  Capacity  utilization  represents  annual  generation  as  a  percentage  of  what  could  be  generated  if  the  plant  ran  constantly.  Barriers  to  obtaining  100%  capacity  utilization  could  include  an  inconsistent  supply  of  fuel  (biomass),  sunlight  (solar)  or  water  (hydro);  planned  downtime  for  maintenance;  mechanical  failure;  and/or  a  lack  of  demand  during  non-­‐peak  hours.  

                                                                                                               24  Assume  greenhouse  emissions  intensity  for  marginal  electricity  production  is  0.44  t  CO2e/MWh  

Page 44: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

34    

Figure  3.5.  Capacity  Utilization  by  Resource  Type,  BC,  2009  

Source:  CIEEDAC  Renewable  Energy  Database,  2010  

3.4.4 Characteristics of Electricity Generators Figure  3.6  shows  the  breakdown  of  renewable  electrical  capacity  by  resource  type.  Hydroelectricity  dominates  BC’s  renewable  energy  generation  market,  with  92.3%  from  large  hydro  facilities  and  4.6%  from  small  hydro  facilities.  The  average  facility  capacities  are  62  MW  for  large  hydro  and  3  MW  for  small  hydro.  Large  hydro  is  the  province’s  largest  producer  of  renewable  electricity.    

Hydroelectricity  can  also  be  broken  into  hydro  storage,  hydro  run-­‐of-­‐river  and  hydro  other.  The  dominant  form  of  hydroelectricity  is  hydro  storage,  with  a  total  capacity  of  10.7  GW  and  an  average  facility  capacity  of  56.5  MW.  Run-­‐of-­‐river  is  the  second  most  common  type  of  hydroelectricity  in  BC,  with  a  total  capacity  of  1.2  GW  and  an  average  facility  capacity  of  6.7  MW.  There  are  62  hydro  facilities,  including  32  hydro  storage  facilities,  in  our  database,  which  represent  about  97%  of  installed  renewable  electrical  capacity  in  British  Columbia.    

Figure  3.6.  Renewable  Electrical  Capacity  (kW)  by  Resource  Type,  BC,  2009  

 Source:  CIEEDAC  Renewable  Energy  Database,  2010.  

Page 45: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

35    

Figure  3.7  illustrates  the  electrical  capacity  share  when  excluding  large  hydro  facilities.  

Nine  of  the  62  hydro  facilities  in  our  database  are  certified  “green”  by  BC  Hydro  or  the  Environmental  Choice  EcoLogo  program.  

Although  solar  photovoltaics  are  shown  here  to  represent  a  miniscule  share  of  electrical  capacity,  this  technology  is  likely  underrepresented  in  our  database  due  to  the  difficulty  of  tracking  down  facilities  for  such  a  distributed  energy  source.  Of  the  10  installations  listed,  one  is  owned  by  a  diversified  electricity  generator,  one  by  a  renewable  electricity  generator,  one  by  a  telecommunications  firm,  one  by  an  academic  research  facility  and  one  by  a  private  homeowner.  None  of  them  sell  electricity  to  the  grid.  Eight  of  them  were  installed  in  the  last  five  years.  

Figure  3.7.  Renewable  Electrical  Capacity  (kW)  by  Resource  Type,  Excluding  Standard  Hydro  and  Standard  Hydro  Storage,  BC,  2009  

 Source:  CIEEDAC  Renewable  Energy  Database,  2010  

3.4.5 Characteristics of Thermal Energy Generators In  2009,  59  facilities  reported  production  of  renewable  thermal  energy,  with  a  total  capacity  of  1,422  MW.    Of  this  total  thermal  capacity,  91.5%  was  derived  from  wood  waste  in  Pulp  and  Paper  and  Wood  Products  Manufacturing  establishments.  The  remainder  came  from  landfill  gas  used  by  the  utilities  (7.7%)  and  earth  energy  (0.8%).

Nine  thermal  energy  producers  also  reported  generating  their  own  electricity  but  only  five  facilities  reported  selling  electricity  to  the  grid.  Five  of  the  nine  thermal  energy  producers  reported  that  they  purchased  electricity  from  the  grid.  In  general,  these  facilities  produced  a  relatively  small  amount  of  electricity  compared  to  thermal  energy,  with  an  average  of  only  13  kW  of  electrical  capacity  per  100  kW  of  installed  thermal  capacity  with  a  total  installed  electrical  capacity  of  163  MW.  

Page 46: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

36    

There  are  52  earth  energy  facilities  listed  in  the  database.  Of  these  facilities,  32  have  an  average  capacity  of  337  kW,  comprising  a  total  of  10.7  MW.  The  largest  facility  is  2,321  kW  and  the  smallest  is  18  kW.  

3.5 Comparison  with  the  Rest  of  Canada  Table  3.2  below  illustrates  Canada’s  renewable  electrical  capacity  and  total  electrical  capacity  in  kilowatts  in  place  in  2005  by  province  (data  not  available  for  thermal  capacity).25  Quebec  had  49%  of  Canada’s  renewable  power  capacity,  while  British  Columbia  had  about  17%.    

Table  3.2  illustrates  the  percentage  of  total  provincial  and  territorial  installed  capacity  that  is  provided  by  renewable  energy.  Quebec  had  the  highest  proportion  at  95%.  BC  ranked  fourth  at  88%,  after  Québec,  Newfoundland  and  Labrador,  and  Manitoba.  

Table  3.2.  Capacity    and  Percentage  of  Provincial  Supply  from  Renewable  Energy,  2005  

Fuel  Type   Total  Renewable  Electrical  Capacity  (kW)  

Total  Installed  Electrical  Capacity  (kW)  

%  of  Provincial  Electrical  Capacity  

%  of  Canadian  Renewable  Electrical  Capacity  

Alberta   1,405,099   11,396,860   12%   1.9%  British  Columbia   12,794,488   14,558,909   88%   17.4%  Manitoba   5,014,623   5,532,173   91%   6.8%  New  Brunswick   1,072,762   4,433,208   24%   1.5%  Newfoundland  &  Labrador   6,961,710   7,494,309   93%   9.5%  Nova  Scotia   541,830   2,413,235   22%   0.7%  Nunavut  &  Northwest  Territories   59,253   198,466   30%   0.1%  Ontario   8,520,514   32,930,188   26%   11.6%  Prince  Edward  Island   16,280   121,110   13%   0.0%  Québec   35,916,670   37,768,726   95%   49.0%  Saskatchewan   943,705   3,796,920   25%   1.3%  Yukon   77,815   122,260   64%   0.1%  Total   73,324,749   120,766,364   60.7%   100%  

Source:  CIEEDAC  Renewable  Energy  Database,  2010;  STC  “Electric  Power  Generation,  Transmission,  and  Distribution,”  special  distribution  to  CIEEDAC  from  STC  

3.6 Conclusion  and  Summary  Renewable  energy  resources  could  provide  a  significant  amount  of  energy,  contributing  to  goals  of  energy  sustainability.  With  concerns  about  climate  change,  interest  in  this  area  has  expanded,  especially  in  terms  of  the  smaller,  more  distributed  generation  sites  (e.g.,  installations  of  less  than  500  kW).  CIEEDAC  believes  that  focusing  on  this  area  now  will  be  important  in  future  assessments  of  energy  utilization.  

Renewable  energy  was  estimated  to  provide  between  19%  and  21%  of  energy  produced  in  British  Columbia  in  2009.  The  installed  renewable  electricity  facilities  represent  almost  90%  of  

                                                                                                               25  Based  on  2005  renewable  electrical  capacity  and  2004  total  installed  electrical  capacity.  

Page 47: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

37    

the  province’s  total  electricity  capacity  in  that  same  year.  The  installed  renewable  electrical  capacity  of  12.77  GW  is  dominated  by  hydroelectricity  at  96.6%  and  cogeneration  from  biomass  wood  residue  at  3.1%,  with  biogas  and  solar  photovoltaic  sources  accounting  for  about  0.1%  of  BC’s  installed  capacity.  

Capacity  was  rapidly  added  throughout  the  20th  century,  but  after  1970,  new  installations  dropped  off  dramatically.  Since  the  1990s  the  focus  has  been  on  lower  impact,  smaller  scale  operations.  Capacity  utilization  is  highest  among  biomass  thermal  operations,  followed  by  biogas  thermal  generation  and  biomass  electricity  generation.  

BC  electricity  generation  emitted  only  1.45  Mt  of  GHGs  (CO2e)  in  2009  due  to  the  high  percentage  of  renewable  sources.  If  these  were  replaced  with  combined-­‐cycle  gas  turbines,  GHG  emissions  from  electricity  would  be  as  high  as  23.8  million  tonnes  of  GHGs.  

In  terms  of  the  proportion  of  installed  electrical  capacity  that  is  renewable,  British  Columbia  ranked  fourth  after  Quebec,  Newfoundland  and  Labrador,  and  Manitoba.  

