38
Enantiomeric Excess of P OPs in the Environment Hiramoto S 1 , Tsurukawa M 2 , Matsumu ra C 2 , Nakano T 2 , Kunugi M 3 1 Hyogo Environmental Advancement Association 2 Hyogo Prefectural Institute of Public Health Associat ion 3 National Institute for Environmental Studies

Enantiomeric Excess of POPs in the Environment

Embed Size (px)

DESCRIPTION

Enantiomeric Excess of POPs in the Environment. Hiramoto S 1 , Tsurukawa M 2 , Matsumura C 2 , Nakano T 2 , Kunugi M 3 1 Hyogo Environmental Advancement Association 2 Hyogo Prefectural Institute of Public Health Association 3 National Institute for Environmental Studies. Introduction. - PowerPoint PPT Presentation

Citation preview

Page 1: Enantiomeric Excess of POPs  in the Environment

Enantiomeric Excess of POPs in the Environment

Hiramoto S1, Tsurukawa M2, Matsumura C2, Nakano T2, Kunugi M3

1Hyogo Environmental Advancement Association2Hyogo Prefectural Institute of Public Health Association3National Institute for Environmental Studies

Page 2: Enantiomeric Excess of POPs  in the Environment

IntroductionIntroduction

Page 3: Enantiomeric Excess of POPs  in the Environment

Purpose

To identify the behavior of POPs

Enantiomeric compositions of chiral POPs in seawater and air were investigated.

The results of chiral analysis were shown using Enantiomeric Excess (EE).

* In this study, (+) or (-) enantiomer does not identi

fied.

Page 4: Enantiomeric Excess of POPs  in the Environment

Enantiomeric Excess(EE)

Changes in physicochemical status,

It is possible to distinguish between newly caused pollution and preserved by monitoring EE

Changes in metabolic status,

the EE value does not change.

the EE value changes.

Metabolites showed enantioselective degradation of (+) or (-) enantiomer.

Page 5: Enantiomeric Excess of POPs  in the Environment

Materialsand

Methods

Materialsand

Methods

Page 6: Enantiomeric Excess of POPs  in the Environment

S-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

S-9

S-10

S-11

May~ June 2006

Sampling Sites (Seawater)~ South China Sea ~

Page 7: Enantiomeric Excess of POPs  in the Environment

P-1

P-2

P-3

P-4

P-5

P-6

P-7

Sampling Sites (Seawater)~ Pacific Ocean (West) ~

August~ September 2005

Page 8: Enantiomeric Excess of POPs  in the Environment

P-8

P-9

P-10P-11

August~ September 2005

UNITED STATES

San Francisco

Sampling Sites (Seawater)~ Pacific Ocean (East) ~

Page 9: Enantiomeric Excess of POPs  in the Environment

N-1

N-2

N-3

N-4

May~ June 2005

Sampling Sites (Air)~ North Atlantic Ocean ~

Page 10: Enantiomeric Excess of POPs  in the Environment

Marine pollution observation systemMarine pollution observation system

Solid PhaseExtraction unit

Control Unit

ExtractionColumn

Filter unit

Page 11: Enantiomeric Excess of POPs  in the Environment

Sample Preparation for Analysis

Exchange to hexaneExchange to hexane

Clean up with silica gelClean up with silica gel

Sample ( PUF +ACF )

Sample ( PUF +ACF )

Soxhlet Extraction     3hr with acetone     24hr for dichloromethane

Soxhlet Extraction     3hr with acetone     24hr for dichloromethane

Concentration

Concentration , Dehydration

HRGC/HRMSHRGC/HRMS

Concentration

Polyurethane foam

( PUF )

Glass holder

Active carbonfiber filter( ACF )

Spiked with 13C-labeld POPsSpiked with

13C-labeld POPs

Air 400m3 Seawater 100L

Page 12: Enantiomeric Excess of POPs  in the Environment

Target Analytes

trans - Chlordane

Heptachlor α - HCH

Heptachlor epoxideOxychlordane

o,p’ - DDT

o,p’ - DDE

cis - Chlordane

Technical compounds

o,p’ - DDD

Metabolites

Page 13: Enantiomeric Excess of POPs  in the Environment

HRGC/HRMSGC MS

Device : HP-6890N(HP)

