11
ELEMENTARY PROPERTIES OF SEMIGROUPS OF TRANSFORMATIONS OF ORDERED SETS Yu. M. Vazhenin UDC 51 01+518.5 I_~t g~ be some model, and S(~) a semigroup (sometimes a partial groupoid) of certain trans- formations of this model. In studying semigroups of transformations as abstract semigroups, one was principally interested in those properties which are retained under isomorphisms. Examples are the search for the abstract characteristics of S(~gZ) (see, for example, [1-4]), a description of all its con- gruences (see, for example, [1, 5]), the explanation of the definability of model ~ by semigroup 5(~): of a quasiordered set by the semigroup of all isotone transformations [6], of an ordered set by the semi- group of all directed transformations [7], of an arbitrary graph by the partial groupoid of all directed transformations [8], etc. It was L. N. Shevrin who posed the task of studying the elementary properties of semigroups of transformations. What, for example, is it possible to say about the monotypical models and ~ whose semigroups 5(~) and S(~) are elementarily equivalent? Will the semigroups S(~) and S(~) be elementarily equivalent if models ~ and ~Z are elementarily equivalent? These and related questions naturally arise in investigating the capabilities of the language of the restricted pre- dicate calculus for the study of semigroups of trm~sformations. In the present paper we shall adduce some results in the aforementioned directions. We shall study the case when ~ is an ordered (in the sense of partially ordered) set, while S(ff~Z) is the semigroup of all isotone transformations (§ I), the semigroup of all inf-endomorphisms (§ 2), and the semigroup of all directed transformations (§3). For the types of sen~groups listed we shall study the questions posed above. Tile basic results are contained in Theorems 1.1, 2.1, 3.1, and 3.2. In what follows we shall use the symbols ~< and ~ to denote ordering relationships on given sets, and the symbols >i and ~ to denote the corresponding inverse relationships, where, as usual, the notation ~<~ (~ <3 ~),denotes ~.<~(~) and ~ ¢~ . § 1. Semigroups of All Isotone Transformations Let (f2,-. < ) be an ordered (o.) set. By _T(hr2fi) we denote the semigroup of all its isotone trans- formations, i.e., transformations ~c for which it follows from &..<~ that ~c~ ~ Jc ~ for any £, ] cJ~. In this section we shall prove THEOREM 1.1. Let (~(2, ~< ) and (f)..,~ ~) be o. sets. If the semigroups 7"(~.,.< ) and ~(~) are elementarily equivalent, then (o'2, ..<) is elementarily equivalent to one of the sets (~,t~), (~ ~>~). The converse is untrue. Before proceeding to the proof, we make the following remark. Since the relationship & is reflexive, the set S¢ (~'~) of all trmlsformations ~£, for which o~ 5r~ =~, is a subset of the semigroup 7 (~(2, ~ ) With this, for any ~c e ]-(~r~, ~ ) the equation ~g ~c =o_~ holds, while the equation Jco~ =Q2 holds if and only if m~ =~. If _(2 is a single-element set the semigroup -~ (b'-2~,-.<) also has a single element. From the ele- mentary equivalence of ./(J-2, ..< ) and _7"(ff2, ~ &) it follows that ff(~, ~) also has a single element. This means that ~t has a single element and (J~,~) is elementarily equivalent to (~r-~/~). Translated from Algebra i Logika, Vol. 9, No. 3, pp. 281-301, May-June, 1970. Original article sub- mitted October 28, 1969. © 1971 Consultants Bureau, a division o[ Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without permission of the publisher. A copy o[ this article is available [rom the publisher [or $15.00. 169

Elementary properties of semigroups of transformations of ordered sets

Embed Size (px)

Citation preview

Page 1: Elementary properties of semigroups of transformations of ordered sets

ELEMENTARY PROPERTIES OF SEMIGROUPS

OF TRANSFORMATIONS OF ORDERED SETS

Y u . M. V a z h e n i n UDC 51 01+518.5

I_~t g ~ be some model, and S ( ~ ) a semigroup (somet imes a par t ia l groupoid) of cer ta in t r a n s - format ions of this model. In studying semigroups of t r ans fo rmat ions as abs t rac t semigroups , one was pr incipal ly in te res ted in those p roper t i e s which a re re ta ined under i somorph i sms . Examples are the s ea r c h for the abs t rac t cha r ac t e r i s t i c s of S(~gZ) (see, for example , [1-4]), a descr ip t ion of all its con- gruences (see, for example, [1, 5]), the explanation of the definability of model ~ by semigroup 5 ( ~ ) : of a quas io rde red set by the semigroup of all isotone t rans format ions [6], of an o rde red set by the semi - group of all d i rec ted t rans format ions [7], of an a r b i t r a r y graph by the part ial groupoid of all d i rec ted t r ans fo rmat ions [8], etc. It was L. N. Shevrin who posed the task of studying the e lementa ry p roper t i es of semigroups of t r ans fo rma t ions . What, for example, is it possible to say about the monotypical models and ~ whose semigroups 5 ( ~ ) and S ( ~ ) a re e lementa r i ly equivalent? Will the semigroups S ( ~ ) and S ( ~ ) be e lementa r i ly equivalent if models ~ and ~Z are e lementa r i ly equivalent? These and re la ted questions natural ly a r i se in investigating the capabil i t ies of the language of the r e s t r i c t e d p r e - dicate calculus for the study of semigroups of t rm~sformations.

In the presen t paper we shall adduce some resu l t s in the aforementioned di rec t ions . We shall study the case when ~ is an o r d e r e d (in the sense of par t ia l ly ordered) set , while S(ff~Z) is the s e mi g ro u p of all isotone transformations (§ I), the semigroup of all inf-endomorphisms (§ 2), and the semigroup of all directed transformations (§3). For the types of sen~groups listed we shall study the questions posed above. Tile basic results are contained in Theorems 1.1, 2.1, 3.1, and 3.2.

In what follows we shall use the symbols ~< and ~ to denote ordering relationships on given sets, and the symbols >i and ~ to denote the corresponding inverse relationships, where, as usual, the notation ~ < ~ (~ <3 ~ ) , d e n o t e s ~ . < ~ ( ~ ) and ~ ¢ ~ .