4 Bibliography  Canadian  Electricity  Association  and  Natural  Resources  Canada.  2000.  Electric  Power  in  Canada  

1998–99.  Minister  of  Public  Works  and  Government  Services  Canada.  

Canadian  Electricity  Association  (CEA).  1997.  Climate  Change  and  Electricity  Sector  Emissions.  Ottawa,  ON:  CEA.  

Canadian  Gas  Association  (CGA).  1996.  Canadian  Gas  Fired  Co-­‐Generation  Data  Base  —  Systems  in  Operation.  December  31,  1995.  

Canadian  Geothermal  Energy  Association.  No  date.  What  is  Geothermal  Energy?  Available  from  http://www.cangea.ca/what-­‐is-­‐geothermal/  

Canadian  Wind  Energy  Association.  No  date.  http://www.canwea.ca/  

CIEEDAC.  1993.  An  assessment  of  data  on  output  for  industrial  sub-­‐sectors.  Prepared  for  the  Canadian  Industry  Program  for  Energy  Conservation.  Prepared  by  J.  Nyboer,  A.  Bailie,  CIEEDAC.  

CIEEDAC.  1994.  Industrial  energy  data  collection  in  Canada:  Existing  system  and  proposed  future  development.  Prepared  for  Natural  Resources  Canada.  Prepared  by  J.  Nyboer,  A.  Bailie,  CIEEDAC  and  P.  S.  Sandhu,  P.  Willis,  Willis  Energy  Services  Ltd.  

CIEEDAC.  2012a.  A  review  of  existing  cogeneration  facilities  in  Canada.  Prepared  for  the  Canadian  Industry  Energy  End-­‐use  Data  and  Analysis  Centre.  Prepared  by  J.  Nyboer.  

CIEEDAC.  2012b.  Development  of  energy  intensity  indicators  in  industry:  1990–2010.  Burnaby,  BC:  Simon  Fraser  University.  

CIEEDAC.  2012c.  Greenhouse  Gas  intensity  indicators  in  industry:  1990–2010.  Burnaby,  BC:  Simon  Fraser  University,  Burnaby.  

Page 48: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

38    

CIEEDAC.  2012d.  A  Review  of  Energy  Consumption  and  Production  Data:  Canadian  Electricity  Generation  Industry  1990  to  2010.  Burnaby,  BC:  Simon  Fraser  University.  

Energy  and  Geoscience  Institute.  2002.  Geothermal  energy.  Salt  Lake  City:  University  of  Utah.  

Environment  Canada.  2011.  National  Inventory  Report,  1990–2009  —  Greenhouse  Gas  Sources  and  Sinks  in  Canada.  Ottawa:  EC.  

The  European  Association  for  the  Promotion  of  Cogeneration.  2001.  A  guide  to  cogeneration.  Belgium:  EAPC.  

Jaques,  A.P.,  F.  Neitzert,  and  P.  Boileau.  1997.  Trends  in  Canada’s  greenhouse  gas  emissions  1990-­‐1995.  Ottawa:  Environment  Canada.  

Klein,  M.  2002.  Database  of  Canadian  gas  turbine  cogeneration  and  GTCC  Installations.  Ottawa:  Environment  Canada.  

Natural  Resources  Canada.  2001.  Canada’s  Emissions  Outlook:  1997–2020.  Ottawa:  Natural  Resources  Canada.  

Phylipsen,  G.,  K.  Blok,  and  E.  Worrell.  1996.  Handbook  on  international  comparisons  of  energy  efficiency  in  the  manufacturing  industry.  Department  of  Science,  Technology  and  Society,  Utrecht  University.  

Pulp  and  Paper  Canada.  2012.  Pulp  and  Paper  Canada  Annual  Mill  Directory.  Available  at  http://www.pulpandpapercanada.com/  

Statistics  Canada.  [various  years].  Report  on  energy  supply  and  demand  in  Canada.  No.  57-­‐003-­‐XPB,  Ottawa,  Ontario.  

Statistics  Canada.  1990–2006.  Electric  power  generation,  transmission  and  distribution.  No.  57-­‐202  XIB,  Ottawa,  Ontario.  

Statistics  Canada.  1990–2010a.  Table  127-­‐0001.  Electric  power  statistics,  monthly  (Megawatt  hour).  CANSIM  series  (database).    

Statistics  Canada.  1990-­‐2010b.  Table  128-­‐0009.  Supply  and  demand  of  primary  and  secondary  energy  in  terajoules,  annual.  CANSIM  (database).      

Statistics  Canada.  1990–2010c.  Table  379-­‐0025.  Gross  domestic  product  (GDP)  at  basic  prices,  by  North  American  Industry  Classification  System  (NAICS).  CANSIM  series  (database).    

Statistics  Canada.  2011.  Electric  power  generating  stations,  2009.  No.  57-­‐206-­‐XPB,  Ottawa,  Ontario.  

UNESCAP.  2000.  Part  1:  Overview  of  cogeneration  and  its  status  in  Asia,  in  Guidebook  on  Cogeneration  as  a  Means  of  Pollution  Control  and  Energy  Efficiency  in  Asia.  Available  at  http://www.unescap.org/publications/detail.asp?id=759.    

   

Page 49: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

    Pacific  Institute  for  Climate  Solutions  

39    

List  of  Appendices  

Appendix  A:  Energy  Use  Data  Tables,  1990–2010  

Appendix  B:  Cogeneration  in  British  Columbia,  2010  

NOTE:  Data  updating  and  review  are  not  complete;  data  reflect  previous  assessments  and  do  not  reflect  current  systems.    

Appendix  C:  Renewable  Energy  Facilities  in  British  Columbia,  2010  

NOTE:  Data  updating  and  review  are  not  complete;  data  reflect  previous  assessments  and  do  not  reflect  current  systems.  

 

Page 50: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

40

Appendix A: Energy Use Data Tables

Table 1. Total Energy Use by Major Sector in British Columbia (PJ)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Total Energy Used 931 1,184 1,163 1,114 1,102 1,155 1,147 1,127 1,150 1,089 1,043 1,071

Total Industrial 409 491 458 440 443 472 473 458 449 384 379 404

Transportation 254 348 344 336 340 352 335 325 341 340 348 362

Agriculture 10 16.2 18.1 14.5 13.7 13.4 11.2 11.5 13.4 12.7 11.8 18.0

Residential 121 143 141 142 136 138 145 147 163 152 153 136

Comm., Instit. & Public Admin 116 122 120 147 131 140 142 142 145 152 106 105

Electric Power Generation 21 44 60 23 26 29 29 31 26 35 33 35

Note: “Total Energy Used” includes all hidden and confidential values, as well as total energy used to make secondary electricity. Source: STC RESD

Table 2. Industrial Energy Use by Industry Sub-sector in British Columbia (PJ)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Total Industrial 409 491 458 440 443 472 473 458 449 384 379 404

Total Mining, Oil & Gas Extraction 29.5 28.8 26.7 25.6 23.3 28.0 26.9 37.2 43.4 43.0 41.4 56.6

Total Manufacturing 367 451 419 401 406 429 432 405 389 325 325 338

Pulp and Paper 276 317 282 274 268 294 292 311 292 236 244 256

Smelting and Refining X X X X X X X X X X X X

Cement X X X X X X X X X X X X

Petroleum Refining 23.4 X X X X X X X X X X X

Chemical Manufacturing 15.2 12.7 7.9 8.7 8.9 7.8 8.5 10.0 8.1 7.7 6.9 6.4

Other Manufacturing 35.3 81.2 95.5 82.9 90.8 86.1 91.1 46.8 51.4 38.7 37.9 40.2

Forestry 3.0 5.5 7.8 7.6 7.2 7.6 7.2 8.6 8.0 7.1 6.0 10.2

Construction 9.8 5.7 5.1 5.8 6.5 6.9 7.0 458 449 384 379 404

Note: “Total Manufacturing” includes the confidential and hidden values of the Smelting and Refining and Cement sub-sectors; Pulp and Paper consumption includes biomass fuels (spent pulping liquor and solid wood waste). Source: STC RESD

Page 51: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

41

Table 3. Energy Used to Make Secondary Electricity (TJ)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 0 0 0 0 0 0 42 23 15 0 0 0

Natural Gas 16,589 42,857 58,251 22,382 24,968 27,377 28,045 30,600 25,614 33,789 31,908 33,620

Petroleum Products 4,491 1,183 1,467 805 1,114 1,326 729 314 578 734 879 965

Diesel Fuel Oil 2,209 663 724 563 613 506 440 295 567 647 812 617

Light Fuel Oil 0 27 3.88 0 0 0 3.88 0 0 0 0 0

Heavy Fuel Oil 2,283 493 740 242 502 820 285 19 11 87 67 348

Total 21,080 44,039 59,718 23,187 26,082 28,703 28,816 30,937 26,207 34,524 32,787 34,585

Secondary Electricity Generated* 13,340 30,515 34,564 23,245 23,234 26,376 26,808 26,461 27,155 26,543 30,940 35,853