Column : BGB-172*(BGB Analytik)

30m, 0.25mm i.d. film thickness 0.25μm

Carrier Gas : He 1.5mL/min

Device : JMS-800D    (JEOL)

Ionization : EI

Ion source temperature :260 ℃

Resolution : >10,000Temperature Program :  120 (2min) → 2 /min →250 (3min)℃ ℃ ℃Injector temperature : 230℃  Injection Volume : 2μL

* BGB-172 ( 20% tert-butyldimethylsilyl-β-cyclodextrin dissolved in 15% diphenyl-polysiloxane and 85% dimethylpolysiloxane )

Page 14: Enantiomeric Excess of POPs  in the Environment

HP-5

8 9 10 11 12 13 14 15Retention Time (min)

(3448523)

0

25

50

75

100

Inte

nsity

HCH / Average

α

β γ δ

36 38 40 42 44 46 48 50Retention Time (min)

(1082345)

0

25

50

75

100

Inte

nsity

HCH / Average

α

βγ δ

BGB-172

Page 15: Enantiomeric Excess of POPs  in the Environment

Enantiomeric ExcessEnantiomeric Excess (EE)

EE(%) = *100

Enantiomeric Excess (EE)

EE(%) = *100

EL-ES

EL+ES

EL : amount of larger enantiomerES : amount of smaller enantiomer

0

20

40

60(%)

EE

(+)

(-)

(+)

(-)

(+)(-)

(+)

(-)

(+)

(-)EE= 0 %

Page 16: Enantiomeric Excess of POPs  in the Environment

ResultsResults

Page 17: Enantiomeric Excess of POPs  in the Environment

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47Retention Time (min)

(81468)

0

25

50

75

100

Inte

nsi

ty

P18-13 (Unknown sample)33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Retention Time (min)

(2053941)

0

25

50

75

100

Inte

nsi

ty

STDmix-4 (Calibration standard)

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49Retention Time (min)

0

200000

Inte

nsi

ty

POPs2 ATLAS-22 (Unknown sample)

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49Retention Time (min)

0

40000

80000

Inte

nsi

ty

POPs2 Air-6 (Unknown sample)

HCHalpha-beta-

gamma-

delta-

EE = 1%

EE = 6%

EE = 10%

EE = 3%

standard

Seawater ( South China Sea)

Seawater ( Pacific Ocean)

Air (North Atlantic Ocean)

RACEMIC

Page 18: Enantiomeric Excess of POPs  in the Environment

57.8 58.0 58.2 58.4 58.6 58.8 59.0 59.2 59.4 59.6 59.8 60.0 60.2 60.4 60.6

Retention Time (min)

4000

8000

Inte

nsi

ty

POPs2 Air-8 (Unknown sample)

55.0 55.2 55.4 55.6 55.8 56.0 56.2 56.4 56.6 56.8 57.0 57.2 57.4 57.6 57.8 58.0Retention Time (min)

(2054268)

0

25

50

75

100

Inte

nsi

ty

STDmix-4 (Calibration standard)

Chlordanetrans-

cis-

EE = 1%

EE = 1%

trans-   EE = 4%

cis-    EE = 7%  

standard

Air (North Atlantic Ocean)

54.8 55.0 55.2 55.4 55.6 55.8 56.0 56.2 56.4 56.6 56.8 57.0 57.2 57.4 57.6Retention Time (min)

(1003)

(14412)

0

25

50

75

100

Inte

nsity

chlordane / Average

57.6 57.8 58.0 58.2 58.4 58.6 58.8 59.0 59.2 59.4 59.6 59.8 60.0 60.2 60.4Retention Time (min)

(529)

(4236)