§ 1 . S e m i g r o u p s o f A l l I s o t o n e T r a n s f o r m a t i o n s

Let ( f 2 , - . < ) be an o rde r ed (o.) set . By _T(hr2fi) we denote the semigroup of all its isotone t r ans - format ions , i .e . , t r ans format ions ~c for which it follows f rom &..< ~ that ~c~ ~ Jc ~ for any £ , ] c J~ .

In this section we shall prove

THEOREM 1.1. Let (~(2, ~< ) and (f)..,~ ~ ) be o. se ts . If the semigroups 7"(~.,.< ) and ~ ( ~ ) are e l emen ta r i ly equivalent, then (o'2, ..<) is e l ementa r i ly equivalent to one of the sets ( ~ , t ~ ) , ( ~ ~>~). The conver se is untrue.

Before proceeding to the proof, we make the following r e m a r k . Since the relat ionship & is ref lexive, the set S¢ (~'~) of all t rmlsformat ions ~ £ , for which o ~ 5r~ = ~ , is a subset of the semigroup 7 (~(2, ~ )

With this, for any ~c e ] - (~r~, ~ ) the equation ~ g ~c =o _ ~ holds, while the equation Jco~ = Q 2 holds

if and only if m ~ = ~ .

If _(2 is a s ing le-e lement set the semigroup -~ (b'-2~, -.< ) also has a single e lement . F r o m the e l e - menta ry equivalence of . /(J-2, ..< ) and _7"(ff2, ~ &) it follows that f f ( ~ , ~ ) also has a single e lement . This means that ~ t has a single e lement and ( J ~ , ~ ) is e l emen ta r i ly equivalent to (~ r -~ / ~ ) .

T rans la t ed f rom Algebra i Logika, Vol. 9, No. 3, pp. 281-301, May-June, 1970. Original ar t ic le sub- mit ted October 28, 1969.

© 1971 Consultants Bureau, a division o[ Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without permission of the publisher. A copy o[ this article is available [rom the publisher [or $15.00.

169

Page 2: Elementary properties of semigroups of transformations of ordered sets

For the r e m a i n d e r of § 1 we shal l a s s u m e that g'2 is not a s i ng l e - e l emen t se t .

We shall need the following

LEMMA 1.1. If oc__</3, 3 ~ (~-,p, ~, 3 ~ C2) we can then find a t r a n s f o r m a t i o n . ~ Z (~'-2, ~ ) such that ac ~ =- oc, and ~¢~ -~/~.

Fo r the proof of the l e m m a it suff ices to cons ider the t r a n s f o r m a t i o n ~ f ~ ~ , given by the conditions

We speci fy the p red ica t e s H,/7 , and C by the following fo rmulas :

H C~:) ~--~y)(-=y = =:~, (I)

(~, y ; g,U ).~-~z}(H (x)&/-/(~/)~ l-/ ($)&./-/(U)&z~g=x&(zu:y), (~.) 17

O(~,~f) ¢/~lCulCHcx)~ H C y )~ /~ / mC~C=~&nC~,u: x,y)-,-Fl(x,y ; z,u))). (3)

If ~ z ~ , then ~=u----- ~c for any isotone t r a n s f o r m a t i o n of the o. se t ( ~ , - ' ~ ) . If acjy-~ag for any _ueZ

(~...~) , then, by takir.~, t r an s fo rm a t i on ~ as ~/ , we obtain :r.a ~=ac~-=.v.~ for any _~ ~ ~ , i . e . , ~ = c z x g .

Consequently, the fo rm u l a /-/r-r.~ is t rue on semigroup _2"(~"~, ~ ) if and only if z ~ - . ~ , ( ~ ) . The t ru th of fo rmula F l ( a c , y i z , u) on semigroup .T ( ~ , ~ ) means that x , j / ,~ ,~ze . f f , C~'-~) and czg= ac , c z u = y for some ~z~3" (. .~, ,~ ) or , in o ther words ,

The following l e m m a explains the meaning of p red ica te O on s emig roup .T C ~ , K= ) where ~.~ is an o rde r re la t ionship different f r o m equal i ty . In case ~ is the equal i ty re la t ionship , C C ~ , c., 3) is t rue on T C ~ , ~ < ~ ) ff and only if o(~=j3 .

LEMMA 1.2. F o r fo rmula Ccc~,a#) to be t rue on 2 " ( ~ ' ~ , ~ ) , it is n e c e s s a r y and suff icient that one of the re la t ionships o¢-c/~ or ~ < oc hold.

Proof . Let the fo rmula C(a . , , ct~ ~ be t rue and let , for e x a m p l e , / 3 ~ o c . Since the re la t ionsh ip is not the equali ty, we can find e l emen t s ~ , ~ for which ~-" 8 , and whence, by L e m m a 1.1, the t ruth of the fo rmula /'7 (czj ,~$, a~,, a/3 ) , and, consequently, the t ruth of the fo rmu la /7 (~z~,~/s ; c~/l , aS ) • Conse-

quently, c z c z ~ o ~ , and~czB=~ ~ , , i . e . , ~z]---- o¢ and c ~ = / ~ , for some cz~Z($'~, ,~), t~,yvirtue o f t h e

isotonici ty of ~ i t follows f r o m the two las t equations that ~- - /~ . Analogously, in the case ¢~,~/~ we obtain the re la t ionship /3<o~ .

Converse ly , let oc-~/~ and let the fo rmula f 7 ( ~ z ~ ; ~zo~,~#) be t rue on the semigroup _Z'($~,--- ~ )

for some different ~, ~": ~ . Then, by the definition of p red ica te r7 [see (2)] we have the re la t ionsh ip ~ ~. According to L e m m a 1.1 the re ex i s t s ~-Z(:~4~, ~ ) (and, speci f ica l ly : ~=~o¢#~ ) for which the

following equations hold: ff]=o~,##--~ i .e . , ~ z _~o~ , ~ z ~ - - ~/~, and, consequently, t l i d t ru th of the fo rmula

r7 ~ , ~ ; ~ , , ~ .

The case /3 --oc is handled analogously. The l e m m a is p roven .