*Note: This electricity includes that generated from biomass but data on quantity of biomass used to make electricity are not available. Source: STC RESD

Table 4. Energy Used to Make Steam (TJ)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal - 289 188 36 36 7,537 187 187 395 388 288 108

Natural Gas - 207 353 5 11 20 8 13 - 4 - -

Total - 496 541 41 47 7557 195 200 395 392 288 108

Source: STC RESD

Table 5. Population, GDP and Energy Intensity Indicators

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Population (‘000) 3,292 4,039 4,076 4,098 4,122 4,155 4,197 4,244 4,310 4,384 4,460 4,531

Intensity (TJ/Pop) 0.316 0.315 0.285 0.272 0.267 0.278 0.273 0.265 0.267 0.248 0.234 0.236

Index (1990=1) 1.0 0.997 1.009 0.961 0.946 0.983 0.966 0.939 0.944 0.878 0.827 0.836

GDP(2002 $billion) 100.7 131.4 122.8 126.8 130.0 135.0 141.3 146.8 150.9 151.7 148.3 153.1

Intensity (TJ/$mil) 10.3 9.7 9.5 8.8 8.5 8.6 8.1 7.7 7.6 7.2 7.0 7.0

Index (1990=1) 1 0.938 0.854 0.792 0.764 0.771 0.732 0.692 0.687 0.647 0.634 0.631

Sources: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by North American Industry Classification System (NAICS) and province, annual (dollars).

Page 52: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

42

Table 6. Energy Use by Fuel Type (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 3,293 9,803 12,243 10,754 11,243 14,280 11,358 17,109 15,800 14,091 11,109 10,937

Natural Gas 211,772 291,148 287,781 282,449 256,140 253,714 251,805 216,689 226,245 226,001 216,511 205,312

Gas Plant NGLs 18,027 11,351 11,930 11,102 10,616 10,007 12,286 31,476 33,413 33,758 29,744 31,796

Electricity 188,313 219,414 211,434 212,953 214,635 222,096 226,072 214,895 240,186 216,922 212,214 211,670

Steam - 2,865 2,680 201 297 2,031 1,978 1,808 2,241 2,155 383 540

Coke 813 254 205 223 230 - - - - - - -

Coke Oven Gas

Petroleum Products 318,692 387,251 381,911 381,519 394,262 414,059 402,862 399,115 406,638 404,909 372,888 395,602

Still Gas

Motor Gas 123,636 161,847 158,725 158,796 161,608 171,236 162,332 160,353 161,973 158,470 161,970 163,804

Kerosene 1,907 946 870 823 776 846 651 445 705 422 381 313

Diesel Fuel Oil 96,275 119,971 119,979 122,402 125,078 132,527 131,715 129,734 130,871 141,293 110,503 124,471

Light Fuel Oil 16,079 9,343 9,750 8,220 7,776 8,006 7,589 7,263 6,227 3,407 3,042 2,262

Heavy Fuel Oil 45,390 29,903 39,695 31,342 44,256 45,175 41,966 39,903 46,895 37,659 38,620 39,857

Petroleum Coke 205 426 538 529 486 488 461 416 426 361 343 235

Aviation Gasoline 1,083 513 503 548 545 1,156 908 3,712 3,153 3,349 3,245 2,475

Aviation Turbo Fuel 34,119 64,302 51,851 58,859 53,737 57,015 57,240 57,289 56,388 59,948 54,784 62,185

Total Energy (PJ) 931 1,180 1,158 1,113 1,102 1,155 1,149 1,148 1,172 1,109 1,062 1,092

Source: STC RESD. An anomaly occurs when summing fuels (this table) or when estimating fuels based on supply (see Table 1). STC and CIEEDAC are investigating this variation.

Table 7. Production (GDP) and Energy Intensity Indicators, All Sectors (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 83,920 121,546 122,848 126,761 130,026 135,021 141,339 146,762 150,874 151,695 148,300 153,085

Intensity (Energy/TJ/GDP) 11.1 9.7 9.5 8.8 8.5 8.6 8.1 7.7 7.6 7.2 7.0 7.0

Index (1990 = 1) 1.0 0.879 0.854 0.792 0.764 0.771 0.732 0.692 0.687 0.647 0.634 0.631

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars).

Page 53: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

43

Table 8. Energy Use, Mining and Oil and Gas Extraction (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 453 3,669 4,658 4,636 3,681 3,683

Natural Gas 3,755 3,937 2,703 3,730 1,137 3,751 2,513 11,478 16,328 22,086 23,058 25,038

Gas Plant NGLs 480 1,295 x 746 672 604 1,166 1,152 1,369 1,539 1,210 1,230

Electricity 13,619 10,806 11,953 11,377 9,718 9,333 9,362 7,385 8,960 3,595 3,310 3,543

Coke

Coke Oven Gas

Petroleum Products 11,690 12,721 11,199 9,729 11,799 11,759 13,432 13,468 12,035 11,169 10,189 14,531

Still Gas

Motor Gas

Kerosene 237 165 186 115 138 174 314 298 301

Diesel Fuel Oil 11,194 12,155 10,537 9,180 10,984 10,907 179 117 83 68 8 8

Light Fuel Oil 259 401 476 434 677 678 12,591 12,206 11,337 10,502 8,357 12,880

Heavy Fuel Oil 663 629 283 268 322 237

Petroleum Coke

Aviation Gasoline

Aviation Turbo Fuel

Total Energy 29,542 28,760 26,685 25,581 23,329 27,977 26,927 37,152 43,351 43,027 41,449 56,608

Source: STC RESD

Table 9. Production (GDP) and Energy Intensity Indicators, Mining and Oil and Gas Extraction (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 2,015 3,344 4,252 4,383 4,298 4,270 4,643 4,645 4,422 4,598 4,293 4,595

Intensity (Energy/TJ/GDP) 14.7 8.6 6.3 5.8 5.4 6.6 5.8 8.0 9.8 9.4 9.7 12.3

Index (1990 = 1) 1 0.587 0.428 0.398 0.370 0.447 0.396 0.546 0.669 0.638 0.658 0.840

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars).

Page 54: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

44

Table 10. Energy Use, Pulp and Paper (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 121 614 565 338 603 788 491 (0) 15

Natural Gas 28,040 40,151 31,937 32,232 25,132 26,602 19,042 22,738 22,790 19,167 19,684 18,216

Gas Plant NGLs

Electricity 47,835 52,439 48,012 46,578 48,226 52,547 54,735 46,700 42,293 36,467 33,787 33,764

Coke 201 297 2,031 1,978 1,808 2,241 2,071 304 432

Coke Oven Gas

Petroleum Products 30,948 7,749 9,487 4,312.0 5,723.0 4,953.0 2,434.0 2,817.0 2,550.0 838.0 2,746.0 2,514.0

Still Gas

Motor Gas x x x x

Kerosene x x x

Diesel Fuel Oil 3,241 532 486 487 486 483 467 126 X x x x

Light Fuel Oil 77 140 4 5 4 43 4

Heavy Fuel Oil 27,629 8,815 3,829 3,820 3,821 5,198 4,484 2,308 2,291 1,798 x x

Petroleum Coke

Aviation Gasoline

Aviation Turbo Fuel x x x x

Solid Wood Waste 42,152 63,612 57,456 61,138 68,287 80,621 89,182 103,503 96,917 83,203 79,918 90,809

Spent Pulping Liquor 126,673 150,430 132,454 129,727 120,213 127,140 124,669 132,595 124,192 93,482 107,139 110,733

Total Energy 275,649 314,382 279,333 274,309 268,491 294,458 292,378 310,764 291,771 235,718 243,578 256,483

Source: STC RESD

Table 11. Production (GDP) and Energy Intensity Indicators, Pulp and Paper (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 1,510 1,484 1,241 1,316 1,334 1,411 1,527 1,488 1,583 1,367 1,172 1,200

Intensity (Energy/TJ/GDP) 182.5 213.8 227.3 208.5 201.3 208.6 191.4 208.8 184.3 172.4 207.8 213.7

Index (1990 = 1) 1.00 1.171 1.245 1.142 1.103 1.143 1.049 1.144 1.010 0.944 1.138 1.171

Source: STC CANSIM Table 379-0025 v382-7717

Page 55: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

45

Table 12. Production (GDP), Non-ferrous Smelting and Refining (Million $2002)1

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 959 x x 1,509 1,523 1,678 1,718 1,775 1,843 1,666 1,458 1,448

Note: 1. Energy use, and thus intensity indicators are not available. Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars).

