71
Elena Meneguz* M. W. Reeks *School of Mechanical & Systems Engineering, Newcastle University, U.K. Statistical properties of particle segregation in homogeneous isotropic turbulence Singularities , intermittency and random uncorrelated motion DUST STORM/TORNADOS VOLCANIC ERUPTIONS RAIN CLOUDS

Elena Meneguz * M. W. Reeks

  • Upload
    korbin

  • View
    100

  • Download
    0

Embed Size (px)

DESCRIPTION

Elena Meneguz * M. W. Reeks. *School of Mechanical & Systems Engineering, Newcastle University, U.K. Statistical properties of particle segregation in homogeneous isotropic turbulence Singularities , intermittency and random uncorrelated motion. DUST STORM/TORNADOS. VOLCANIC ERUPTIONS. - PowerPoint PPT Presentation

Citation preview

Page 1: Elena  Meneguz *  M. W. Reeks

Elena Meneguz* M. W. Reeks

*School of Mechanical & Systems Engineering, Newcastle University, U.K.

Statistical properties of particle segregation in homogeneous isotropic

turbulenceSingularities , intermittency and random uncorrelated motion

DUST STORM/TORNADOS VOLCANIC ERUPTIONS RAIN CLOUDS

Page 2: Elena  Meneguz *  M. W. Reeks

Unmixing by turbulent flows

‘Particle segregation ’ Open Stats Phys 6-3-12

Stokes no St=0.1 St=1.0 St=10.0particles vorticity

Wang & Maxey JFM 1993Caustics (Wilkinson & Mehlig 2007) -4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

Page 3: Elena  Meneguz *  M. W. Reeks

Random uncorrelated motion (RUM)

Février et. al JFM, 2005

Mesoscopic Eulerian particle velocity field

Random uncorrelated motion (RUM)

MEPVF+RUM

222ppp qqq

Page 4: Elena  Meneguz *  M. W. Reeks

Compressibility of a particle flow

• zero for particles which follow an incompressible flow

• non zero for particles with inertia• measures the change in particle concentration

Divergence of the particle velocity field along a particle trajectory

particlestreamlines

),(),(

stxYyp sy

Compressibility (rate of compression of elemental particle volume along particle trajectory)

‘Particle segregation’ Mathematics, Strathclyde, 14/2/12

Page 5: Elena  Meneguz *  M. W. Reeks

Measurement of the compressibility

ijj

ipij JJ

xtxx

J det ;),(

,0

0,

Deformation of elemental volume

can be obtained directly from solving the particle eqns. of motion

Avoids calculating the compressibility via the particle velocity field

Can determine the statistics of ln J(t) easily.

Jdtd

dtdJJtxp ln,v 1

0

- xp(t),vp(t),Jij(t),J(t)) - Fully Lagrangian Method (FLM) Osiptsov(200)

‘Particle segregation’ Mathematics, Strathclyde, 14/2/12

ijij JJdtd Evolution equations:

ijk

ikj

pij J

xu

JJdtd

1

Compression - fractional change in elemental volume of particlesalong a particle trajectory

Page 6: Elena  Meneguz *  M. W. Reeks

Particle trajectories in a periodic array of vortices

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 7: Elena  Meneguz *  M. W. Reeks

Deformation Tensor J

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 8: Elena  Meneguz *  M. W. Reeks

Simple 2-D flow field of counter rotating vortices

Compressibility of the pvf: v||ln J

dtd

Particle average compressibility

‘Particle segregation ’ Maths, Strathclyde, 13/2/12

Page 9: Elena  Meneguz *  M. W. Reeks

3D Carrier flow field:• Fully described by 200 random Fourier modes (Spelt & Biesheuvel 1997)• Incompressible, periodic in space• Smoothly varying in time and space• Not a solution to Navier-Stokes equations

10-2

100

102

10-4

10-2

100

k/k0

E(k

)

Energy spectrum from Kraichnan (1970)

• Relatively small separation of scales• Valid for low Reynolds number turbulence

Model of synthetic turbulent flow

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 10: Elena  Meneguz *  M. W. Reeks

Particle average compressibility

divergence

compression

For a given flow field, there is a threshold St below which the segregation goes on indefinitely with time, and above which the dilation prevails over segregation.

