36
Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

  • View
    218

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Emission Series and Emitting Quantum States:

Visible H Atom Emission Spectrum

Experiment 6

Page 2: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

#6 Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum

Goal: To determine information regarding the quantum

states of the H atom

Method: Calibrate a spectrometer using He emission lines Observe the visible emission lines of H atoms Determine the initial and final quantum states

responsible for the visible emission spectrum, as well as the Rydberg constant

Page 3: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Electromagnetic Radiation

Oscillating electric and magnetic fields

Page 4: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Light Energy

Wavelength distance peak-to-peak

Frequency oscillations per second

Energy E faster oscillation = more E

Page 5: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Electromagnetic Spectrum

Page 6: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Visible Emission

Wavelengths, , increaseEnergies decrease

Electronic transitions (“e- jumps”)

400 nm 500 nm 600 nm 700 nm

Page 7: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Dual Nature of Light/Relationships

h Planck’s constant = 6.626×10-34 J.s

Units J = (J.s) (s-1)

c speed of light = 2.998×108 m.s-1

Units s-1 = (m.s-1)/(m)

hνE

λ

1. Wave wavelength, frequency,

2. Particle photon = “packet”

E = h

Page 8: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Using the Equations

(a) Calculate the frequency of 460nm blue light.

1-14

9

8

1052.6

nm101m1

nm) (460

)sm

1099.2(c

s

(b) Calculate the energy of 460 nm blue light.

J

ssJ19-

11434-

1032.4

)106.52)(10(6.626

hhc

E

Page 9: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Spectroscopy

Spectroscopy: study of interaction of light with matter

h: photon

1. Absorption: matter + h → matter*

2. Emission: matter* → matter + h

Energy change in matter: Ematter = Eh

Page 10: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Discrete Energy Levels

Observed energy level changes:

E = Eh= Efinal – Einitial

Ground state atom Absorption Emission

Page 11: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

“Discrete” Atomic Emission

Atomic absorption: electrons excited to higher energy levels

Atomic emission: excited electrons lose energy

Incandescent

Hot Gas

Cold Gas

Continuous

Discrete Emission

Discrete Absorption

Page 12: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Quantized Energy Levels

Eh = ElevelsE = Ef – Ei

Absorption: Ef > Ei

Emission: Ef < Ei

Page 13: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Hydrogen Emission Spectrum©The McGraw-Hill Companies. Permission required for reproduction or display

Page 14: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

H atom emission1) Electrical energy excites H H + energy

H* initial quantum state ni = 2, 3, 4, 5, 6,

2) H* loses energy H* H + h final quantum state nf = 1, 2, 3, …

nf < ni

You observe several Etransitions visible s ni’s levels > nf

nf end at same nf You determine ni’s and nf

Page 15: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Hydrogen Atom and Emission

Lyman

Balmer

Paschen

Ground State:

n = 1

Excited States:

n = 2, 3, 4, …

Page 16: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Rydberg Equation

A “series” is associated with two quantum numbers:

Lyman: ni = 2, 3, 4, … nf = 1

Balmer: ni = 3, 4, 5, … nf = 2

Paschen: ni = 4, 5, 6, … nf = 3

RH = 1.096776×107m-1 = 2.180×10-18 J = 2e4m/h3c

22

11

ifHhυ nn

RE

levelsifhν ΔEEEE General transition eq’n:

Hydrogen atomic

emission lines fit

(Rydberg eq’n):

Page 17: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Incr

easing

(decr

easing E

,

smalle

r E)

n = principal E states (principal quantum #s)

Hydrogen Atomic Emission

22

11

ifHhυ nn

RE

En

erg

y

Page 18: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Part 1 Correlate color with wavelength Use lucite rod 20 nm intervals, 400–700 nm , color Boundary s short, long

of max. intensity max

Observe Hg atomic emission (handheld specs)

Page 19: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Part 2 Calibrate Spectrometer

Determine if measured wavelengths are “true”

Use He emissionRecord msr for lines

Plot true vs msr

7 or 8 lines

ColorAccepted (nm)

Measured (nm)

red 728.1 730red 706.5 710red 667.8 670

yellow 587.5 590green 501.5 500green 492.2 490

blue-green 471.3 470blue-violet 447.1 450

Page 20: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Calibration Plot

msrd

true

xx

yyslope

12

12

H atom emission:•Multiply:msrd by slope•Converts: measured true

728.1730

706.5710

667.8670

587.5590

447.1450 471.3

470

492.2490

501.5500

y = 1.0021xR2 = 0.9996

440

480

520

560

600

640

680

720

440 480 520 560 600 640 680 720

Measured (nm)

Tru

e (

nm)

Page 21: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Part 3 Record H emission s

Record color, msr (3 or 4 lines) color, msr

Determine true true

Calculate Eh from true Eh

Units: E in J

h in J.s

c in m/s

in m

)()(*

)(*

)(2)(2 22 linesggge

g hHHHH

)()(2*

)(2 bandsgg hHH

λ

hcEhν

Page 22: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Questions/Data Analysis

1) Which set of lines?

Balmer or Paschen (nfinal = ?)

2) What is ninitial for each line?

3) What is your experimental RH?