Table 13. Production (GDP), Cement (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP x 240 213 239 281 311 319 355 461 390 274 264

Note: 1. Energy use, and thus intensity indicators are not available. Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Table 14. Energy Use, Petroleum Refining (TJ)1

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal x x x x x x x x x x x

Natural Gas 4,466 x x x x x x x x x x x

Gas Plant NGLs x x x x x x x x x x x

Electricity 1,331 x x x x x x x x x x x

Coke x x x x x x x x x x x

Coke Oven Gas

Petroleum Products 17,624 x x x x x x x x x x x

Still Gas 13,473 x x x x x x x x x x x

Motor Gas 10 x x x x x x x x x x x

Kerosene x x x x x x x x x x x

Diesel Fuel Oil 170 x x x x x x x x x x x

Light Fuel Oil 8 x x x x x x x x x x x

Heavy Fuel Oil 405 x x x x x x x x x x x

Petroleum Coke 3,554 x x x x x x x x x x x

Aviation Gasoline x x x x x x x x x x x

Aviation Turbo Fuel 4 x x x x x x x x x x x

Total Energy 23,420 x x x x x x x x x x x

Note: 1. Energy use data are confidential after 1998. Source: STC RESD

Page 56: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

46

Table 15. Production (GDP) and Energy Intensity Indicators, Petroleum Refining (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP x x x 75 77 74 x x x x x X

Intensity (Energy/TJ/GDP) - - - 0.0 0.0 0.0 - - - - - -

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Table 16. Energy Use, Chemical Manufacturing (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal X x x x x x x x x x

Natural Gas 8,731 6,033 2,007 2,335 2,349 1,689 2,215 1,879 1,784 x x x

Gas Plant NGLs

Electricity 6,387 6,657 5,917 6,398 6,546 6,081 6,193 7,926 6,258 5,542 5,311 4,937

Steam x x

Coke Oven Gas

Petroleum Products 105.75 38.25 0.2 0.21 0.2 0.6 0.6 0.9

Still Gas

Motor Gas

Kerosene

Diesel Fuel Oil 35 x x x x x x x x X

Light Fuel Oil x x x x x x x x X

Heavy Fuel Oil 71 38 x x x x x x

Petroleum Coke x x x x X

Aviation Gasoline

Aviation Turbo Fuel

Total Energy 15,224 12,728 7,924 8,733 8,895 7,769 8,487 9,960 8,136 7,681 6,870 6,399

Source: STC RESD

Table 17. Production (GDP) and Energy Intensity Indicators, Chemical Manufacturing (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 139 170 181 225 x 220 236 158 142 127 112 106

Intensity (Energy/TJ/GDP) 109.4 74.9 43.8 38.8 - 35.3 36.0 63.0 57.3 60.5 61.5 60.5

Index (1990 = 1) 1.00 0.684 0.400 0.355 - 0.323 0.329 0.575 0.523 0.553 0.562 0.553

Source: STC CANSIM Table 379-0025

Page 57: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

47

Table 18. Energy Use, Other Manufacturing (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 271 x x x x x x x x x x

Natural Gas 26,722 66,346 77,894 63,824 70,872 67,089 70,659 23,518 25,949 19,074 16,337 17,357

Gas Plant NGLs 449 952 1,394 x x x x x x x x x

Electricity 6,760 11,431 13,534 14,405 14,839 14,306 14,597 17,627 18,813 13,559 15,881 16,935

Coke x x x x x x 0 0 0

Steam - - - - - 84 79 108

Petroleum Products 1,387 2,190 1,998 2,330 2,963 2,793 2,440 2,262 2,540 1,715 2,085 2,161

Still Gas

Motor Gas - - - x x x x x

Kerosene 45 8 - - - x x x x x

Diesel Fuel Oil 940 1,708 1,674 x x x x 1,881 1,808 1,203 1,612 1,704

Light Fuel Oil 147 256 140 140 124 124 39 113 109 85 27 -

Heavy Fuel Oil 255 43 115 208 - - 4 4 x x x

Petroleum Coke 176 70 x x x x x x x x x

Aviation Gasoline - - - x x x x x

Aviation Turbo Fuel - - - x x x x x

Total Energy 35,318 81,194 95,460 82,908 90,773 86,079 91,089 46,772 51,352 38,747 37,891 40,179

Source: STC RESD

Table 19. Production (GDP) and Energy Intensity Indicator, Other Manufacturing (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 7,473 8,553 7,896 8,881 7,214 9,696 10,115 10,964 11,138 9,211 8,084 8,618

Intensity (Energy/TJ/GDP) 4.7 9.5 12.1 9.3 12.6 8.9 9.0 4.3 4.6 4.2 4.7 4.7

Index (1990 = 1) 1.00 2.008 2.558 1.975 2.662 1.878 1.905 0.903 0.975 0.890 0.992 0.986

Sources: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 58: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

48

Table 20. Energy Use, Total Manufacturing (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 3,283 9,069 9,538 10,754 11,243 11,751 10,379 10,392 12,214 10,291 7,426 x

Natural Gas 73,905 124,322 107,711 102,428 101,490 98,700 95,317 52,592 55,336 45,662 42,250 42,411

Gas Plant NGLs 449 952 1,394 1,823 1,713 1,539 2,971 x x x x x

Electricity 86,608 97,398 87,721 87,763 92,983 98,969 101,729 91,975 87,530 81,309 76,881 76,226

Coke 813 254 205 201 297 2,031 1,978 1,808 2,241 2,155 383 540

Coke Oven Gas 223 231 0 0 0 0 0 0 0

Petroleum Products 32,824 10,309 11,994 7,043 9,061 8,584 5,613 8,900 8,100 5,853 8,119 7,319

Still Gas 0 0 0 0 0 0 0 0

Motor Gas 0 0 0 x x x x x

Kerosene 45 8 0 0 0 x x x x x

Diesel Fuel Oil 4,375 3,474 2,248 2,531 2,941 2,815 2,359 2,493 2,290 1,566 1,988 2,045

Light Fuel Oil 236 349 283 144 167 128 39 113 109 85 31 0

Heavy Fuel Oil 27,963 6,052 8,925 3,820 5,406 4,484 2,308 2,295 1,802 x 2,253 2,112

Petroleum Coke 205 426 538 548 547 1,154 908 3,926 3,323 3,523 3,245 2,475

Aviation Gasoline 0 0 0 x x x x x

Aviation Turbo Fuel 0 0 0 x x x x x

Total Energy 366,705 451,077 418,535 401,101 405,515 429,336 431,839 404,698 389,174 325,034 325,201 338,426

Note: Total includes Pulp and Paper, Smelting and Refining, Cement, Petroleum Refining, Chemicals, Other Manufacturing, and confidential/hidden consumption. Source: STC RESD

Table 21. Production (GDP) and Energy Intensity Indicators, Total Manufacturing (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 10,834 14,990 13,667 13,687 13,884 14,723 15,904 15,885 14,546 12,657 13,156 15,904

Intensity (Energy/TJ/GDP) 33.8 30.1 30.6 29.3 29.2 29.2 25.4 24.5 22.3 25.7 25.7 25.4

Index (1990 = 1) 1.00 0.889 0.905 0.866 0.863 0.861 0.752 0.724 0.660 0.759 0.760 0.752

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 59: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

49

Table 22. Energy Use, Forestry (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal

Natural Gas

Gas Plant NGLs

Electricity

Coke

Coke Oven Gas

Petroleum Products 2,978 5,523 7,848 7,585 7,206 7,555 7,246 8,621 7,970 7,111 5,988 10,206

Still Gas

Motor Gas - - - - 1,436 1,635 1,732 901 1,667

Kerosene 26 8 4 4 4 8 4 4 4 4 4 4

Diesel Fuel Oil 2,696 5,373 7,733 7,511 7,105 7,357 7,009 6,971 6,178 5,259 4,987 8,460

Light Fuel Oil 147 23 81 50 31 190 167 163 151 113 81 8

Heavy Fuel Oil 108 119 30 21 64 0 68 47 0 4 13 68

Petroleum Coke

Aviation Gasoline

Aviation Turbo Fuel

Total Energy 2,978 5,523 7,848 7,585 7,206 7,555 7,246 8,621 7,970 7,111 5,988 10,206

Source: STC RESD

Table 23. Production (GDP) and Energy Intensity Indicators, Forestry (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 3,030 2,638 2,647 2,713 2,761 3,129 3,102 3,022 2,855 2,463 2,168 2,514

Intensity (Energy/TJ/GDP) 1.0 2.09 2.97 2.80 2.61 2.41 2.34 2.85 2.79 2.89 2.76 4.06

Index (1990 = 1) 1.00 2.129 3.015 2.842 2.653 2.454 2.375 2.900 2.838 2.936 2.808 4.127

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 60: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

50

Table 24. Energy Use, Construction (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal

Natural Gas 4,258 1,109 1,006 1,135 1,379 1,735 1,829 1,921 2,058 1,817 853 1,406

Gas Plant NGLs 677 125 119 91 78 71 76 73 89 99 78 78

Electricity

Coke

Coke Oven Gas

Petroleum Products 4,835 4,422 4,020 4,612 5,044 5,112 5,141 5,309 6,476 6,417 5,507 6,021

Still Gas

Motor Gas 0 0 0 0 268 433 422 593 935

Kerosene 15 4 4 4 4 4 4 4 4 0 0 11

Diesel Fuel Oil 4,158 4,251 3,845 4,458 4,937 4,983 4,990 4,899 5,929 5,952 4,703 4,998