We speci fy the p red ica te P by the fo rmula

p¢__c.,y; z, ~) ~'/(n~,y; z, u)~ n ~, .=; z, ,-,)) v C..~ =~,~ H~..r..~). (4)

In what follows we shall denote by the symbol P ( , ; n, ~) the b inary p red ica te defined by the p red ica te (~c D', ~, ~) for fixed a , and z? .

Let OZ (.v~, ...,~=~; ~) be an ax iom (closed formula) of the s ignature , containing the unique e x t r a - logical two-p lace pred ica te symbol ~- . If this ax iom is t rue (false) on the o. set ( ~ , ~ ) where the role of w is placed by ~ , we adopt the convention of denoting this fact by "ax iom OL (x~ . . . . . ~cn ; ..< ) is t rue (false)" ; to be sure , ins tead of the re la t ionship ~ we could cons ider the re la t ionsh ips ~ , ,~ , L~ . We shal l speak analogously of the t ru th (falsehood) of the ax iom O'Lca% .... ,~n ; p ( , ; a , ~)) unders tanding by this the t ru th (falsehood) of the axiom OL(.z~ .... . :c n ;?t) on the given semigroup , where the ro le of ~ is played by P ( , ; a , d ) .

170

Page 3: Elementary properties of semigroups of transformations of ordered sets

L~.MMA 1.3. Le t ( ~ ( ~ ) be an a r b i t r a r y o. se t . If the ax iom

£* C~ ..... ~ ;..< ) d~---Z ( ~,~c,),,. (~,~c~) ~ (~,..., :c~; ~ ) ,

is t r ue , w h e r e ~ V , - z and ¢P conta ins no quan t i f i e r s , then the fol lowing ax iom is t r u e (where ~ is obta ined f r o m ~r by r e l a t i v i z a t i on with r e s p e c t to /4 [10])

s~C-~,,...~,~; ~{., ;,~,oz)) ~ a ) ~ ) ( c ¢ ~ , ~ H (~:,,...,~; pc, ; ¢z, ~)).

Conve r se ly , if the ax iom ~ $ (-~ ..... x ~ ; ~ (, ;c~, ~)) is t rue , then one of the fol lowing ax ioms is t rue £, (~1 .... , '2 :n;~) , ~ (Jcl ..... ~,v ; ~ ) -

Proof. Since isomorphic models are e lementar i ly equivalent, i t suffices to establ ish the following: one can find or, ~e.~CQ) such that the re lat ionship D ( , ; ~, ~) w i l l be an order relat ionship, and the o r - dered sets (,_~.4) and ( ~ ($"2); ~C, ; c¢, ~)) are isomorphic (with th is , the lemma~s second assert ion is easi ly obtained, star t ing f rom the def ini t ion of predicate # ).

The correspondence ~ by which each element ~e3~ has made correspond to i t an elemento_¢e S~(3~). is , obviously, a one-to-one mapping of a'~ onto St(d2). By the very def ini t ion of predicate z) [see (4)], the fornmla P(cz~ ,o$ ;c~ ,~/s ), where oc #=/3 i f ~ is the equali ty relat ionship, and oc.</~-otherwise, w i l l hold i f and only i f ~ Consequently, ~o is an isomorphism of ¢ -~ ,~) and (-~I (g~); p [ , ;o~,~p)). The lemma is proven.

We now turn immediately to the proof of Theorem 1.1. Let the semigroups E C Q , ~ ) and _7 (~2~__~) be e lementar i ly equivalent. Applying the f i rs t , then the second, assert ion of Lemma 1.3, we readi ly show tha t if the a x i o m ~5 ( ~ .... x . ; _~) is t rue then one of the ax ioms . , ~ ( x , . . . , ~ n ; , a ) , ::5 (..~;,...,.z=~ ; ~ ) is t r ue . Hence , if kS(.x:,...,.:v,.,,;~) and . ~ (ac,,+4 ..... a S , ; ~ ) a r e a r b i t r a r y t rue ax ioms , then e i the r the

ax ioms ~C~% .... ,a:,z;-..~) and ,tG2(*~,..., ,:v,.,.;.~ ) are t rue , o r the ax ioms ~,¢:c~ . . . . . ar, z ; ~ ~ and ~2 (,.v...,.,+,, . . . . , :c.,;g), s ince o the rwi se the ax iom

will be t r u e and the a x i o m s

" ~ ( % . . . . . "~tr~, .2:,-~+,, . . . . , ~ ; ~ ) and ~ C.-.~ ..... ,..C:,..,.~,'.~m+,,,".,-"crt;~')

will be fa l se , which c on t r a d i c t s L e m m a 1.3. Thus , only two c a s e s a r e poss ib l e : f r o m the t ru th of any a x i o m on the o. se t (..63~_~) fol lows the t ru th of th i s ax iom on the o . se t (~2,~) o r f r o m the t ru th of any a x i o m on the o. se t (_Q, ~ ) fol lows i ts t ru th on the o. s e t ( g : 2 ; ~ ) . In the f irs¢ c a s e the o. se t s (g'2,~_~) and (g~,~ ~ ) a r e e l e m e n t a r i l y equiva len t , in the s econd c a s e the s e t s ( ~ , ~ ) and ( ~ ' 0 , ~ ) .

We c o n s t r u c t an example of two e l e m e n t a r i l y equiva len t o. se t s t,:2 -= ~ and ,g9 . M ~ such that the s e m i g r o u p s ! ( . ~ - ) , ~ ) and E - ( D ~ ) a r e not e l e m e n t a r i l y equiva len t . This will comple te the p roof of T h e o r e m 1.1.