Compressibility of the pvf: v||ln Jdtd

KS

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 11: Elena  Meneguz *  M. W. Reeks

Moments of particle number density

)(|)(| 1 tntJ || Jn || Jn 11 || Jnn

Page 12: Elena  Meneguz *  M. W. Reeks

Moments of particle number density

St=0.1

• Particle number density is spatially strongly intermittent• The segregation goes on with time!• The peaks reveal the presence of singularities!

)(|)(| 1 tntJ || Jn || Jn 11 || Jnn

St=0.5

0 5 10 15 20 2510

-5

100

105

1010

1015

1020

t/

=3=2=0

DNS

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 13: Elena  Meneguz *  M. W. Reeks

Singularities in the ptcl concentration fieldSingularities correspond to |J|=0 events

10 20 30 40 500

0.05

0.1

0.15

Ns

PDF(

Ns)

10-2 10-1 100 101 10210-10

10-8

10-6

10-4

10-2

St

s

p

Simulation data

A*exp(-B/St)*StC

Distribution of singularities Frequency of singularities

max at

St=0.5

St=1

St=5

:The distribution of singularities follows a Poisson curveThe maximum frequency of singularity events occurs for

1St

1St

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 14: Elena  Meneguz *  M. W. Reeks

-4 -2 0 2 410-8

10-6

10-4

10-2

100

ln|J|

Gaussian PDFPDF(logJ)

-30 -25 -20 -15 -10 -5 0 5 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ln|J|

PDF(

ln|J

|)

time=25, mean=-2.97, skewst=-0.15, kurtst=3.10

time=10, mean=-1.19, skewst=-0.28, kurtst=3.40

time=1, mean=-0.18, skewst=-2.22, kurtst=13.27

Statistics of the compression C=ln|J|

• The PDF of the compression looks Gaussian but..it is not!• Singularities correspond to ln|J|-> -inf..what is the cause for the

deviation from Gaussianity visible on the left tail of the curve?

St=0.5 St=0.5

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 15: Elena  Meneguz *  M. W. Reeks

Random uncorrelated motion (RUM)

Février et. al JFM, 2005

Mesoscopic Eulerian particle velocity field

Random uncorrelated motion (RUM)

MEPVF+RUM

222ppp qqq

Page 16: Elena  Meneguz *  M. W. Reeks

Decomposition of the compression (C) • We want to separate the mesoscopic and RUM component of the compression

C=ln|J|

• The domain is subdivided in 80x80x80 cells

• mesoscopic contribution is evaluated as:

• RUM contribution as:

where:

i ji

ij N

CC,

|

jjiji CC |

CC jj |

jiC

j-th cell

Compression experienced by the i-th particle in the j-th cell

Average of compression for the j-th cell

C Average of compression calculated all over the domain

Page 17: Elena  Meneguz *  M. W. Reeks

-6 -4 -2 0 2 4 610-4

10-3

10-2

10-1

100

ln|J|

PDF(ln|J|)mesRUM

The effect of RUM on C=ln|J|

• It is the RUM component of the compression which causes the deviation from Gaussianity! =>Singularities and RUM are intrinsically related

mesRUMJJJ lnlnln

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 18: Elena  Meneguz *  M. W. Reeks

Trajectories

Velocity (RUM)

|J| (singularities)

Singularities- ”sling shot”- RUM

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 19: Elena  Meneguz *  M. W. Reeks

Conclusions

• Segregation of particles: the accumulation of particles in preferred zones and shapes

1. The clustering of inertial particles can be quantified for any given St

2. It is not a stationary process (as so far assumed) but goes on until particles collide with one another

• Spatially random contribution (RUM)

The RUM component of the velocity of nearby particle pairs

2. The deviation from Gaussianity of the clustering process has shown to be due to the presence of this component

The study is relevant to particle dispersion and de-mixing processes, first of all droplet coalescence and the onset of rain:

1. Easily detected in contrast to traditional box-counting methods (due to spatial resolution limits)

• Singularitiesinstantaneous events which correspond to very large concentration

2. For the first time, their distribution and has been studied and found to be Poisson

The FLM is a very powerful technique;Extension to in-homogeneous case is possible

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 20: Elena  Meneguz *  M. W. Reeks

THANKS FOR YOUR ATTENTION

Any questions?