Light Fuel Oil 654 167 171 151 105 124 147 136 109 47 89 70

Heavy Fuel Oil 8 0 0 0 0 0 0 0 119 9

Petroleum Coke

Aviation Gasoline

Aviation Turbo Fuel

Total Energy 9,770 5,656 5,144 5,840 6,501 6,917 7,045 7,303 8,634 8,333 6,438 7,506

Source: STC RESD

Table 25. Production (GDP) and Energy Intensity Indicators, Construction (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 5,778 5,795 6,021 6,328 6,927 7,675 8,115 8,936 9,097 9,501 8,617 9,673

Intensity (Energy/TJ/GDP) 1.7 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.7 0.8

Index (1990 = 1) 1.00 0.577 0.506 0.546 0.555 0.533 0.513 0.483 0.561 0.519 0.442 0.459

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 61: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

51

Table 26. Energy Use, Total Industry (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 3,283 9,069 X 10,754 11,243 14,457 10,996 14,225 17,056 15,081 11,267 11,095

Natural Gas 81,918 130,150 111,398 107,296 104,007 104,187 99,660 65,991 73,632 69,564 66,157 68,855

Gas Plant NGLs 1,606 2,372 2,650 2,660 2,465 2,215 4,212 4,158 4,948 5,556 4,374 4,444

Electricity 100,227 108,203 99,399 99,139 102,701 108,302 111,091 99,360 96,490 84,904 80,190 79,770

Coke 813 254 205 201 297 2,031 1,978 1,808 2,241 2,155 383 540

Coke Oven Gas 222 231 0 0 0 0 0 0 0

Petroleum Products 52,323 32,980 35,060 28,968 33,111 33,010 31,432 36,299 34,573 30,558 29,797 38,077

Still Gas

Motor Gas 0 0 0 0 x x x x x

Kerosene 324 185 192 121 147 185 185 124 317 170 143 121

Diesel Fuel Oil 22,427 25,255 24,363 23,681 23,681 23,681 23,681 23,681 23,681 23,681 23,681 23,681

Light Fuel Oil 1,292 943 1,009 780 982 1,121 1,017 1,040 892 613 695 539

Heavy Fuel Oil 28,076 6,171 8,959 3,842 5,474 4,484 2,372 2,542 1,836 408 2,444 2,223

Petroleum Coke 205 426 538 547 547 1,154 908 3,926 3,323 3,523 3,245 2,475

Aviation Gasoline 0 0 0 0 x x x x x

Aviation Turbo Fuel 0 0 0 0 494 868 969 408 602

Total Energy 408,996 491,015 458,216 440,106 442,550 471,785 473,057 457,776 449,123 383,513 379,067 404,165

Note: Total includes Forestry, Construction, Total Manufacturing and confidential/hidden consumption. Source: STC RESD

Table 27. Production (GDP) and Energy Intensity Indicators, Total Industry (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 21,656 26,768 26,587 27,111 27,871 29,798 31,294 32,507 32,258 31,108 27,735 29,938

Intensity (Energy/TJ/GDP) 18.9 18.3 17.2 16.2 15.9 15.8 15.1 14.1 13.9 12.3 13.7 13.5

Index (1990 = 1) 1.00 0.971 0.913 0.860 0.841 0.838 0.800 0.746 0.737 0.653 0.724 0.715

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 62: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

52

Table 28. Energy Use, Transportation (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal

Natural Gas 16,846 32,360 36,521 26,370 20,639 21,955 19,233 15,059 18,095 17,488 16,998 16,463

Gas Plant NGLs 12,237 4,914 4,829 4,596 4,166 4,153 3,052 3,014 3,589 4,027 3,169 3,222

Electricity 557 619 607 719 752 698 712 616 750 1,304 1,599 1,992

Coke

Coke Oven Gas

Petroleum Products 223,952 310,403 302,514 304,170 314,221 325,345 312,327 306,457 318,939 317,288 326,384 340,424

Still Gas 0 0 0 0 0 0 0 0 0

Motor Gas 115,283 152,436 150,042 149,569 152,191 161,963 153,388 149,832 150,903 147,165 154,585 154,987

Kerosene 0 0 0 0 0 0 0 0 0

Diesel Fuel Oil 61,348 73,184 73,306 71,698 73,149 71,257 67,810 67,442 71,897 78,289 83,134 87,960

Light Fuel Oil 0 0 0 0 0 0 5 0 14

Heavy Fuel Oil 16,561 23,120 29,784 26,618 38,127 38,118 37,043 34,965 42,096 34,735 35,998 37,638

Petroleum Coke 0 0 0 0 0 0 0 0 0

Aviation Gasoline 446 144 168 168 174 144 178 204 275 255 181 144

Aviation Turbo Fuel 30,314 61,519 49,215 56,115 50,580 53,867 53,908 54,006 53,706 56,841 52,487 59,679

Total Energy 253,592 348,256 344,180 335,857 339,777 352,149 335,327 325,146 341,472 340,107 348,150 362,101

Note: Total includes railways, airlines, marine, pipelines, road transport/urban transit and retail pump sales. Source: STC RESD

Table 29. Production (GDP) and Energy Intensity Indicators, Transportation (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 5,141 14,855 14,835 14,789 15,284 15,864 17,340 18,784 18,829 18,415 17,959 18,473

Intensity (Energy/TJ/GDP) 49.3 23.4 23.2 22.7 22.2 22.2 19.3 17.3 18.1 18.5 19.4 19.6

Index (1990 = 1) 1.00 0.475 0.471 0.460 0.451 0.450 0.392 0.351 0.368 0.374 0.393 0.397

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 63: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

53

Table 30. Energy Use, Agriculture (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal

Natural Gas 2,781 4,149 4,140 731 695 669 742 750 739 691 557 5,716

Gas Plant NGLs 449 190 256 162 152 149 144 142 170 190 149 152

Electricity 984 1,827 1,439 1,344 1,294 1,452 1,472 1,329 1,737 2,619 2,708 2,664

Coke

Coke Oven Gas

Petroleum Products 5,880 10,073 12,271 12,223 11,571 11,151 8,879 9,252 10,760 9,201 8,356 9,432

Still Gas

Motor Gas 2,211 2,583 3,224 4,018 4,092 4,158 3,812 3,798 3,843 3,801 3,273 3,927

Kerosene 377 196 166 154 98 41 8 11 8 4 0 4

Diesel Fuel Oil 1,791 6,320 7,308 7,185 7,066 6,833 5,021 5,377 6,833 5,370 5,048 5,442

Light Fuel Oil 1,501 920 1,498 803 314 120 39 54 70 19 35 58

Heavy Fuel Oil 55 77 68

Petroleum Coke

Aviation Gasoline

Aviation Turbo Fuel 9 7 8

Total Energy 10,093 16,238 18,106 14,461 13,713 13,421 11,238 11,472 13,410 12,701 11,770 17,964

Source: STC RESD

Table 31. Production (GDP) and Energy Intensity Indicators, Agriculture (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 878 975 1,141 1,058 1,053 1,057 1,061 1,078 1,134 1,147 1,157 1,156

Intensity (Energy/TJ/GDP) 11.3 16.7 15.9 13.7 13.0 12.7 10.6 10.6 11.8 11.1 10.2 15.5

Index (1990 = 1) 0.760 1.119 1.067 0.919 0.875 0.853 0.712 0.715 0.795 0.744 0.684 1.044

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 64: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

54

Table 32. Energy Use, Residential (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 10 x 0 0 0 523 206 73 0 0 0

Natural Gas 63,285 78,579 76,085 79,284 75,220 72,591 79,057 81,620 80,176 80,534 81,022 67,221

Gas Plant NGLs 2,244 990 1,009 1,283 1,152 1,015 906 896 1,066 1,197 942 957

Electricity 45,280 58,328 58,226 60,042 59,164 63,115 63,413 63,783 79,834 69,706 69,308 66,835

Coke

Coke Oven Gas

Petroleum Products 10,281 5,584 5,809 1,059 951 1,238 899 898 964 920 2,076 1,380

Still Gas

Motor Gas 0 0 0 0 0 11 6 22 0

Kerosene 934 226 121 121 124 185 75 64 102 64 64 26

Diesel Fuel Oil 0 0 0 0 0 0 0 1 0

Light Fuel Oil 9,310 5,358 5,688 939 826 1,055 826 834 854 846 1,987 1,354

Heavy Fuel Oil 38

Petroleum Coke

Aviation Gasoline

Aviation Turbo Fuel

Total Energy 121,100 143,458 141,196 141,668 136,487 137,960 144,800 147,402 162,555 152,358 153,347 136,393

Source: STC RESD

Table 33. Production (GDP) and Energy Intensity Indicators, Residential (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 7,875 12,341 12,621 13,212 13,629 14,144 14,946 15,667 16,471 17,311 18,158 18,955