I_~t CQz, ;T, ), ( g~z , ' ~ ) , ( f f2 f , ~ / ) be i s o m o r p h i c l i nea r ly o r d e r e d (1.o.) se t s with the ca rd ina l i t y

of the con t inuum, and let 5 f be an i s o m o r p h i s m of ~£3,, 'z, ) on ~ ) z , "Tz ) ° F u r t h e r m o r e , let (,~2./, ,zzz/)

be a 1.o. se t of countable ca rd ina l i t y which is e l e m e n t a r i l y equiva len t to the 1.o. set , ~'2, ;z, ) . We a s -

s u m e tha t . 4 - ~ , f ~ Q = ~ and g ~ 2 , / ~ f f 2 j = ~ We se t ._~2 g2 ~ ~ , ~ - ~ ; ' ~ , ~ , ? z / a n d , on the se t s . Q andg-2 ~,

we define an o r d e r i n g in the fol lowing way: f o r any __4, y ~ ¢2 ( r e spec t ive ly , g , / ~ - g-~/) we se t _4 ~

(_~-<q ~ ' ) if and only if one of the r e l a t i onsh ips ~ C ¢ , ~ ) , % c.__~, ~) ( r e spec t ive ly , %/C~', ~/), ' z~z / ( -~ ~} )

is t r u e . Since the 1.o. se t s (.-Qg,~[) and ~g-2/, ~ : ) , where ~ = / , ~ , a r e p a i r w i s e e l e m e n t a r i l y equivalent , it is e a s y to c o n s t r u c t a winning s t r a t e g y for p l a y e r II in the game ~a ( ( -Q,~) , (£2 f ~ ' ) ) fo r any ~- , which p r o v e s that the c o n s t r u c t e d o. s e t s a r e e l e m e n t a r y equ iva len t (see [9]). We show, however , t ha t the ax iom

(3c~ (J:) (.~ C~c) - ~ ~2~ ~ ~: ~ ~ ¢< ~ - ~ ) (5)

t r u e on s e m i g r o u p Z ( ~ , ~ ) is fa l se o n s e m i g r o u p r ( ~ , ~ ) . Indeed, ff we choose as c~ the t r a n s f o r m a - t ion of se t ~2 for which ~_~=f.£ when ~ £ ~ and c ~ £ = ~ - / ~ when g ' ~ - J z then, obviously , ~ _ 7 ( ~ 2 , ~

171

Page 4: Elementary properties of semigroups of transformations of ordered sets

-/~ :. ' '~-; - - ~ (when _¢ and, f o r a n y ~ c ~ 2 w e h a v e ~ c z ¢ 4 = ~ ¢ , c z c ~ c ~ , Q ¢ = c ~ ¢ and c~czc~ : ~ ~zd--" '_¢

e _42~ or _ d ~ r e spec t ive ly ) . Thus, the ax iom of (5) is t rue on semig roup f (.Q,.--~) Let us now

a s s u m e that this ax iom is a lso t rue on the semig roup __r(g2/~) . F r o m the fact that c z c ~ z=_= ~ , for any

_~ ~ e ~;~ ~ it follows that cz is a one- to -one mapping of g-2 ~ onto if2 / With this , c ~ ~ ~ ~-_A ~ if and

only if e i the r _g r~_Q~/ and ~ ~/~dz, or •'~c ," )~ and ~/,-:: .4~f (otherwise, in view of the i sotonic i ty of ~z

and the p r o p e r t y .~,~d' ~ _d ~ f r o m the re la t ionship _~ ~ ~ ~ follows the re la t ionship ~ _~' and

analogously, f r o m the re la t ionship ~ '--_~_A ~ follows the re la t ionship ~ z_~' ~;~, i .e . , a lways _~ ~ ~ ,

which is a contradict ion) . Thus, ~: is a one- to -one mapping of g'2/ on ff~f and of ..C~z~ on ~ '~/ , but the

se t g ~ / has the card ina l i ty of the continuum while se t $'P~ is countable. This cont radic t ion p roves the

fa ls i ty of ax iom (5) on semigroup 7-(fi2~ ..4 ) . T h e o r e m 1.1 is p roven ,

We r e m a r k that for the proof of L e m m a 1,1, which was used for ve r i fy ing all the subsequent a s s e r - t ions, we used only t r an s fo rm a t i ons the se t s of whose images cons is ted of no more than two e l emen t s . T h e r e f o r e , denoting by _~ (~-2. ~ ) the subsemigroup of s emig roup .Z(._~, ~ ) consis t ing of t r a n s f o r m a -

t i o n s , , for which the card ina l i ty of se t ~*: g-2 does not exceed the ca rd ina l i ty of number ~ , we read i ly ve r i fy the val idi ty of

THEOREM 1.2. Let (_Q, ~ ) and (g-2/,-~_ ~ ) be a r b i t r a r y o. s e t s , If the s emig roups ! / z ( f f f l __~)

and _~ ( i f 2 ' -~ , ~ ) , where / -z 1> Z a re e l emen ta r i l y equivalent , then the o. set ( g ' ~ , ~ ) is e l e m e n t a r i l y

equivalent to one of the se t s (~2( ,~Z), (g-J;~ ' - ) .

It is unknown, however , whether the conver se is val id when / . z is f ini te.

§ 2 . S e m i g r o u p s o f A l l i n f - E n d o m o r p h i s m s

A s a b o v e , let ( g 2 , ~ b e a n o , se t . W e d e n o t e b y K I g P ~ ) the semigroup of all i ts i n f - e n d o m o r - ph i sms , i .e . , t r a n s f o r m a t i o n s -v for which it follows f r o m ¢-----~n~? ~1 that m.=Zrt~.~, .-c~) for any

An exact bound (upper or lower) of e l emen t s c~,/~+ e £2 is cal led nontr iv ia l if ~ and /~ a r e i n c o m - mensurab le (i.e., oc,~fl and ~ o c ) and, o therwise , t r i v i a l .

This sec t ion is devoted to the proof of the following t h e o r e m .

T H E O R E M 2 . 1 . Let ( g 2 , - ~ ) and ( ~ 2 , ~ ) b e o . se t s , a n d l e t t h e s e m i g r o u p s ~ ( . g 2 , ~ ) and ,~t_Q~, ~ ) be e l emen ta r i l y equivalent . Then, a) if al l the exact bounds of se t (_42, , ,~) a r e t r iv i a l then

tgP,.~ ~ is e l emen ta r i l y equivalent to one of the o. se t s (~"-2 ~ ~ ) , t £-2 ( ~ ) ; b) if the re is a nontr iv ia l /

b o u n d i n o , s e t ( g 2 -~) t h e n t h e o. se ts ¢fi2. 4 ) and (g -2 ,~) a r e e l e m e n t a r i l y equivalent .

The conve r se is fa lse: the e l e m e n t a r y equivalence of (g'2, ..4 ) and (A~; ~ does not, in genera l , entail the e l e m e n t a r y equivalence of

It is e a sy to see that

E(X2,.~) and E ( X 2 : 4 ) .