Elena Meneguz , 13th European Turbulence Conference, 12-15 th September 2011 20

Page 21: Elena  Meneguz *  M. W. Reeks

Particle trajectories in a periodic array of vortices

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 22: Elena  Meneguz *  M. W. Reeks

Deformation Tensor J

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 23: Elena  Meneguz *  M. W. Reeks

Singularities in particle concentration

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 24: Elena  Meneguz *  M. W. Reeks

Model of synthetic turbulent flow

3D Carrier flow field:• Fully described by 200 random Fourier modes (Spelt & Biesheuvel 1997)• Incompressible, periodic in space• Smoothly varying in time and space• Not a solution to Navier-Stokes equations

10-2

100

102

10-4

10-2

100

k/k0

E(k

)

Energy spectrum from Kraichnan (1970)

• Relatively small separation of scales• Valid for low Reynolds number turbulence

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 25: Elena  Meneguz *  M. W. Reeks

Compressibility

Simple 2-D flow field of counter rotating vortices KS random Fourier modes: distribution of scales, turbulence energy spectrum

Page 26: Elena  Meneguz *  M. W. Reeks

Moments of particle number density

• Along particle trajectory: particle number density n related to J by:

)(|)(| 1 tntJ || Jn || Jn

• Particle averaged value of is related to spatially averaged value:n

11 || Jnn

n

Trivial limits: ,10 n 11 n (equivalent to counting particles)

• Any space-averaged moment is readily determined, if J is known for all particles in the sub-domain

Page 27: Elena  Meneguz *  M. W. Reeks

Moments of particle number density

St=0.05 St=0.5

• Particle number density is spatially strongly intermittent• Sudden peaks indicate singularities in particle velocity field

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 28: Elena  Meneguz *  M. W. Reeks

Random uncorrelated motion • Quasi Brownian Motion - Simonin et al• Decorrelated velocities - Collins • Crossing trajectories - Wilkinson • RUM - Ijzermans et al.• Free flight to the wall - Friedlander (1958)• Sling shot effect - Falkovich

Falkovich and Pumir (2006)

12

2L1L ),2(v),1(v)(

rrr

rrrRL

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 29: Elena  Meneguz *  M. W. Reeks

Radial distribution function (RDF) g(r)

rg(r)

)()( Strrg

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 30: Elena  Meneguz *  M. W. Reeks

Legitimate questions …

?

What happens if we take into consideration a more complex flow field model e.g. a model with a broader range of scales and which takes into account the sweeping of the small scales by the large ones?

• e.g. Do we find the same threshold value?

Direct Numerical Simulations will give us the answer!!!

Page 31: Elena  Meneguz *  M. W. Reeks

DNS: details of the code

• Statistically stationary HIT• Pseudo-spectral code• Grid 128x128x128• Re =65• Forcing is applied at the lowest wavenumbers

• NSE for an incompressible viscous turbulent flow:

• In a DNS of HIT, the solution domain is in a cube of size L, and: k

xik tet )(k,u)u(x,

• 100.000 inertial particles are random distributed at t=0 in a box of L=2• • Interpolation of the velocity fluid @ the particle position with a 6th order Lagrangian

polynomial• Trajectories and equations calculated by RK4 method• Initial conditions so that volume is initially a cube

)0,u()0v( txt p

Page 32: Elena  Meneguz *  M. W. Reeks

Averaged value of compressibility vs time

Elena Meneguz 32

• Qualitatively the same trend with respect to KS• We expect a different threshold value

0 0.1 0.2 0.3 0.4 0.5 0.6-2

-1

0

1

2

3

4

time

d<ln

|J|>

dt

St=0.7St=1St=0.1St=10

WHAT CAUSES THE POSITIVE VALUES???

Page 33: Elena  Meneguz *  M. W. Reeks

Moments of particle number density (KS/RUM)

St=0.05

• Particle number density is spatially strongly intermittent• The segregation goes on with time!• The peaks reveal the presence of singularities!

)(|)(| 1 tntJ || Jn || Jn 11 || Jnn

St=0.5

0 5 10 15 20 2510

-5

100

105

1010

1015

1020

t/

=3=2=0

St=0.5

DNS

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 34: Elena  Meneguz *  M. W. Reeks

0

50

100

150

200

250

PDF Poisson distribution (scaled)

PDF of SINGULARITIES: Poisson distr.!