Intensity (Energy/TJ/GDP) 15.4 11.6 11.2 10.7 10.0 9.8 9.7 9.4 9.9 8.8 8.4 7.2

Index (1990 = 1) 1.00 0.756 0.727 0.697 0.651 0.634 0.630 0.612 0.642 0.572 0.549 0.468

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 65: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

55

Table 34. Energy Use, Commercial and Institutional (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal

Natural Gas 45,952 48,414 45,594 63,435 50,554 49,436 47,699 47,806 46,993 52,422 46,969 44,421

Gas Plant NGLs 1,453 2,640 2,969 3,194 2,908 2,612 1,746 1,726 2,053 2,303 1,815 1,843

Electricity 37,952 46,518 48,100 48,262 47,534 45,453 46,317 46,846 57,794 54,681 54,458 56,513

Coke

Coke Oven Gas

Petroleum Products 19,513 24,910 23,253 31,972 30,393 42,333 45,985 42,924 37,981 42,640 2,642 1,981

Still Gas

Motor Gas 5,494 6,115 4,694 4,442 5,327 5,117 5,135 4,928 5,460 5,737 1,334 1,183

Kerosene 249 328 381 430 403 426 381 249 275 185 173 162

Diesel Fuel Oil 6,726 13,340 13,512 18,311 18,897 28,376 31,931 30,345 26,412 34,355 2,275 2,689

Light Fuel Oil 3,551 2,021 1,467 5,645 5,653 5,711 5,711 5,327 4,349 1,924 326 295

Heavy Fuel Oil 697 616 956 816 659 2,571 2,550 2,397 2,962 2,516 170 0

Petroleum Coke - - - 0 0 0 0 0 0 0 0 0

Aviation Gasoline 429 392 325 349 308 342 282 188 131 94 101 60

Aviation Turbo Fuel 2,368 2,098 1,919 1,982 3,157 3,149 3,332 2,779 1,806 2,132 1,889 1,904

Total Energy 104,866 122,495 119,917 146,863 131,387 139,834 141,749 142,144 145,084 152,046 105,884 104,758

Note: This sector includes Public Administration. Source: STC RESD

Table 35. Production (GDP) and Energy Intensity Indicators, Commercial and Institutional (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 37,713 66,756 68,635 71,351 73,648 74,183 75,217 80,418 83,842 81,409 80,759 82,168

Intensity (Energy/TJ/GDP) 2.8 1.8 1.7 2.1 1.8 1.9 1.9 1.8 1.7 1.9 1.3 1.3

Index (1990 = 1) 1.00 0.660 0.628 0.740 0.642 0.678 0.678 0.636 0.622 0.672 0.472 0.459

Note: This sector includes Public Administration. Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 66: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

56

Table 36. Energy Use, Public Administration (TJ)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Coal 734 278

Natural Gas 990 6,401 6,704 5,333 5,027 4,879 5,414 5,467 5,370 5,301 4,804 2,639

Gas Plant NGLs 38 246 149 0 0 0 0 0 0 0 0 0

Electricity 3,313 3,940 3,664 3,447 3,191 3,075 3,068 2,962 3,582 3,708 3,952 3,896

Coke

Coke Oven Gas

Petroleum Products 6,746 3,393 3,082 3,124 4,017 3,371 3,338 3,288 3,414 4,302 3,633 4,311

Still Gas

Motor Gas 648 714 763 770 809 816 819 798 802 791 949 984

Kerosene 19 11 8 0 4 8 0 0 0 0 0 0

Diesel Fuel Oil 3,984 1,877 1,490 1,524 2,264 1,858 1,888 1,850 1,835 2,677 1,892 2,474

Light Fuel Oil 429 97 93 54 50 47 39 39 31 27 27 19

Heavy Fuel Oil 21 9

Petroleum Coke

Aviation Gasoline 208 10 10 10 23 13 7 7 7 10 17 0

Aviation Turbo Fuel 1,437 684 718 759 868 628 583 595 741 797 741 834

Total Energy 11,067 14,715 13,879 11,905 12,235 11,324 11,820 11,717 12,395 13,311 12,389 10,846

Source: STC RESD

Table 37. Production (GDP) and Energy Intensity Indicators, Public Administration (Million $2002)

1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GDP 5,074 5,774 6,277 6,339 6,588 6,790 6,919 7,128 7,188 7,202 7,268 7,506

Intensity (Energy/TJ/GDP) 2.2 3.2 2.8 2.6 2.1 2.2 2.0 1.7 1.7 1.6 1.6 1.6

Index (1990 = 1) 1.00 1.471 1.279 1.190 0.982 0.993 0.920 0.766 0.780 0.721 0.746 0.716

Source: STC CANSIM Table 379-0025 — Gross Domestic Product (GDP) at basic prices, by NAICS and province, annual (dollars)

Page 67: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

57

Table 38. Electricity Generation, Net Supply and Producer Consumption of British Columbia (GWh)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Total Electricity Prod. 61,014 68,685 58,764 65,335 63,383 61,979 67,774 61,598 71,830 66,072 65,057 63,637

Primary Electricity 57,308 60,208 49,163 58,878 56,929 54,652 60,327 54,247 64,287 58,699 56,462 53,678

Secondary Electricity 3,706 8,476 9,601 6,457 6,454 7,327 7,447 7,350 7,543 7,373 8,594 9,959

Total Net Supply 57,514 64,054 61,542 62,895 60,837 63,450 65,732 68,151 69,022 68,546 68,827 66,838

Primary Electricity 53,809 55,577 51,941 56,438 54,383 56,123 58,285 60,801 61,479 61,173 60,233 56,879

Secondary Electricity 3,706 8,476 9,601 6,457 6,454 7,327 7,447 7,350 7,543 7,373 8,594 9,959

Producer Consumption (Primary)

5,205 3,112 2,778 3,742 1,216 1,756 2,934 12,376 12,378 10,356 10,984 10,130

Source: STC CANSIM Table 128-0003 — Supply and demand of primary and secondary energy in natural units, computed annual total (megawatt hour)

Table 39. Electricity Power Statistics, British Columbia (GWh)

Fuel Type 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Overall Total Gen. 60,662 68,241 57,332 64,945 63,051 60,496 67,774 61,598 71,830 66,072 65,057 63,637

Total Utility Gen 47,742 54,368 45,630 51,630 49,243 46,647 54,129 48,080 58,603 52,795 51,852 51,208

Total Industrial Gen 12,921 13,873 11,702 13,315 13,808 13,849 13,645 13,517 13,227 13,277 13,205 12,429

Total Hydro Gen 57,245 59,754 48,338 58,627 56,689 53,281 60,327 54,247 64,287 58,699 56,462 53,555

By Utility 46,387 50,346 40,679 49,396 46,797 43,653 50,305 44,464 54,706 48,634 46,263 44,395

By Industry 10,858 9,409 7,659 9,231 9,892 9,629 10,022 9,783 9,581 10,065 10,199 9,160

Total Convent. Steam 3,197 7,138 7,615 4,319 4,230 4,908 4,997 5,370 5,007 4,774 4,280 4,565

By Utility 1,224 3,547 4,380 1,106 1,144 1,555 1,414 1,674 1,385 1,592 1,295 1,313

By Industry 2.0 3,591 3,235 3,213 3,086 3,353 3,583 3,696 3,622 3,182 2,985 3,252

Total Internal Combust 220 69 69 74 73 80 102 48 83 90 126 131

By Utility 130 50 49 61 54 59 62 11 58 60 105 114

By Industry 89.9 19 20 13 19 21 39 37 24 31 21 17

Total Combust. Turbine 0.4 1,280 1,310 1,925 2,059 2,226 2,348 1,932 2,454 2,509 2,270 2,287

By Utility 0.4 426 522 1,067 1,248 1,381 2,348 1,932 2,454 2,509 2,270 2,287

By Industry 0 854 788 858 812 845 0 0 0 0 0 0

Source: STC CANSIM Table 127-0001 — Electric power statistics, computed annual total (megawatt hour)

Page 68: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

58

Appendix B: Cogeneration Data Tables, 2010

NOTE: Data updating and review are not complete; data reflect previous assessments and do not reflect current systems.