5 7 C,A'3_,)~_ EC.C-Z,~).

This al lows us to use in this sect ion the p r o p e r t i e s of t r a n s f o r m a t i o n a.g (see the r e m a r k a f t e r the f o r m u l a - t-ion of T h e o r e m 1.1). We note, m o r e o v e r , that each i n f - endomorph i sm is an isotone t r a n s f o r m a t i o n .

In the p resen t case , the following l e m m a , analogous to L e m m a 1,1, is val id .

E M M A 2.1. If

we can then find a t r a n s f o r m a t i o n x e g(,.(2, ~) such that

172

Page 5: Elementary properties of semigroups of transformations of ordered sets

To prove this l e m m a it suff ices to cons ider the t r a n s f o r m a t i o n c ~ specif ied by the conditions:

c ~ / ~ =oc, i f g ; ~ . and c ~ 3 g = ~ if ~ [4].

Thanks to what has been said, we can eas i ly ve r i fy that L e m m a s 1.2 and 1.3 will be val id for s e m i - group ES.~ .~) if in all t h e r e q u i s i t e p l a c e s the symbol 7"(X~,~) is r ep l aced by ~ ' ( . ~ . ~ ) and if, i n t h e proof of L e m m a 1.2, one u se s L e m m a 2.1 ins tead of L e m m a 1.1. In what follows, when r e f e r e n c e is made to the f i r s t sec t ion , we shal l be a s suming that the n e c e s s a r y r e p l a c e m e n t s have been made.

The following l e m m a shows that the cons idera t ion of case a) of T h e o r e m 2.1 reduces to T h e o r e m 1.1.

LEMMA 2.2. The equation K(._O_,,~) =~C,.Q,. ~ ) holds if and only if all the exact lower bounds in o. se t C _~ , ~ ) a r e t r i v i a l .

P roof . Let o c = Lrt:~ ~/~,~) be a nontr ivia l bound. We cons ider the t r a n s f o r m a t i o n ~ ) ~ 7 ~ ' ~ , ~ ) defined in the proof of L e m m a 1.1. Since

t r a n s f o r m a t i o n ~ does not belong to s emig roup ~CA-2,~<.). Consequently, i f ~(LC2, ~ )= .Z(_~ ,~<) ,

then all the exact lower bounds of ( ~ , ~ ) a r e t r i v i a l .

Conver se ly , le t the re be no nontr iv ia l exac t lower bounds in (~ ;~ ,~ ) , i .e . , ~----5~-f(/~,~) if and only

i f / ~ o r ~-~/5 . F r o m this obviously follows the inclusion _ 7 ( ~ ) ~ ( ~ , ~ ] and s ince the i nve r se

inclusion a lso holds, we have proven what was to be proved.

Before turning to case b), we make s e v e r a l r e m a r k s . Let ( ~ , ~ < ) be an o. se t with nontr ivial exact (upper or lower) bounds or a s ing l e -e l emen t o. se t . Close to our goal will be the cons t ruc t ion of a fo rmula in the f i r s t - o r d e r language with a unique functional symbol for the semigroup operat ion, giving a two-place p red ica te A4 such that the o. se t (ff2,~<) is i somorph ic to se t .Er(g-2) with re la t ion ~ .

We spec i fy th ree p red ica t e s f" . 7- and /7 :

/ " (~ , ~ ,~ ; ~ , v? ~ ( w)(ccu, 0),% p C.~, ~/; ~,v) ,~ p(~,~; u,o)

&CPCu& y; ~, ~))&PC~,z; ~z, v )--*-pc~,w; u , v ))) , (6)

T ( x , y ) '~/(z)(u)CO)(CCx,_~,~F~,~, a i ~ , .u ) - - , - ~ = ~ v ~ = v ) ) , (7)

C ~, y) _d-/oz)Ca)C v~CW)Ccc.v,y),~(r(,~,~,~,yr~f(wgw~,~vs.v,.qj~). (8)

If the f o r m u l a s /'(x,.V,~z;u,o), TC~,.V),-/~C",.V) a re t rue on semigroup E(~;2,~) then the equations ~ - - ~ , ~ , _V=qz, g----o/,u--aB, z ) = a ~ will hold for some ~,fl,~,,~, 9 e ~ [see (3) and (4)], and these f o r -

mulas will have the following r e s p e c t i v e meanings (cf., the r e m a r k a f t e r the formulat ion of Theo rem 1.1); e i ther 3-~ ~) and then¢~ = ~rt~ ( / ~ ) or ~ < 3 , a n d t h e n c ~ - - s ~ p C$,#) ; ~ and /3 a re different c o m - mensu rab l e e l emen t s such that the o. se t [A'2.~) when ~ < ~ (/3 <¢c) does not have nontr ivial exact lower (upper) bounds; ~ and /3 a r e di f ferent c o m m e n s u r a b l e e l ements such that t r a n s f o r m a t i o n s of the s e m i - group ~ ( g ' J , ~-) r e ta in , where ~ < / a ( f ,~ oc), any exact lower (upper) bound. Let us e lucidate , for

example , the las t a s s e r t i o n . Let ¢¢</~ ( , ~ < ~ ) . Then f ' ( , zg ,~8~v ;~z~ ,~ a) means that ]----- ~rt:~(8,?) ( respec t ive ly , ~'=.su.p(:~', ~)) , and the fo rmula f ' c w a ~ , W a ~ , u ~ ; ~ , a /a ) means that u) ~ ~ 5Tt~(w3,W~)

( respec t ive ly , y--s pc a, ) for u ) ~ E ( ~ , i ) .

By means of the p r ed i ca t e s ~ f', T and ~ [see (4), (6)-(8)], we define p red ica te ,w by the fo rmula

where

,:p ~,e C~ca, g ) ~ P c~, y ; ~z, dj& C,.z. c 4 a ) v r ed , a))).

(9)

173

Page 6: Elementary properties of semigroups of transformations of ordered sets

It is c l e a r tha t M is a b ina ry r e l a t i o n on ~ , (~'-~) . M o r e o v e r , the fol lowing l e m m a is va l id .

