27
Empirical Mode Decomposition and Hilbert-Huang Transform Emine Can 2010

Empirical Mode Decomposition

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Empirical Mode Decomposition

Empirical Mode Decompositionand Hilbert-Huang Transform

Emine Can 2010

Page 2: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

2

Data Analysis

too short total data span

non-stationar

y

nonlinear process

Data Processing Methodso Spectrogram o Wavelet Analysiso Wigner-Ville Distribution (Heisenberg wavelet)o Evolutionary spectrum o Empirical Orthogonal Function Expansion (EOF)o Other methods

Fourier Spectral Analysis Energy-frequency distributions =Spectrum≈Fourier Transform of the dataRestrictions: * the system must be linear * the data must be strictly periodic or stationary

10.2010

Modifications of Fourier SA

Page 3: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

3

Hilbert Transform

Instantaneous Frequency

10.2010

Intrinsic Mode FunctionsEmpirical Mode Decomposition

Complicated Data Set

(Energy-Frequency-Time)

Page 4: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

4

A method that any complicated data set can be decomposed intoa finite and often small number of `intrinsic mode functions' thatadmit well-behaved Hilbert Transforms.

10.2010

Emperical Mode Decomposition (EMD)

Intrinsic Mode Functions(IMF)

IMF is a function that satisfies two conditions: 1- In the whole data set, the number of extrema and the number of zero crossings must either equal or differ at most by one 2- At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero

Page 5: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

5

The empirical mode decomposition method: the sifting process

10.2010

Page 6: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

610.2010

Page 7: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

The sifting processComplicated Data Set x(t)

Page 8: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

The sifting process1. identify all upper extrema of x(t).

Page 9: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

The sifting process2. Interpolate the local maxima to form an upper envelope u(x).

Page 10: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

The sifting process3. identify all lower extrema of x(t).

Page 11: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

The sifting process4. Interpolate the local minima to form an lower envelope l(x).

Page 12: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

5. Calculate the mean envelope: m(t)=[u(x)+l(x)]/2.

The sifting process

Page 13: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process6. Extract the mean from the signal: h(t)=x(t)-m(t)

Page 14: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process7. Check whether h(t) satisfies the IMF condition. YES: h(t) is an IMF, stop sifting. NO: let x(t)=h(t), keep sifting.

Page 15: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process

Page 16: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process

Page 17: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process

Page 18: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process

Page 19: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process

Page 20: Empirical Mode Decomposition

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

IMF 1; iteration 1

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

The sifting process

Page 21: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

2110.2010

Page 22: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

2210.2010

The signal is composed of 1. a “high frequency” triangular

waveform whose amplitude is slowly (linearly) growing.

2. a “middle frequency” sine wave whose amplitude is quickly (linearly) decaying

3. a “low frequency” triangular waveform

Page 23: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

2310.2010

A criterion for the sifting process to stop: Standard deviation, SD, computed from the two consecutive sifting results is in limited size.

:residue after the kth iteration of the 1st IMF

A typical value for SD can be set between 0.2 and 0.3.

The sifting processStop criterion

Page 24: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

2410.2010

Hilbert Transform

*

Instantaneous Frequency:

Analytic Signal:

Page 25: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

25

Advantages*Adaptive,highly efficient,applicable to nonlinear and non-stationary processes.

10.2010

Traditional methods EMD

- Not appropriate for nonlinear & nonstationary signals.

- Predefined basis and/or system model.

- Distorted information extracted.

- Full theoretical basis.

- Adequate for both nonlinear & nonstationary.

- Adaptive – data driven basis.

- Preserves physical meaning.

- Sharper spectrum

- Lack of theoretical analysis.

Page 26: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

26

Applications of EMD

10.2010

• nonlinear wave evolution,• climate cycles,• earthquake engineering,• submarine design,• structural damage detection,• satellite data analysis,• turbulence flow,• blood pressure variations and heart arrhythmia,• non-destructive testing,• structural health monitoring,• signal enhancement,• economic data analysis,• investigation of brain rythms• Denoising• …

Page 27: Empirical Mode Decomposition

Empirical Mode Decomposition and Hilbert-Huang Transform

27

References• “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series

analysis” Huang et al., The Royal Society, 4 November 1996.• Rilling Gabriel, Flandrin Patrick , Gon¸calv`es Paulo, “On Empirical Mode Decomposition and Its

Algorithms”• Stephen McLaughlin and Yannis Kopsinis.ppt “Empirical Mode Decomposition: A novel algorithm for

analyzing multicomponent signals” Institute of Digital Communications (IDCOM)• “Hilbert-Huang Transform(HHT).ppt” Yu-Hao Chen, ID:R98943021, 2010/05/07

10.2010