Table 1. Cogeneration for British Columbia

NAICS Start Year

Operator Type of Business Primary Thermal Host Electrical

Capacity (kW) Thermal

Capacity (kW) Cogen Type Fuel

2211 1999 Calpine Island Cogeneration Independent Power Producer Norske Skogindustrier, Elk Falls 290,000 78,051 GT NG

2211 1993 Atco Power Electric Utility Duke Energy 118,000 GT NG

2213 1998 Greater Vancouver Regional Dist. Water Treatment Plant Iona Island WWT Plant 4,050 3,963 SI Digester

2213 Annacis Island Water Treatment Plant 3,400

2213 Vancouver Landfill Landfill 9,000

3113 1973 Rogers Sugar Food Manufacturer Rogers Sugar 3,000 3,778 BPST NG

3211 1985 Riverside Forest Products Wood Products Riverside Forest Products 12,000 55,560 CST Hog

3211 1999 Tolko Industries Ltd. Wood Products 22,000 33,000 BPEST

3212 1936 Louisianna Pacific Wood Products Louisiana Pacific 7,500 18,750 ECST Hog

3221 1949 Western Pulp Ltd. Pulp and Paper Port Alice Operations 15,000 97,500 BPST, ECST SPL

3221 1963 Pope and Talbot Inc. Pulp and Paper Pope and Talbot Harmac Pulp 30,000 373,603 BPST SPL

3221 1964 Norske Canada Pulp and Paper Port Alberni Pulp and Paper Div. 18,000 137,400 BPEST Hog

3221 1968 Tembec Industries Inc. Pulp Mill Tembec Industries Inc. 58,500 276,625 BPEST SPL

3221 1968 Catalyst Paper Pulp and Paper 36,000 254,468 BPEST

3221 1972 Cariboo Pulp and Paper Pulp and Paper Cariboo Pulp and Paper 32,000 387,890 BPEST SPL

3221 1972 Domtar Pulp Pulp Mill 76,500 BPST, CST

3221 1973 Canadian Forest Products Pulp and Paper CANFOR – Northwood 55,400 BPEST SPL

3221 1979 Pope and Talbot Ltd. Pulp and Paper Mackenzie Pulp Operation 20,000 54,650 BPEST SPL

3221 1980 Norske Skogindustrier Pulp and Paper Crofton Pulp & Paper 38,700 45,267 BPST

3221 1989 Howe Sound Pulp and Paper Pulp and Paper Howe Sound Pulp and Paper 112,500 414,600 BPEST, ECST SPL

3221 1993 Celgar Pulp Co. Pulp and Paper Celgar Pulp Co. 52,000 342,807 BPEST SPL

Total 1,018,050 4,840,000

Note: Summary for Province = BC (21 detail records). Thermal capacity estimated, not all recipients responded Source: Canadian Cogeneration Database, CIEEDAC

Page 69: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

59

Appendix C: Renewable Energy Data, 2009

NOTE: Data updating and review are not complete; data reflect previous assessments and do not reflect current systems.

Table 1. Biogas — Landfill Gas Facilities

Name Company Location Type of Business

Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year Eco-certification

Hartland Landfill Maxim Power Corp. Victoria 1,600 2004

Jackman Landfill ToGro Greenhouses Ltd. Langley Agriculture 1995

Port Mann Landfill Georgia Pacific Surrey Wallboard Manufacturer

Yes No 1993

Vancouver Landfill Maxim Power Corp. Delta 5,550 99,540 2003

Total 7,150 110,040

Table 2. Biogas — Sewage Facilities

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year Eco-certification

Annacis Island Greater Vancouver Regional District

Richmond Regional Wastewater Treatment Facility

4,400 Yes Yes 3,300 1975

Iona Islands Greater Vancouver Regional District

Richmond Regional Wastewater Treatment Facility

3,750 Yes No 1,500 1995

Total 8,150 4,800

Page 70: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

60

Table 3. Solar Photovoltaic Installations

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

BCIT Solar Installation Burnaby College 4 No No 2000

CMHC Home Solar Installation

BCIT Technology Center

Burnaby Academic Research and Development

2 No No 2000

Operations Centre City of White Rock

White Rock 2003

Prince George Solar Installation

Private home Prince George Residences 1 No No 1996

Solar Plus Solar Plus Mill Bay Renewable Electricity Generator

1 Yes 1987

TELUS Solar Installation

TELUS Inc. Vancouver Telecommunications 3 No No 2000

Victoria Solar House SPS Energy Victoria Diversified Electricity Generator

1 No No 2001

Victoria Solar House 2 Victoria 2 2004

Williams Farrel Building

Vancouver 2000

Total 14

Page 71: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

61

Table 4. Hydroelectricity – Storage Facilities

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

Alouette BC Hydro Alouette Lake Crown Corporation 9,000 No Yes 1928

Arrow Lakes Generating Station

Columbia Power Corporation

Columbia River 185,000 No 2002

Ash River BC Hydro Ash River Crown Corporation 27,000 No Yes 1959

Bridge River #1 BC Hydro Bridge River Crown Corporation 191,000 No Yes 1948

Bridge River #2 BC Hydro Bridge River Crown Corporation 275,000 No Yes 1959

Cheakamus BC Hydro Cheakamus River Crown Corporation 157,000 No Yes 1957

Clowhom BC Hydro Clowhom River Crown Corporation 33,000 No Yes 1957

Comox Dam BC Hydro Puntledge River Crown Corporation 1953

Corra Linn FortisBC Kootenay River Utility 45,000 No No 1932

Falls River BC Hydro Falls River Crown Corporation 7,000 No Yes 1930

Gordon M. Shrum BC Hydro Peace River 2,730,000 No Yes 1968

John Hart BC Hydro Campbell River Crown Corporation 126,000 No Yes 1947

Jordan River BC Hydro Jordan River Crown Corporation 170,000 No Yes 1971

Kemano Generating Station

Alcan Primary Metal, BC

Kemano Aluminum Smelter 960,000 No Yes 1954

Kootenay Channel BC Hydro Kootenay River Crown Corporation 572,000 No Yes 1975

La Joie BC Hydro Dounton Lake Crown Corporation 25,000 No Yes 1957

Ladore Falls BC Hydro Campbell River Crown Corporation 47,000 No Yes 1956

Lake Buntzen #1 BC Hydro Lake Buntzen Crown Corporation 55,000 1951

Lake Buntzen #2 BC Hydro Lake Buntzen Crown Corporation 1914

Lois Brookfield Power Operations: BC

Lois Lake Renewable Electricity Generators

34,660 No Yes 1930

Mica BC Hydro Columbia River Crown Corporation 1,805,000 No Yes 1976

Moresby Lake Northern Utilities Inc. and Queen Charlotte Power Corp.

Moresby Lake Renewable Electricity Generator

5,700 1990

Powell River Brookfield Power Operations: BC Operations

Powell Lake Renewable Electricity Generators

47,250 No No 1911

Page 72: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

62

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

Revelstoke BC Hydro Columbia River Crown Corporation 1,980,000 No Yes 1984

Ruskin BC Hydro Hayward Lake Crown Corporation 10,500 No Yes 1930

Seton BC Hydro Seton Creek Crown Corporation 48,000 No Yes 1956

Seven Mile BC Hydro Pend D’Oreille River

Crown Corporation 804,000 No Yes 1979

Shuswap Falls BC Hydro Shuswap River Crown Corporation 6,000 No Yes 1929

Stave Falls BC Hydro Stave Lake Crown Corporation 90,000 No Yes 1912

Strathcona BC Hydro Campbell River Crown Corporation 64,000 No Yes 1958

Wahleach BC Hydro Wahleach Lake Crown Corporation 63,000 No Yes 1952

Whatshan BC Hydro Wahleach Lake Crown Corporation 54,000 No Yes 1972

Total 10,720,610

Table 5. Earth Energy Installations

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year Eco-certification

100 Mile House Recreation Centre

Canlan Ice Sports Corporation

100 Mile House

Recreational Facility

773.784 2002

Airport Hangar Campbell River

Campbell River

70.344 2004

APEG Building Association of Professional Engineers

Burnaby Office Building 246

Art Holdings Area Icekube Systems Chase Recreational Facility

562.752 1999

Beaver Flats Whistler 2002

Blue River Resort Mike Wiegele Helicopter Skiing

Blue River Hotel

Bob McMath Secondary School

Bob McMath Secondary School

Richmond School 1997

Bow Mel Chrysler Duncan 87.93 2004

Brentwood College Mill Bay College 246.204 2002

Burnaby Mountain Secondary

Burnaby School

Caper’s Building Kalico Developments Ltd. & Salt Lick Projects Ltd.

Vancouver Real Estate Developer

Yes 739 1993

Page 73: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

63

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year Eco-certification

Ciele Condominum Vancouver

City of Vancouver Works Building

Vancouver 175.86 2004

Copcan Contracting Nanaimo 123.102 2002

Cornerstone Building Burnaby 120 2004

Discovery Bay Resort Kelowna 2321.352 2002

First Lutheran Church Kelowna 211.032 2002

Gleneagles Community Centre

District of West Vancouver Vancouver Community Centre 2003

Gulf Islands Secondary School

Gulf Islands Secondary School

Salt Spring Island

School 1993

Heritage Woods Secondary School

Port Moody

School 298.962 2004

Ice Box Arena Icekube Systems Kamloops Recreational Facility

562.752 1999

Ice Box Arena Icekube Systems Kamloops Recreational Facility

281.376 2000

Kitsilano Condo Development

Kitsilano 527.58 1993

Landmark Technology Centre

Stober Construction Kelowna Office Complex

Living Waters Church Fort Langley

70.344 2002

Mission Centre Office Icekube Systems Kelowna Recreational Facility

506.4768 2003

Nature Centre Masset 17.586 2002

Nestor School Coquitlam School 140.688 2000

Nicola Valley Arena Icekube Systems Merritt Recreational Facility

562.752 2001

Ocean Farms Duncan 70.344

Oliver Curling Club Oliver Curling Club Oliver Recreational Facility

1994

Pacific Agrifood Research Centre

Agriculture and Agri-Foods Canada

Agassiz Research Institution

Pacific Gardens Nanaimo

Pacific Sands Beach Tofino 316.548 2004

Page 74: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

64

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year Eco-certification

Resort

Peace Arch Visitors Centre

Surrey

Poet’s Cove South Pender Island

2003

Quarry Stone Lakeside Villas

Mara 119.5848 2003

Rockridge Canyon Youth Camp

Princeton 140.688 2004

Rutland Elementary School

Rutland Elementary School Kelowna School

S.F.Home Kalico Developments Ltd. & Salt Lick Projects Ltd.

