32
ENE 325 Electromagnetic Fields and Waves Lecture 2 Static Electric Fields and Electric Flux density

ENE 325 Electromagnetic Fields and Waves

Embed Size (px)

DESCRIPTION

ENE 325 Electromagnetic Fields and Waves. Lecture 2 Static Electric Fields and Electric Flux density. Review (1). Vector quantity Magnitude Direction Coordinate systems Cartesian coordinates (x, y, z) Cylindrical coordinates (r,  , z) Spherical coordinates (r,  ,  ). Review (2). - PowerPoint PPT Presentation

Citation preview

Page 1: ENE 325 Electromagnetic Fields and Waves

ENE 325Electromagnetic Fields and Waves

Lecture 2 Static Electric Fields and Electric Flux density

Page 2: ENE 325 Electromagnetic Fields and Waves

Review (1)

Vector quantityMagnitudeDirection

Coordinate systemsCartesian coordinates (x, y, z) Cylindrical coordinates (r, , z)Spherical coordinates (r, , )

Page 3: ENE 325 Electromagnetic Fields and Waves

Review (2) Coulomb’s law

Coulomb’s force

electric field intensity (V/m)

1 212 122

0 124

�������������� QQF a

R

121

2��������������

�������������� FE

Q

2

04

��������������R

QE a

R

Page 4: ENE 325 Electromagnetic Fields and Waves

Review (3) Key variables:

Coordinate system and its corresponding differential element

charge Q a unit vector

Page 5: ENE 325 Electromagnetic Fields and Waves

Outline Electric field intensity in different charge configurations

infinite line charge ring charge surface charge

Examples from previous lecture

Electric flux density

Page 6: ENE 325 Electromagnetic Fields and Waves

Infinite length line of charge The derivation of and electric field at any point in space

resulting from an infinite length line of charge. (good approximation)

Page 7: ENE 325 Electromagnetic Fields and Waves

Infinite length line of charge only varies with the radial distance select point P on - z axis for convenience. select a segment of charge dQ at distance –z, we then

have

��������������E

��������������

p zzE E a E a

Page 8: ENE 325 Electromagnetic Fields and Waves

Infinite length line of charge Consider another segment at distance z, z components

are cancelled out, we then have

��������������

pE E a

Page 9: ENE 325 Electromagnetic Fields and Waves

Infinite length line of charge

From

We can write

Total field

2

04

��������������R

QE a

R

2

04

��������������R

dQdE a

R

2

04

��������������R

dQE a

R

Page 10: ENE 325 Electromagnetic Fields and Waves

Infinite length line of charge

Consider each segment

Ez components are cancelled due to symmetry.

2 2

��������������

��������������

L

z

zR

dQ dz

R a za

R a zaa

R z

Page 11: ENE 325 Electromagnetic Fields and Waves

Infinite length line of charge

Page 12: ENE 325 Electromagnetic Fields and Waves

Ring of charge

determine at (0,0,h)

cancels each other

��������������E

��������������dE

Page 13: ENE 325 Electromagnetic Fields and Waves

Ring of charge

Consider each segment:

2 2

��������������

��������������

L

z

zR

dQ dL

R aa ha

R aa haa

R a h

Page 14: ENE 325 Electromagnetic Fields and Waves

Surface charge

Surface charge density S (c/m2)

dQ = Sdxdy

��������������

x y zx y zE E a E a E a

Since this is an infinite place, Ex and Ey components are cancelled due to symmetry.

Page 15: ENE 325 Electromagnetic Fields and Waves

Surface charge Consider each segment:

Devide the whole area into infinite length of line charges

02

��������������

L S

L

dy

dE a

Integrate over length y to get total electric field. Convert the radial component into cylindrical coordinates

y za ya ha

Ey components are cancelled out due to symmetry.