St=0.5 St=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 250

50

100

150

200

250

PDF Poisson distribution (scaled)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 580

50

100

150

200

250

PDF Poisson distribution (scaled)

St=5

Elena Meneguz 34

Page 35: Elena  Meneguz *  M. W. Reeks

Compressibility in the MEPVF• MEPVF = PVF + RUM (According to Février et al. 2005)

PVF =

jN

jj

jNt

1

1),( vxv

i-th cell

Spatially uncorrelated component (for large inertia)

Elena Meneguz 35

“sling effect” (Falkovich et al. 2002) and “crossing of trajectories” (Wilkinson & Mehlig 2005) Smoothly varying

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 36: Elena  Meneguz *  M. W. Reeks

Random Uncorrelated Motion (RUM)

Février et. al (2005)

It is the manifestion of the decorrelation of two nearby particles.

Elena Meneguz 36

Page 37: Elena  Meneguz *  M. W. Reeks

-30 -25 -20 -15 -10 -5 0 5 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log|J|

PDF(

log|

J|)

time=25, mean=-2.97, skewst=-0.15, kurtst=3.10

time=10, mean=-1.19, skewst=-0.28, kurtst=3.40

time=1, mean=-0.18, skewst=-2.22, kurtst=13.27

Here is where singularities take place!

SINGULARITIES and RUM

The distribution of log|J| approaches a Gaussian for(St=0.5)

t

For other Stokes numbers…

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 38: Elena  Meneguz *  M. W. Reeks

SINGULARITIES

Elena Meneguz 38

-5 -4 -3 -2 -1 0 1 2 3 410

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

log|J|

Gaussian trendPDF(logJ)

Deviation from the Gaussian trend!!!

What is the cause for this behaviour which manifests itself in the limit of log|J|->-inf, in other words |J|=0 (singularities)?

St=1

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 39: Elena  Meneguz *  M. W. Reeks

Decomposition of the compression (C) • We want to separate the mesoscopic and RUM component of the compression

C=ln|J|

• The domain is subdivided in 80x80x80 cells

• Mesoscopic contribution is evaluated as:

• RUM contribution as:

where:

i ji

ij N

CC,

|

jij CCi |)( ,

CCi j |)(

ijC ,

C

j-th cell

Compression experienced by the i-th particle in the j-th cell

Average of compression for the j-th cell

Average of compression calculated all over the domain

Page 40: Elena  Meneguz *  M. W. Reeks

-6 -4 -2 0 2 4 610

-4

10-3

10-2

10-1

100

PDF(logJ)mesRUMmes+RUM

C=Log|J|

Singularities and RUM(C)

It’s the RUMComponent that is causing the deviation!

Singularities are related to RUM, but how?

St=1

Page 41: Elena  Meneguz *  M. W. Reeks

41

The answer is… CAUSTICS!Wilkinson & Mehlig 2005

• The particle velocity field is multivalued as a consequence of folding;• The frequency of singularities is ultimately the frequency of activation of the caustics events • This is related to RUM (crossing of trajectory) as this takes place between caustics (1D

example)• This has an impact on the rate of collision of particles: preferential concentration is not the

only effect (dependency on the St number)

Page 42: Elena  Meneguz *  M. W. Reeks

Caustics, singularities and RUM

Page 43: Elena  Meneguz *  M. W. Reeks

Conclusions…

We have exploited a FLM

• We have calculated quantities such as particle averaged compressibility and moments of the particle number density

INITIAL PROBLEM:

To investigate and quantify the clustering of inertial particles in turbulent flow from a theoretical and numerical point of view.

• We have compared results in different models of turbulent flows – from simple to more complex ones

• We have investigated some detailed features such as the presence of singularities – not detected with box counting methods

• We were trying to conclude our investigation by looking at a way to establish a link between the singularities and the occurrence of Random Uncorrelated Motion.

• Caustics are the answer!