0

25

50

75

100

Inte

nsity

chlordane / Averagetrans-   EE = 4%

cis-    EE = 1%  

Seawater ( Pacific Ocean)

RACEMIC

trans-   EE = 4%

cis-    EE = 5%  

Seawater ( South China Sea)

Page 19: Enantiomeric Excess of POPs  in the Environment

52.8 53.2 53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 56.8 57.2Retention Time (min)

(1095846)

0

25

50

75

100

Inte

nsi

ty

STDmix-4 (Calibration standard)

51.6 52.0 52.4 52.8 53.2 53.6 54.0 54.4 54.8 55.2 55.6 56.0Retention Time (min)

(25007)

0

25

50

75

100

Inte

nsi

ty

P18-16 (Unknown sample)

55.6 56.0 56.4 56.8 57.2 57.6 58.0 58.4 58.8 59.2 59.6 60.0Retention Time (min)

0

2000

4000

Inte

nsi

ty

POPs2 Air-8 (Unknown sample)55.2 55.6 56.0 56.4 56.8 57.2 57.6 58.0 58.4 58.8 59.2 59.6 60.0

Retention Time (min)

1000

2000

3000

Inte

nsi

ty

POPs2 ATLAS-22 (Unknown sample)

Heptachlor epoxideendo-

exo-

EE = 1%

EE = 1%

EE = 39%

EE = 28%

EE = 44%

standard

Seawater ( South China Sea)

Seawater ( Pacific Ocean)

Air (North Atlantic Ocean)

NON

RACEMIC

Page 20: Enantiomeric Excess of POPs  in the Environment

53 54 55 56 57 58 59 60 61 62Retention Time (min)

(6369865)

0

25

50

75

100

Inte

nsi

ty

STDmix-4 (Calibration standard)

53 54 55 56 57 58 59 60 61 62Retention Time (min)

(75117)

0

25

50

75

100

Inte

nsi

ty

P18-13 (Unknown sample)

55 56 57 58 59 60 61 62 63 64Retention Time (min)

0

20000

Inte

nsi

ty

POPs2 ATLAS-10 (Unknown sample)

55 56 57 58 59 60 61 62 63 64Retention Time (min)

4000

8000

Inte

nsi

ty

POPs2 Air-8 (Unknown sample)

DDDo,p’- p,p’-

EE= 1 %

EE = 51%

EE = 58%

standard

Seawater ( South China Sea)

Seawater ( Pacific Ocean)

Air (North Atlantic Ocean)

NON

RACEMIC

Page 21: Enantiomeric Excess of POPs  in the Environment

52.0 52.4 52.8 53.2 53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 56.8Retention Time (min)

(155320)

0

25

50

75

100

Inte

nsi

ty

STDmix-4 (Calibration standard)

52.0 52.4 52.8 53.2 53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 56.8Retention Time (min)

500

1000

1500

2000

Inte

nsi

ty

POPs2 ATLAS-22 (Unknown sample)

54.8 55.2 55.6 56.0 56.4 56.8 57.2 57.6 58.0 58.4 58.8 59.2 59.6Retention Time (min)

800

1200

1600

Inte

nsi

ty

POPs2 Air-1 (Unknown sample)

52.0 52.4 52.8 53.2 53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 56.8Retention Time (min)

(650)

(1678)

0255075

100

Inte

nsi

ty

P18-13 (Unknown sample)

OxychlordaneEE=1%

EE=1%

standard

Seawater ( South China Sea)

Seawater ( Pacific Ocean)

Air (North Atlantic Ocean)

RACEMIC

Page 22: Enantiomeric Excess of POPs  in the Environment

Seawater (South China Sea)

0

20

40

60

80

o,p'-DDD heptachlorexo-epoxide

alpha-HCH trans-chlordane

cis-chlordane

EE(%)

Metabolite Technical compound

Page 23: Enantiomeric Excess of POPs  in the Environment

Seawater (Pacific Ocean)

0

20

40

60

80

o,p'-DDD heptachlorexo-epoxide

alpha-HCH trans-chlordane

cis-chlordane

EE(%)

Metabolite Technical compound

Page 24: Enantiomeric Excess of POPs  in the Environment

Air (North Atlantic Ocean)

0

25

50

heptachlorexo-epoxide

oxychlordane alpha-HCH trans-chlordane

cis-chlordane

EE(%)

Metabolite Technical compound

Page 25: Enantiomeric Excess of POPs  in the Environment

Conclusion(1)

EE of chiral POPs in seawater and air samples have been investigated.