Page 16: ENE 325 Electromagnetic Fields and Waves

Surface charge

No dependence on a distance from the sheet

Page 17: ENE 325 Electromagnetic Fields and Waves

Concentrate ring (alternative approach)

Total field is integrated from = 0 to

2 2 3/ 2

0

( )

2 ( )

�������������� zSd hadE

h

for each ring

Then

2 2 3/ 20 0

0

2 ( )

.2

zS

Sz

ha dE

h

E a

��������������

��������������

h

z

Page 18: ENE 325 Electromagnetic Fields and Waves

Volume charge

Volume charge density V (c/m3) plasma doped semiconductor

Complicate derivation due to so many differential elements and vectors.

2

04

��������������V V

Rd

E aR

Page 19: ENE 325 Electromagnetic Fields and Waves

Ex1 Determine the distance between point P (5, 3/2, 0) and point Q (5, /2, 10) in cylindrical coordinates.

Page 20: ENE 325 Electromagnetic Fields and Waves

Ex2 Determine a unit vector directed from

(0, 0, h) to (r, , 0) in cylindrical coordinates.

Page 21: ENE 325 Electromagnetic Fields and Waves

Ex3 Determine a unit vector from any point on z = -5 plane to the origin.

Page 22: ENE 325 Electromagnetic Fields and Waves

Ex4 Find the area between on the surface of a sphere of a radius a. Given

= 0 and = .

Page 23: ENE 325 Electromagnetic Fields and Waves

Ex5 A charge Q1 = 0.35 C is located at (0, 4, 0). A charge Q2 = -0.55 C is located at (3, 0, 0). Determine at point (0, 0, 5).E

��������������

Page 24: ENE 325 Electromagnetic Fields and Waves

Ex6 Determine at point (-2, -1, 4) given a line charge located at x = 2 and y = -4 with a charge density L = 20 nC/m.

E��������������

Page 25: ENE 325 Electromagnetic Fields and Waves

Ex7 Determine at the origin given a square sheet of charge located at z = -3 plane. The sheet is extended from -2 x 2 and -2 y 2 with a

surface charge density S = 2(x2+y2+9)3/2 nC/m2.

E��������������

Page 26: ENE 325 Electromagnetic Fields and Waves

Electric flux density

Negative charges are drawn to the outer sphere Electric flux lines are radially directed away from inner sphere to outer sphere or begin from positive charges +Q and

terminate on negative charges -Q.

Page 27: ENE 325 Electromagnetic Fields and Waves

Electric flux density

Electric flux density, (C/m2)

Note: (chi) is a flux in Coulomb unit and is equal to charge Q on the sphere

24

rD ar

��������������

2

04r

QE a

r

��������������

So we have 0D E

����������������������������

where 0 = 8.854x10-12 Farad/m

Page 28: ENE 325 Electromagnetic Fields and Waves

The amount of flux passing through a surface is

given by the product of and the amount of surface normal to. Same polarity charges repel one another

Note: = surface vector

Dot product:

cosD S ����������������������������

S��������������

cos ABA B A B ��������������������������������������������������������

x x y y z zA B A B A B A B ���������������������������� for Cartesian coordinates.

Dot product is a projection of A on B multiplies by B

Electric flux density

Page 29: ENE 325 Electromagnetic Fields and Waves

In case the flux is varied over the surface,

Electric flux density

The flux through a surface that is an angle to the direction of flux a) is less than the flux through an equivalent surface normal to the direction of flux b)

.D dS ����������������������������

Page 30: ENE 325 Electromagnetic Fields and Waves

Ex8 C/m2. Given the surface defined by = 6 m, 0 90 and -2 z

2, calculate the flux through the surface.

10 5D a a ��������������

Page 31: ENE 325 Electromagnetic Fields and Waves

Ex9 A charge Q = 30 nC is located at the origin, determine the electric flux density at point (1, 3, -4) m.

Page 32: ENE 325 Electromagnetic Fields and Waves

Ex10 Determine the flux through the area 1x1 mm2 on a surface of a cylinder at r = 10 m, z = 2 m, = 53.2 given 2 2(1 ) 4x y zD xa y a za ��������������

C/m2.