Page 44: Elena  Meneguz *  M. W. Reeks

Thank you for you attention

Page 45: Elena  Meneguz *  M. W. Reeks

Particle kinetic stress transport equation

nmDtD

i

nmi

i

mni x

px

p Work done by total stresses

Smnnm 2

nmiix

Kinetic stress flux

niin

kinetic stresses

stresses from turbulent forces

Particle-fluid velocity covariances

nmnm uu vv21

Page 46: Elena  Meneguz *  M. W. Reeks

...

phase continuous for the Harlow &Daly with Compare

kj

lli

Dskji x

kC

jil

lkkikl

ljkjl

likji xxxvvvvvvvvv 3

1

Swailes, Sergeev at al

Chapman Enskog Approximation

trackingparticle

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 47: Elena  Meneguz *  M. W. Reeks

Predictions versus experimental measurementsSimonin et al.

Work done by shear stresses

0 0.5 1 1.5 2 2.5 30

1

2

3

4

5 Turbulent round jet: radial rms velocit-ies x/DI =20 , Hishida et al.

Radial rms veloc-ity-kinetic stress transport modelRadial rms veloc-ity- local homo-geneous modelAxial rms velocity -kinetic stress transport model

radial distance r/DIpa

rticle

rms

velo

city

m/s

0 0.01 0.02 0.03 0.04-0.2

-1.66533453693773E-16

0.2

0.4

0.6

0.8

1

1.2

-5.55111512312578E-17

0.02

0.04

0.06

0.08

0.1Vertical channel flow: kinetic stress transport predic-tions versus experimental measurements

Rogers and Eaton

mean streamwise velocityrms normal velocity rms streamwise ve-locity

normalised distance from wall

mea

n st

ream

wise

veloc

ity

rms

velocit

y

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 48: Elena  Meneguz *  M. W. Reeks

Near-wall behaviour

PEQp 2/exp

• p, the resuspension rate constant• ω , the typical frequency of

vibration, • Q height of adhesive potential

well, • <PE> average potential energy of

particle in the well.

particle resuspension

Q

Particle escape from potential well

boundary conditions

ugivenofondistributiu

udutxuPutxpnu

v )v(

)v(),,(),,(v0.

influence of particle wall interactions scattering & absorption/deposition/ bounce

/resuspension

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 49: Elena  Meneguz *  M. W. Reeks

Particle wall impacts with absorption

turbulence

particleVg=5

Velocity v

P(v)

Critical impact velocity vc=5, settling velocity vg=5(normalized on particle rms velocity for perfect reflection)

Swailes & Reeks (1997)

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 50: Elena  Meneguz *  M. W. Reeks

Deposition in turbulent boundary layer

rapid decay of turbulence near the wallparticle not in local equilibrium with flowbreak down of gradient transport

comparison of PDF results with experimental results

y+

τ+van Dijk JCP (2010)

van Dijk JCP (2010)τ+

y+

1 20-1-2

-1

-3

-2

4

5

Zaichik & Alipchenkov, (2009)

deposition velocity

Page 51: Elena  Meneguz *  M. W. Reeks

Pair dispersion and segregationTwo colliding spheres radii r1 , r2

r1

r2

n

Collision sphere

rg(r)~rα(St)

)()( Strrg

Page 52: Elena  Meneguz *  M. W. Reeks

wtrudtwdw

dtrd

),(; Eqns of Motion

PDF Equation for relative dispersion(Zaichik and Alipchenkov 2003,2009 )

1 / /~)(,)( 222 KKr rrruru

w = relative velocity between identical particle pairs, distance r apartΔu(r,t) = relative velocity between 2 fluid pts, distance r apart at time t

Structure functions

iijij

i uwwrDt

D

wwmomentum

0

wxt i

mass

1)(2

1 Strrg St

),,w(w

trPr

Net turbulent Force (diffusive)mass Pu

wtrwPw

wrPw

tP

),,(

convectionβ = St -1

Page 53: Elena  Meneguz *  M. W. Reeks

Kinetic Equation predictions

mean of magnitude of relative velocity rwRDF radial distribution functionKrrStrg / ,),(

Zaichik and Alipchenkov, NJP 2009

mean of magnitude of relative velocity rw

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 54: Elena  Meneguz *  M. W. Reeks

Current Actvities• Inter particle collisions Zaichik / Simonin/Fede

– elastic- non elastic– binary collisions

• Random uncorrelated motion (RUM)– transport Equations for RUM in shear flows– influence on particle collisions (Masi/Simonin, IMFT)