The metabolites; heptachlor exo-epoxide and o,p’-DDD exist non racemic.

Enatiomeric composition of alpha-HCH, trans-,cis-chlordane were near racemic.

However, oxychlordane is the metabolite, it exists as racemic.

Page 26: Enantiomeric Excess of POPs  in the Environment

Conclusion(2)

By monitoring enantiomeric composition, better understanding for the mechanism of environmental pollution will be provided.

Further studies about global scale observations of chiral signatures are necessary.

Page 27: Enantiomeric Excess of POPs  in the Environment

EE values (South China Sea)

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 averagealpha-HCH 3.8 15 5.9 7.6 6.6 1.3 7.0 2.5 5.9 8.9 5.0 6.3o,p'-DDD - 59 64 34 64 50 47 44 51 34 51 50 heptachlor exo-epoxide - - - - - - - - - - 39 39 heptachlor endo-epoxide - - - - - - - - - - - -trans - chlordane 3.3 4.1 3.3 5.0 6.1 3.8 4.2 4.3 4.2 9.0 0.9 4.4cis - chlordane 7.2 3.8 0.5 4.8 4.4 5.1 0.9 14 4.6 4.1 7.2 5.1oxychlordane - - - - - - - - - - - -

Seawater from South China Sea

0

10

20

30

40

50

60

70

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11

Page 28: Enantiomeric Excess of POPs  in the Environment

S-1S-2

S-3

S-4S-5

S-6S-7

S-8S-9

S-10

S-11

EE values (South China Sea)

0

10

20

30

40

50

60

70

S- 1 S- 2 S- 3 S- 4 S- 5 S- 6 S- 7 S- 8 S- 9 S- 10 S- 11

alpha- HCH o,p'- DDD heptachlor exo- epoxide trans- chlordane cis- chlordane

Page 29: Enantiomeric Excess of POPs  in the Environment

EE values (Pacific Ocean)

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 averagealpha-HCH 5.4 9.0 4.3 13 13 5.4 2.2 10 10 6.3 4.3 7.6o,p'-DDD 21 59 70 64 62 58 - - - - - 56 heptachlor exo-epoxide 25 29 6.5 - 9.9 30 21 20 28 20 24 21 heptachlor endo-epoxide - - - - - - - - - - - -trans - chlordane 0.6 4.8 4.8 38 3.0 2.6 3.3 9.0 3.9 4.1 8.7 7.6cis - chlordane 7.3 6.8 1.6 9.9 8.7 7.7 4.9 19 1.0 1.5 3.3 6.5oxychlordane - - - - - - - - - - - -

Seawater from Pacific Ocean

Page 30: Enantiomeric Excess of POPs  in the Environment

P-1

P-2

P-3

P-4

P-5 P-7

P-6

P-8

P-9

P-10

P-11

EE values (Pacific Ocean)

0

10

20

30

40

50

60

70

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11

alpha-HCH o,p'-DDD heptachlor exo-epoxide trans-chlordane cis-chlordane

Page 31: Enantiomeric Excess of POPs  in the Environment

EE values (North Atlantic Ocean)

N-1 N-2 N-3 N-4 averagealpha-HCH 0.7 0.1 4.5 3.0 2.1o,p'-DDD - - - - -heptachlor exo-epoxide 34 7.6 40 44 31 heptachlor endo-epoxide - - - - -trans - chlordane 4.7 16 0.4 3.8 6.2cis - chlordane 2.0 2.2 2.2 7.1 3.4oxychlordane 1.4 - 5.7 - 3.5