LEMMA 2.3. The o r d e r e d se t (~'~, ~ ) is i s o m o r p h i c to se t "~1 (_C~) with r e l a t i on M .

P r o o f . We show tha t the o n e - t o - o n e mapping of se t - ~ on s e t "-~7 C A ) , which puts into c o r r e s p o n - dence with e a c h e l eme n t ~ e _ ~ the t r a n s f o r m a t i o n ~ j , is an i s o m o r p h i s m of C-4~, ~ ) on (.~,(_C2),M) .

We f i r s t note tha t if ~ = {¢r..~ then "~1 (~"~) = {¢z~ ~1 and, by v i r tue of (9), MCCZ~, r , , ) is t r ue , i .e . , "-~1 ( ~ )

is a s i n g l e - e l e m e n t o. set .

In what fol lows we a s s u m e that t he re is at l eas t one non t r iv ia l exac t bound in (~'~,__~) . We divide the p roof into two c a s e s .

F i r s t c a s e : in the o. se t ($ '~ ,~) t h e r e is a non t r iv ia l exac t upper bound /3 = 5u.p(o¢,~) . We se t

~---cz ¢, ~ = a # . Then, if f o r m u l a / " (~z~ ,aT ,G¢ ;c~ , b ) is t rue then, s ince oc ~23 , we have ~ = ~.~F(~,.~ ) and, f o r any r . J e E ( f ~ , ~ ) the equa t ion u 2 ~ = L n f ( u ) ~ . ~ £ ) ho lds , i . e . , the f o r m u l a JZ(~z ,~ ) is

t r u e . Cons ide r , f u r t h e r , the t r a n s f o r m a t i o n Cacti, ~ e E(..C2. ~ ) (see the p r o o f of L e m m a 2.1). Since

c,/~/~/~=/3 told ~upCc~/~f~c~,c,/~y) = ~upCc~,~)=c~, then c / ~ / ~ su~(c~,c~z~) , i.e., the formula

~[~,~) is false. By the definition of predicate P [see (4)] we conclude from what has just been stated that the relationship _ ~ ? entails the truth of the formula m(~.c~) f o r a n y _ ~ , ~ ~ i fweset ~z=~z~

and 3 ' = ~ . Conversely, let the formula ~ (~ , c~ ) be true and let ~ 2 $ , g = ~ v . As formula ~L(G$, ~ ) is true we have either $< ¢ or ~) < ~ (see Lemma 1.2). Assume that V < c~ . Then, since 2~ = sup 6~,~ ) ,

the formula /'(~),~z~ c~9 ~$. ~v ) is true and, by definition of predicate ~Z , for any we E (~:~,~) the following formula is true

f" ( w=~, u)c~, wcz~, ; c~t ,czv )

We obtah] a contradiction if we set ~ = ~2~ " Consequently, c?e ~, and, in view of the truth of formula

~C~x~,~;~#,cz~) we have -6<~'.

Second case: in the o. set (t~,~) all the exact upper bounds are trivial. Then, let ~ ~n~-(/~,~)

be m~ non t r iv ia l l ower bound. We se t ~ = % , and ~ = % . Since o~ .~]~ the f o r m u l a s ~Z C~z, ~) and 7"(K, cc) a r e t rue (the l a t t e r is t r u e by v i r tue of the condi t ions of the c a s e in ques t ion) . Now, if ~ ~ ~ then the f o r m u l a PC~.~zZ ; c ~ , ~ ) will be t rue and, consequen t ly , the f o r m u l a M ( ~ , ~ F ) will be t r u e . Con-

v e r s e l y , l e t M ( ~ . ? , ~ ) be t rue a n d l e t c~=,~ s and ~ = , ~ v . Since the f o r m u l a ,,Z(~zs,c %) is t r u e we have e i t h e r 3< ~ o r ,) -= d . A s s u m e that -) -- 5 . Then, by def in i t ion of p r e d i c a t e ./L , the f o r m u l a

(~z~, c ~ ) is t rue and, consequen t ly , the f o r n m l a 7" C~zv ,~a ) is t r ue , in con t r ad i c t i on to the f o r m u l a K ' ( ~ ,c~,c~,,~z~,~ ) being t rue and, in view of the non t r iv ia l i ty of the bound oc= Lr~j: (/3, y ) the r e l a t i o n -

s h i p s c z , ~ czo , ~ z ~ hold. Thus , d '<V , and it fol lows f r o m the t ru th of PC~z~ ~ , c ~ # , ~ ¢ ) t h a t $ , ~ [see (4)].

The l e n m m is p roven .

We now c o n s i d e r c a s e b) of T h e o r e m 2.1. Since C.Q,~) is an o. se t with non t r iv ia l exac t bounds the fol lowing a x i o m holds on the s e m i g r o u p ,~ Ct~2 _~)

(~,cy..) ~ oP) (-i 7- (o', g)). (i0)

In v iew of the e l e m e n t a r y equ iva lence of s e m i g r o u p s E(~"J,~? and E(,~73~,a), this ax iom holds on s e m i g r o u p K(ff2~ ~g). Since p r e d i c a t e ~ and, consequen t ly , a l so p r e d i c a t e F [see (6)] w e r e so def ined that the i r mean ings were one and the s a m e fo r a r b i t r a r y o. se t s , the holding of ax iom (10) on the s e m i g r o u p ~(g'2[__~) g u a r a n t e e s the p r e s e n c e of a nont r iv ia l exac t bound in the o. se t ( ~ ---~) . Consequent ly , the o. se t s C _ ~ , ~ ) and (_~ z,~) a r e on a p a r and, by v i r tue of the fo rma l na tu re of the r e l a t i onsh ip s ~-- and ~ on the r e s p e c t i v e s e m i g r o u p s _~(~ . -_~) and ~ ( K 2 , ~ ¢ ) (see L e m m a 2.3), t hese o. s e t s a r e e l e m e n t a r i l y equiva len t .

We now adduce an e xa m pl e o f two e l e m e n t a r i l y equ iva len t o. s e t s ~ , ~ ) and ( ~ ] , ~ ) e a c h of which has non t r iv i a l exac t bounds but which a re such that the s e m i g r o u p s ~ (_~, .~) and ~(~--~,~-~ ) a r e not e l e m e n t a r i l y equiva len t . This will a l so comple te the p roof of T h e o r e m 2.1 s ince the example of the f i r s t sec t ion will a l so s e r v e as m~ example i n f i r m i n g the c o n v e r s e a s s e r t i o n fo r ca se a) (see L e m m a 2.2).