• PDF/two fluid models for ρp/ρf ~ 1– (added mass, pressure gradients) Swailes / Skartlian IFE

• Numerical methods – QMOM (Fox et al.)– Hybrid numerical schemes (van Dijk /Swailes

PDF eqns

particle surface interactions

Matching interface

Continuum RST eqns

221122 vv),,,v( dkdktkdxxpd

tP

ppcoll

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 55: Elena  Meneguz *  M. W. Reeks

Current activities

• Two particle dispersion– Segregation / demixing processes

• Application to cloud physics – Growth and coalescence of water droplets– Role of singularities and intermittency

» Statistics and relation to caustics

St=0.5

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 56: Elena  Meneguz *  M. W. Reeks

Summary / Conclusions– Kinetic / pdf approach (one particle approach)

• Treatment of the dispersed particle phase as a fluid– PDF eqn Master eqn

» Eqns for P(v,x,t) and P(v,x,up,t)– Continuum equations– Constitutive relations – Reproduces exact results for generic flows– Influence of turbulent structures – body force– Boundary conditions (particle surface interactions)

– Kinetic approach for particle pair transport• radial distribution function• collision rate

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 57: Elena  Meneguz *  M. W. Reeks

Traditional two-fluid modelling

• Density weighted averages of the instantaneous conservation equations for both phases

k=1 continuous k=2 particle0,

ikkki

kk uxt

mass balance

ikikki

kikjkkjk

ikkk Ig

xpuu

xtDuD

,,,,

momentum balance

Closure of equations requires closure models for Reynolds/kinetic stresses Interfacial drag term

Vol. frac.

Density weighted velocity

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 58: Elena  Meneguz *  M. W. Reeks

Continuous phase Reynolds stresses

jin

nmm

sij uu

xuuq

xCD ,1,1,1,1

1

21

111

,1

Diffusion

m

imj

m

jmiij x

uuuxuuuP

,1

,1,1,1

,1,1,1Production

ijmmijijjiij PPCquuq

C ,13

1,12

213

2,1,12

1

11,1 redistribution

2,12,1

11

22,1 jjjiij ufuf

Fluid-particle interaction

ijijijijijjj PD

tDuuD

.1,1,1,11

,1,111

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 59: Elena  Meneguz *  M. W. Reeks

The viscous dissipation rate f

iij

jii

ii

qC

xuuqC

x

CP

CqDt

D

,121

13

1

1

21

21111

11,1

121

1

1

1

1

2

Particle influence

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 60: Elena  Meneguz *  M. W. Reeks

Why use a PDF Approach?• It’s a rational theory• a linear equation (more success with simple

closure)• exact closure for Gaussian forces• exact solutions for simple flows (bench marking)• continuum equations/constitutive relations (CRs)

developed in formal way • natural length scale for validity of simple CRs• use of natural boundary conditions

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 61: Elena  Meneguz *  M. W. Reeks

Diffusion coefficient versus drift

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 62: Elena  Meneguz *  M. W. Reeks

Closure of momentum/energy equations– GLM approach

jpijj

ijpippj

jipj

j

ip uGxu

uuux

uxDt

uD

12v

jmpimjpipjipF

m

ip

mpjm

jmip

m

ipjmipjm

m

jip

uGuuu

xu

ux

uxu

uxDt

uD

vv1

vv

vvvvvv

12

12

Mean carrier flow encountered by particle

Particle-carrier flow velocity covariances

Page 63: Elena  Meneguz *  M. W. Reeks

Hybrid numerical schemes• Complex wall bounded flows with partially

absorbing walls Ladd Issa, vanDijk, Swailes

PDF eqns

particle surface interactions

Matching interface

Continuum RST eqns

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 64: Elena  Meneguz *  M. W. Reeks

Kinetic Equation for P(w,r,t)and moment equations

1 / /~)(,)( 222 KKr rrruru

citydrift velo

0

,,

ww

t

p

ijij

i

dsstxYtxux

u

uwwxDt

D

momentum

w = relative velocity between identical particle pairs, distance r apartΔu(r) = relative velocity between 2 fluid pts, distance r apart