Real Estate Developers

Salt Spring Elementary School

Salt Spring Island

School 105.516 2001

Saturna Island Community Centre

Saturna Island

Community Centre 105.516 2004

Seaview School Coquitlam 105.516 2000

Serene Lea Farms Mara 140.688 2003

Shoal Point, Fisherman’s Wharf

Victoria 2003

Sk’Elp School of Excellence

Kamloops Indian Band Kamloops 2002

Spruce Grove Field House

Resort Municipality of Whistler

Whistler Government 2000

Sto-Lo Nation Medical Building

Chilliwack 105.516 2004

Sun Rivers Golf Resort Sun Rivers Golf Resort Kamloops 2004

Sundance Lodge Resort Kelowna 703.44 2004

Tekmar Control Systems Ltd.

Tekmar Control Systems Ltd.

Vernon Factory

Telkwa Faith Reformed Church

Telkwa Church 211.032 2003

Total 10,770.27

Page 75: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

65

Table 6. Low Impact Hydro Facilities

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

Aberfeldie BC Hydro Bull River Crown Corporation 5,000 No Yes 1922

Akolkolex Canadian Hydro Developers Inc.

Revelstoke Diversified Electricity Generator

10,000 No Yes 1995 ECP Eco-Logo

Bonnington Falls Generating Station

Nelson, Corp of the City of

Kootenay River Integrated Electric Utility 15,350 Yes No 1905 Environmental Choice Program, Eco-Logo, 1999

Boston Bar Generating Station

Algonquin Power Income Fund

Scuzzy Creek Hydro Site Managers 7,200 Yes Yes 1995

Brilliant Columbia Power Corp.

Kootenay River Renewable Electricity Generator

149,000 No No 1943

Brown Lake EPCOR Generation Inc.

Prince Rupert Electricity Generation 7,000 1996

Clayton Falls BC Hydro Clayton Falls Crown Corporation 2,000 No Yes 1961

Eagle Lake Micro Hydro at C2 Reservoir

Pacific Cascade Hydro Inc. & District of West Vancouver

West Vancouver Municipality 200 Yes Yes 2003 BC Hydro Green Certified, 2003

Elko Plant BC Hydro Elk River Crown Corporation 12,000 No Yes 1924

Hluey Lake Hydro Project

Regional Power Dease Lake Renewable Electricity Generator

200 Yes Yes 2003 Environmental Choice Certified

Hystad and East Twin Creek

East Twin Creek Hydro Ltd.

Valemount Renewable Electricity Generator

6,000 Yes Yes 1989 B.C. Hydro Green Certified, 2002

Lower Bonnington FortisBC Kootenay River Utility 49,500 No No 1925

Mamquam TransCanada Energy

Mamquam River Renewable Electricity Generator

50,000 1996

Miller Creek EPCOR Generation Inc.

Pemberton Electricity Generation 29,500 2003

Peace Canyon BC Hydro Peace River Crown Corporation 694,000 No Yes 1980

Pingston Creek Canadian Hydro Developers Inc.

Revelstoke Renewable Electricity Generator

45,000 No Yes 2003 BC Hydro Green Certified

Puntledge BC Hydro Puntledge River Crown Corporation 24,000 No Yes 1955

Purcell Mountain Lodge Purcell Mountain Lodge

Purcell Mountain Lodge

Lodge 15 1992

Raging River Raging River Power Port Alice Mining and Energy Company 1,750 Yes Yes 2002 BC Hydro Green

Page 76: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

66

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

and Mining Inc IPP, 2003

Rutherford Creek Innergex Inc. Pemberton

Sechelt Clean Power Income Fund

Sechelt Creek Renewable Electricity Generator

16,000 Yes Yes 1997 Environmental Choice Certified

South Slocan FortisBC Kootenay River Utility 53,100 No No 1928

Spillimacheen BC Hydro Spillimacheen River

Crown Corporation 4,000 No Yes 1955

Upper Bonnington FortisBC Kootenay River Utility 61,630 No No 1907

Upper Mamquam Canadian Hydro Developers Inc.

Squamish 2005

Walden Hydro Plant BC Hydro Lillooet Crown Corporation 16,000 No No 1974

Walter Hardman BC Hydro Cranberry Creek Crown Corporation 8,000 No Yes 1960

Waneta Generating Station

Columbia Power Corporation

Pend d'Oreille River

1952

Wilsey dam BC Hydro Shuswap River Crown Corporation 1929

TOTAL 1,269,245

Page 77: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

67

Table 7. Biomass — Wood Residue Facilities

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

Armstrong Tolko BC Armstrong Pulp and Paper Company 20,000 Yes Yes 2000

Campbell River Norske Canada Campbell River Pulp and Paper Company 25,000 Yes No

Celgar Celgar Pulp Co. Castlegar Pulp and Paper Company 49,400 Yes Yes 325,667 1960

Chetwynd Tembec Inc. Chetwynd Pulp and Paper Company 1980

Crofton Norske Canada Crofton Pulp and Paper Company 38,000 Yes No 1981

Fraser Flats Canadian Forest Products

Prince George Pulp and Paper Company 45,428 Yes No 1973

Golden EWP Division Louisiana-Pacific Engineered Wood

Golden Pulp and Paper Company 7,000 Yes Yes 18,375 1936

Harmac Pope and Talbot Inc.

Nanaimo Pulp and Paper Company 27,300 283,414 1963

Kelowna Tolko BC Kelowna Pulp and Paper Company 12,000 Yes 32,250 1948

Mackenzie Abitibi Consolidated Inc.

Mackenzie Pulp and Paper Company 11,120 No No 224,800 1997

Port Alberni Norske Canada Port Alberni Pulp and Paper Company 17,680 Yes No 93,432 1963

Port Alice Western Pulp Ltd. Port Alice Pulp and Paper Company 19,200 Yes 170,400 1949

Powell River Norske Canada Powell River Pulp and Paper Company 25,000 Yes Yes 1910

Pulp Mill Norske Skog Canada Ltd.

Quesnel Plywood Quesnel Plywood Quesnel Forestry 29,024 Yes 20,517 1972

Western Manufacturing Division

Scott Paper Ltd. (Kruger)

New Westminster

Pulp and Paper Company 14,000 Yes No 11,389 1950

Western Pulp Ltd. Western Pulp Ltd. Woodfibre 7,000 1947

Williams Lake TransCanada Power LP

Williams Lake Diversified Electricity Generator

72,000 Yes Yes 1993

Total 419,152 1,181,743.9

Page 78: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

Pacific Institute for Climate Solutions

68

Table 8. Biomass — Other Facilities

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

EYA-UBC Biodiesel Project

Environmental Youth Alliance / UBC

Vancouver Non-Profit / Academic 11,120 2002

Neoteric Biofuels Inc. Westbank

Total

Table 9. Standard Hydro Facilites

Name Company Location Type of Business Electrical Capacity (kW)

Purchase Electricity from Grid?

Sell Electricity to Grid?

Thermal Capacity (kW)

Start Year

Eco-certification

Klemtu Hydro project Kitasoo First Nation Klemtu First Nation Government 620 1981

Mears Creek Synex Energy Resources Ltd.

Gold River Diversified Electricity Generator

3,800 BC Hydro Green IPP

Ocean Falls Central Coast Power Corp.

Link Lake Renewable Electricity Generator

12,200 1917

Port Alice Western Pulp Ltd. Victoria Lake Pulp and Paper Company 2,000 1953

Tennant Lake NVI Mining Ltd. Tennant Lake Mining Company 3,060 1966

Thelwood Hydro NVI Mining Ltd Thelwood Lake Mining Company 8,200 1985

Waneta Teck-Cominco Metals

Pend D'Oreille River

Mining Company 337,700 Yes 1954

Woodfibre Western Pulp Ltd. Henrietta Lake Pulp and Paper Company 2,587 1947

Total 370,167

Page 79: Energy and GHG Emissions in British Columbiapics.uvic.ca/sites/default/files/uploads/... · University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 Phone 250-853-3595 Fax

University of VictoriaPO Box 1700 STN CSCVictoria, BC V8W 2Y2

Phone 250-853-3595 Fax 250-853-3597

E-mail [email protected] pics.uvic.ca