174

Page 7: Elementary properties of semigroups of transformations of ordered sets

Let (£2,,~z,), ( ~ z , ~ z ) , ( ~ , ~ f ~ be i somorph ic 1.o. se t s with card ina l i ty of the continuum with r e - • ~- ( ~ , ~ ) , spec t ive g r e a t e s t e l emen t s e~, e~, and e , . Fu r the r , le t / be an i s o m o r p h i s m of C ~ , , , ,) on

let ( £2" , ~z~'~ be a countable 1.o. set e l emen ta r i l y equivalent to ( ~ 2 , , ~ ,~ , and le t ~ ' be i ts g r e a t e s t

e lement . We a s s u m e that ~ , = ~ - - - e , e ' - - ~ ' - - = , - - z - - 6 ' , ~2, ~ £ 2 ~ {6J and _ ~ ' f 2 j - - | ~ . We set ~-J=~-2,

, ~=~2, ~rJ z Fur the r , w e s e t ~ if and only if (~,~),~z, or (._4,~)~7~ and _~'~" if

" " ~ " C 4 ; ~ 0 ~ z " forany_.4, ~ £ 2 M ~ , ~ ' ~ 2 ' . and only if (._4 , f ) ~ ~% or f , Since the l .o. se t s (g2,,~r,), (12z,~zz} , (~2/, z / ) , and (g'j',~,~') a r e pa i rwise e l emen ta r i l y equivalent , it is e a s y to build a winning s t r a t egy for p layer II in the game G,j¢~'2, ~ ) , ¢ ~ ; 4 ) ) for any rz , and this p roves that the cons t ruc ted o. se ts a re e l e - men ta r i ly equivalent [9].

We show, however , that on semigroup K(g2,~) the following ax iom is t rue :

(_.z a )(~6)(x)(HC ~)~c~d=~& (xg~ ~,H(z~)--~ ax@ ~ c~cx.m = =c )) , (ii)

but is false on semigroup S (~,~) . Indeed, if we take as ~z the transformation of _4"2 for which cz_4----/_~ when 2e ~'~2, and c~4=S-~ when M~"~; , then, obviously, ~ze ~(~ ~.) '~a-- ~z$ and, for any

or ~:~ ~2 z respectively. Thus, axiom (ii) is true on semigroup ~=(~2 ~_~),.

We now assume that this axiom is also true on semigroup E (~2/,_ --=) . Since ~x is an isotone trans- formation of (.62,~,~) ,'uld ~6' for any __~/~&'-2 / , the equation a~6,=~4, entails the equality ~z--4'

since it follows from ~z4/..~ c~6" that c~__~/~__~ ", whence ~z~z~/___~M" and, in view of the equation

~z~z2"~= ~" for any ~#-=~" we have 6~_~" . We prove analogously that from the equation ~_4,=o~8, follows the equality _~'=~/ , Thus, in axiom (II), 6----~ze, . ~Irthermore, from the fact that ~zczcz4, = ~z~,

for any _~ ~' , it readily follows that: a is a one-to-one ,napping of ~' on -4-2 ~, where =~',~'~_~'

if and only if either _~%_~/ and ~%.4~( or ~%~/ and _~/e~'2~ (otherwise, in view of the isotonicity

of ~z , it would follow from ~-~/ that ~z__~ =f, and {~--~2/, i.e., ~----~'; analogously, from ~'/--~ 2'

we obtain that .~/= ~/ which is a contradiction). Thus ~z in a one-to-one fashion maps set ~2/ with

cardinality of the continuum, onto countable set _~ . This contradiction proves the ~sity of axiom (ii)

on semigroup ~ (~,/--~) •

T h e o r e m 2.1 is comple te ly proven.

§ 3 . S e m i g r o u p s o f A l l D i r e c t e d T r a n s f o r m a t i o n s

Let C ~ ; 4 ~ be a quas io rde red se t . T r a n s f o r m a t i o n _~c of se t ~ 2 ' is cal led d i rec ted if ~ ~c~

for any ~ e ~2 r . We denote the semigroup of all d i rec ted t r a n s f o r m a t i o n s ~DC£2;,~) . We denote by

C-<-2/,,~r) the q u a s i o r d e r e d set obtained f r o m (~2,~,~) by d i scard ing all e l ements ~ for which the r e - la t ionship __44 ~ holds only when __4-=~ •

In this sect ion we shall p rove the following t h e o r e m s .

THEOREM 3 . 1 . . L e t ( ~ , - ~ ) be an o. set and ( ~ , - , ~ ) be a quas io rde red set . If the semigroups ~D(£2, ~ ) and ~ ( g ~ ; ~ ) a r e e l e m e n t a r i l y equivalent , then ( £ 2 / , ~ r ) is an o. se t e l emen ta r i l y equiv-

alent to the o. se t (=~2r,--~ r) . The conve r s e is fa l se .

T H E O R E M 3 . 2 . Let ( ~ , ~ } be an ° ' s e t with g r e a t e s t a n d l e a s t e l emen t s and let C_42/~) b e a n a r b i t r a r y quas io rde red set . If the semig roups ~D($2 _~ ) and ~ ) ( ~ 2 , ~ ) a re e l emen ta r i l y equivalent , then (A~2 z, ~ ) i s an o. se t e l emen ta r i l y equivalent to the o. se t (g2, ~ ~ The conver se is fa l se .

Before p rov ing the t h e o r e m s , we have s e v e r a l r e m a r k s to make . Fo r any quas io rde red se t ( ~ ) a n d a n y f l e . ~ I s u c h t l m t ¢ x ~ / 3 and ¢ ¢ ~ we s lml ldeno te by ~ the t r an s fo rma t ion given by the

condit ions: ~/~c¢ = /3 and cc~_4=~4, if _~ ~ x [7]. The set of all such t r an s fo rma t ions we denote by A ( $ 2 ; , ~ ) . Obviously, A ( ~ 2 , ~ ) c¢~3(_Q;,~) . We adduce he re th ree l e m m a s , p roven in [8], on the p rop -

e r t i e s of the t r a n s f o r m a t i o n s jus t in t roduced.