Structure functions

Net turbulent Force mass Pu

wtrwPw

wrPw

tP

),,(

convection β = St-1 , St=Stokes number

Probability density(Pdf)

0

wxt i

mass

Page 65: Elena  Meneguz *  M. W. Reeks

PDF Probabalistic Approach

N

nnpnNN tXXtXXXP

tX, XtXXPrTxX

tTrxtrTxP

1,21

21212

1

1

))((),;...;(

at time coordintes space phase have particles 2 that PDF);;( vectorspace phase ,,..,,,v

at time re temperatu, size ,position ,vvelocity a has particle a that (PDF)density y probabilit ),,,,v(

Pai, M. G & Subramaniam, S. JFM. 628, 181–228, 2009

Euler-Euler ; same flow field for both phases as solution of N-S equations (with bcs imposed at interphase boundaries) ≡ flow with moving deformable boundaries (see Drew, Prosperetti)

Lagrange-Euler : dispersed phase composed of distribution of discrete elements (particles) whose (Lagrangian) individual transport is obtained by solving their eqm’s in a (Eulerian) random flow field (particle tracking)

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 66: Elena  Meneguz *  M. W. Reeks

dtttxuudttuu pppp

00

Lagrangian

1 )),(()0,0()()0(

Homogeneous turbulence

Momentum equation as a diffusion equation

turbophoresis Drift due spatial inhomogeneity

s

p xdtxGtxuuhypothesi Corrsins

),(),()0,0(Diffusion coefficient

txutxxxx

u ddC ,0,υ 1

Momentum eqn.DtD

xC

1

Page 67: Elena  Meneguz *  M. W. Reeks

Generalised Langevin Model approach Pope/ Simonin

P(v,x,up,t) , up = velocity of carrier flow seen by particle

jipp uu v ,for equationsnsport Obtain tra ,

Simonin Deustch & Minier

j

ijpj x

uu

,viCwwhite noise

force due to mean flow generalised Langevin model

1 122

jjijmm

i

if

i uuGxx

uxp

dtdu

uPC

utuxPF

uu

xt pp ,,,vvv

v

jjpij uuG ,12

dtdu ip ,

Page 68: Elena  Meneguz *  M. W. Reeks

Kinetic versus GLM Approaches

GLM is a realizable model for up(t) Exact closures Compatible with GLM for the carrier flow More physics but more demanding computationally

Kinetic approach simpler to apply Closures are approximate

Both approaches the same for Gaussian differ only in detail e.g. Simonin-Pope model gives dependence

of fluid co-variances and timescale on the local shearing which must be inputs to Kinetic equations

‘Particle segregation ’ Open Stats Phys 6-3-12

Page 69: Elena  Meneguz *  M. W. Reeks

Dispersion and drift in compressible flows ( Chun, Koch & Collins, JFM 536, 219--251, 2005)

tdttrwtrtrwDtD t

0

),(exp)0),((),(

• w(r,t) the relative velocity between particle pairs a distance r apart at time t

• Particle pairs are separated by their own relative veslity field w(r,t) • Conservation of mass (continuity)

)(flux Drift )(flux Diffusive dD qqw

1/

1Stfor Only works

,(,

,(,)(,)(

22

0

0

KSt

t

idi

t

jiijj

ijDi

rg(r) ~r

tdttrwtrwq

tdttrwtrwrDr

rDq

Random variable

tdttrwtrwwwx

qt

id

i0

1 ,(,

Page 70: Elena  Meneguz *  M. W. Reeks

RDF radial distribution functionKrrStrg / ,),(

Page 71: Elena  Meneguz *  M. W. Reeks

Satisfying the well-mixed condition

dsstxtxux

Wdsstxtxu

Wx

W

Wu

t

d

t

0

1

0

,,vvυ

,,

txWxX ,,v,,v,

particlestreamlines

compressibility along a particle trajectory

),(

),(stxYyp sy

Eleprin, Kleorin, Reeks, Maxey

ilitycompressibnet

Particle drift velocity

txutxxxxd ,0,υ 1

dsstxux

txud ,,0

Limiting case β-1 >>1 (fluid point motion)

No guarantee that this is zero (spurious drift)

‘Particle segregation ’ Open Stats Phys 6-3-12