Air from North Atlantic Ocean

Page 32: Enantiomeric Excess of POPs  in the Environment

N-1

N-2

N-3

N-4

EE values (North Atlantic Ocean)

0

10

20

30

40

50

N-1 N-2 N-3 N-4

alpha-HCH heptachlor exo-epoxide trans-chlordane cis-chlordane oxychlordane

Page 33: Enantiomeric Excess of POPs  in the Environment

Persistent Organic Pollutants (POPs)

① Toxic ② Persistent in the environment ③ Bioaccumulative through the food web ④ Long-range transportable

① Toxic ② Persistent in the environment ③ Bioaccumulative through the food web ④ Long-range transportable

Stockholm Convention (May 2001)Take measures to eliminateReduce the release into the environment

Stockholm Convention (May 2001)Take measures to eliminateReduce the release into the environment

Page 34: Enantiomeric Excess of POPs  in the Environment

Results

EEs of alpha-HCH, trans-,cis-chlordane in air samples and seawater samples range from 0.1 to 15.9% and 0.5 to 38.4%, respectively.EEs of metabolites heptachlor exo-epoxide in air samples and seawater samples range from 7.6 to 43.8% and 6.5 to 38.8%, respectively.The range of EEs of metabolites o,p’-DDD in seawater samples were from 20.7 to 64.4%.

Page 35: Enantiomeric Excess of POPs  in the Environment

54.0 54.4 54.8 55.2 55.6 56.0 56.4 56.8 57.2Retention Time (min)

(1003)

(14412)

0

25

50

75

100

Inte

nsi

ty

chlordane / Average

54.4 54.8 55.2 55.6 56.0 56.4 56.8 57.2 57.6Retention Time (min)

(2054268)

0

25

50

75

100

Inte

nsi

tychlordane / Average

56.8 57.2 57.6 58.0 58.4 58.8 59.2 59.6 60.0Retention Time (min)

(521)

(4236)

0

25

50

75

100

Inte

nsi

ty

chlordane / Average

57.2 57.6 58.0 58.4 58.8 59.2 59.6 60.0 60.4Retention Time (min)

(535)

(9319)

0

25

50

75

100

Inte

nsi

ty

chlordane / Average

trans-

cis-

MC5

EE= 5 %

EE= 5 %

EE= 7 %

Page 36: Enantiomeric Excess of POPs  in the Environment

S-1S-2

S-3

S-4S-5

S-6S-7

S-8S-9

S-10

S-11

EE values (South China Sea)

unit : %

from toalpha-HCH 6.3 1.3 15 3.6 o,p'-DDD 50 34 64 11 heptachlor exo-epoxide 39 39 39 -heptachlor endo-epoxide - - - -trans - chlordane 4.4 0.9 9.0 2.0 cis - chlordane 5.1 0.5 14 3.6 oxychlordane - - - -

average range standarddeviation

Page 37: Enantiomeric Excess of POPs  in the Environment

P-1

P-2

P-3

P-4

P-5 P-7

P-6

P-8

P-9

P-10

P-11

EE values (Pacific Ocean)

unit : %

from toalpha-HCH 7.6 2.2 13 3.7 o,p'-DDD 56 21 70 18 heptachlor exo-epoxide 21 6.5 30 8 heptachlor endo-epoxide - - - -trans - chlordane 7.6 0.6 38 10.5 cis - chlordane 6.5 1.0 19 5.2 oxychlordane - - - -

average range standarddeviation

Page 38: Enantiomeric Excess of POPs  in the Environment

N-1

N-2

N-3

N-4

EE values (North Atlantic Ocean)

unit : %

from toalpha-HCH 2.1 0.1 4.5 2.0 o,p'-DDD - - - -heptachlor exo-epoxide 31 7.6 44 16 heptachlor endo-epoxide - - - -trans - chlordane 6.2 0.4 16 6.7 cis - chlordane 3.4 2.0 7.1 2.5 oxychlordane 3.5 1.4 5.7 3.0

rangeaverage standarddeviation