Page 23: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Hydrogen Lines / Analysis

Color (nm) E (J)

red 660 3.0×10-19

blue-green 490 4.1×10-19

blue-violet 430 4.6×10-19

violet 410 4.8×10-19

atomif

Hhυ ΔEnn

RE

22

11

Page 24: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

One way to think about the dataWhich series are we observing – Balmer or Paschen?Balmer: nf = 2 32, 42, 52

Paschen: nf = 3 43, 53, 63These would be the three lowest energy transitionsExample data:

Literature Observed (nm) Color (nm) E (J)410.1 violet 400 5.0E-19434.0 blue-violet 430 4.6E-19486.1 blue-green 500 4.0E-19656.2 red 650 3.1E-19

Page 25: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Compare calculated ΔE to observed ΔE

EH atom 1/n2 = RH/n2 so calculate En=1, En=2, etc.Find ΔE between levels and compare to observed E’s

RH

2.18E-18 Experiment Balmer Paschen

n 1/n2En(J) measured n = 2 n = 3

7 0.020 4.45E-20 E (J) ninf

E (J) ninf

E (J)6 0.028 6.06E-20 72 5.0E-19 73 2.0E-19

5 0.040 8.72E-20 5.0E-19 6 4.8E-19 6 1.8E-194 0.063 1.36E-19 4.6E-19 52 4.6E-19 53 1.6E-193 0.111 2.42E-19 4.0E-19 4 4.1E-19 4 1.1E-192 0.250 5.45E-19 3.1E-19 32 3.0E-19 33 0.0E+00

Literature Observed (nm) Color (nm) E (J)410.1 violet 400 5.0E-19434.0 blue-violet 430 4.6E-19486.1 blue-green 500 4.0E-19656.2 red 650 3.1E-19

Experiment matches Balmer best

Page 26: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

How? Plot Eatom vs. 1/ni2

Rearranged Rydberg equation fits:

HRslope

22

1

f

H

iHatom n

R

nRΔE

bxmy

2intercepty

f

H

n

R

22

11 :

0 :interceptx

if nnso

ΔE

Page 27: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Balmer Series

y = -2x10-18x + 6x10-19

R2 = 0.9878

0.0E+00

1.0E-19

2.0E-19

3.0E-19

4.0E-19

5.0E-19

6.0E-19

0.000 0.050 0.100 0.150 0.200 0.2501/ n2

Ef-E

i

Example Balmer Rydberg Plot

Slope (~RH):

2×10-18JClose to RH

2.18×10-18J

x-intercept:~0.24Close to 0.25~1/22

(nm) Color (nm) E (J)410.1 violet 400 5.0E-19434.0 blue-violet 430 4.6E-19486.1 blue-green 500 4.0E-19656.2 red 650 3.1E-19

Page 28: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Balmer (nf = 2) – plot ΔE vs. 1/ni2

y = -2x10-18x + 5x10-19

R2 = 0.9988

0.0E+00

1.0E-19

2.0E-19

3.0E-19

4.0E-19

5.0E-19

0.000 0.050 0.100 0.150 0.200 0.250

1/ni2

E

Good:Slope –RH

x-intercept: 1 22

so nf = 2

~ 0.25 =

This plot verifies our data – we observed the Balmer series!

Page 29: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

An alternative way to analyze the data1) Data is for:

Balmer (nf = 2) or Paschen (nf = 3)

Be sure to correct wavelengths (measured true)

2) Transitions are 3 lowest energy:

Balmer (ni = 5, 4, 3) or Paschen (ni = 6, 5, 4)

nm Ef-Ei (J) ni nf 1/ni2 ni nf 1/ni

2

0 0 2 2 x-intercept 3 3 x-intercept660 3.0E-19 3 2 0.111 4 3 0.063490 4.1E-19 4 2 0.063 5 3 0.040430 4.6E-19 5 2 0.040 6 3 0.028

Balmer Paschen

Page 30: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Graphs

Prepare two graphs (Balmer and Paschen) x-axis should extend to x-intercept (y = 0) y-axis should be appropriate

Draw best-fit straight line Find slope (one should be close to –RH)

Find relative error in experimental RH

Match and color to ni and nf

Page 31: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Paschen (nf = 3)

Not too good

Slope ≠ RH

x-int. ≠ 1/32

y = -4x10-18

x + 6x10-19

R2 = 0.9969

0.0E+00

1.0E-19

2.0E-19

3.0E-19

4.0E-19

5.0E-19

0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140

1/ni2

E

Page 32: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Balmer (nf = 2)

y = -2x10-18x + 5x10-19

R2 = 0.9988

0.0E+00

1.0E-19

2.0E-19

3.0E-19

4.0E-19

5.0E-19

0.000 0.050 0.100 0.150 0.200 0.250

1/ni2

E

Good:

Slope –RH

x-intercept: 1

22

so

nf = 2

~ 0.25 =

Page 33: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Balmer Series

y = -2x10-18x + 6x10-19

R2 = 0.9878

0.0E+00

1.0E-19

2.0E-19

3.0E-19

4.0E-19

5.0E-19

6.0E-19

0.000 0.050 0.100 0.150 0.200 0.2501/ n2

Ef-E

i

Example Balmer Rydberg Plot

Slope (~RH):

2×10-18JClose to RH

2.18×10-18J

x-intercept:~0.24Close to 0.25~1/22

(nm) Color (nm) E (J)410.1 violet 400 5.0E-19434.0 blue-violet 430 4.6E-19486.1 blue-green 500 4.0E-19656.2 red 650 3.1E-19

Page 34: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

Data

color nm Ef-Ei (J) ni nf

--- 0 0 2 2red 660 3.0E-19 3 2

blue-green 490 4.1E-19 4 2blue-violet 430 4.6E-19 5 2

Balmer

Experimental RH: 2 ×10-18 J

Page 35: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

1/ vs. 1/ni

2

Atomic Hydrogen Emission Lines

0

20000

40000

60000

80000

100000

120000

0.000 0.200 0.400 0.600 0.800 1.000

1/n2

cm

Lyman

Balmer

Paschen

Page 36: Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6

ReportAbstractResults

2a: Calibration data and plot 2b: Table Series plot (or Balmer and Paschen plots)

depending on your analysis choice RH and error from literature Predicted wavelengths and error

Sample calculations of: photon energy and Rydberg slope

Discussion/review questions