LEMMA 3.1. A t r a n s f o r m a t i o n c ~ e c k g ( ~ 2 ~ ) belol~gs to A(~I.~). if and only if fo rmula X ~ ) is t rue on s emig roup $D(~2~, ~ ) , where

175

Page 8: Elementary properties of semigroups of transformations of ordered sets

and

LE_____MMA 3.__22. For any transformations cz~,~zsX~A(~2/,~ ) the equality ]3= y holds if and only

if formula Z5 C~zjs ~ , ~sj ) is true on semigroup ~9 C~ r ~ ) , where

LEMMA 3.3. For any transformations A (~2,z~&) the equality ~_-- / holds if and only if

formula K ~zp~, czs~ ) is true on semigroup , where

We denote by ¢ the equivalence re la t ion on the given q u a s i o r d e r e d se t coinciding with the i n t e r s e c - t ion of the given quas io rde r ing re la t ion and the re la t ion inve r se to i t . As is known, the or iginal quas i - o rder ing induces an o rde r ing on the co r respond ing f ac to r se t with r e s p e c t to r e l a t ion 6 . We denote this o rde r ing re la t ion by f .

We b r ing into cons idera t ion the following p red ica te

O(_,~7,y) d_/ (=g~z)( K(~,F) v K(,z,x)&'Z3(ct, y)).

Using the t r ans i t iv i ty of re la t ionship "-~ and the definit ions of p r e d i c a t e s ~s and K , we can show that p red ica te o , cons ide red on semig roup ~ 9 ( ~ 2 , ~ ) , g ives a quas io rde r ing on se t A(_z2,~). Moreove r , a lso val id is

LEMMA 3.4. Orde red set (A(_~'2,~)/~,p) is i somorph ic to the o. se t ( ~ r , ~ r ) .

P roof . It is c l e a r that fo rmulas o (x ,~ / ) and 0(5/, ~ ) a r e t rue if and only if f o rmula K (~c, 9') is t rue , because the e lements of se t A(~2,-~)/c; will be the c l a s s e s of all those t r a n s f o r m a t i o n s ~/~c, .....

c~{9,.., for which o~ . . . . . _~ = . . , . We denote the c l a s s containing ~ e ~ by ~ : ~ . We shall now

show that the one - to -one mapping / o f s e t ~2 r onsetA(-Q,~)/o,bywhich~_4=~f_ 4 for a n y ~ e ~ 2 r ,

is an i s o m o r p h i s m of (~-r,~r) and CA ~_Q,~)/c~,/,) . Obviously, the re la t ionship 6 ~ , ~ $ ) ~ p is t rue if

and only if e i the r a = $ and then ~ ~ ~$g , or if the f o rmu la S (c~$~, c~$~ ) is t rue for some ~ e _~ .

Let _4, r e £2 T . If ~ = ~ , then / _ 4 = / ~ and the re la t ionship (/:~,f~)~ p is t rue . If, however , _ ~ ' : ~ ,

then le t / ~ ~ ¢ ~ , f ? = ~ v f • S i n c e _ ~ < f ~ V , w e h a v e _4~V and, hence

(see L e m m a s 3.2 and 3.3). In o ther words , i t is t rue that ~-~c~vf , K(af$,czg4) and 2~(af_ 4 , ~ f ) ,

whence follows the t ru th of the re la t ionship (K~.~, ~ ) ~ F "

Converse ly , le t the fo rmula ( ~ f _ ~ a ~ ) e p be t rue . If ~ = ~vg" ' then 2 = _ ¢ . Let ~ 9 ~ - z ~ and

let the fo rmu la s K (~,c~ & 2, B;~c~v¢) be t rue . By L e m m a 3.3 we have ~z=~2 and f r o m L e m m a 3.2 we

obtain o~---_¢ , whence _~ . ~ (see, the definition of t r an s fo rma t ion ~z_~ ). The l e m m a is p roven .

Cons ider the axiom

( -~)(y)CX C~c) &~ X CjU) & -~dy ~ xy/~c ). (12)

LFMMA 3.5. F o r the re la t ionship ~ on set _42 z to be a n t i s y m m e t r i e it is n e c e s s a r y and sufficient that ax iom (12) be t rue on the semigroup ~D(_~2,/~,).

P roof . If r e la t ion ~.~ is a n t i s y m m e t r i c and ~c =~z~ , ~ = c ~ $ $ , a ~ a ~ , y (i.e., e i t he r ~ , o r ~ $ )

then f r o m the equat ion ~/~.ea~=c~, follow the equations ~ ¢ ~ , ~ ~ = ~ z ~ = ~ . Hence, e i ther o¢=~

176

Page 9: Elementary properties of semigroups of transformations of ordered sets

a n d t h e n ~ 6 " - - c ? - 8 - - - a ~ . L ~ or o¢-=~ a n d t h e n a ~ 6 ~ = / s = ~ = a ~ or , f inally, oc~3)~ and then

'~'p,c 3 = ~ = ~=a2,, ~ • The f i r s t case cont radic ts the fact that cz~.. ~ a a ~ ; the second the fact that ~ is

a n t i s y m m e t r i c and also that o( ,~]s , $ ~ ~ (by the definit ion of the t r a n s f o r m a t i o n s ~r/~, ~za] ); the th i rd

case con t rad ic t s the definit ion of t r a n s f o r m a t i o n a~), . Consequently, if ~ is a n t i s y m m e t r i c the ax iom

(12) is t rue on semig roup ~(._~2,I~) •

Converse ly , if ~ .~ /~ ; / a~o~ and oc~g/~ , then t rml s fo rma t ions ~/~ and a ~ a r e different and, obvi-

ously, sa t i s fy the equat ion c,::/scz3,~=~z~/, , i .e . , ax iom (12) is fa lse on oY)('_42,t ~ ) . Thus, if ax iom (12) is

t rue on ~ ( .~2 ' ,~ ) then the re la t ion ~ is a n t i s y m m e t r i c . The l e m m a is proven.

~D ' We now turn to the proof of T h e o r e m 3.1. Let the semig roups ~ ( g 2 , ~ ) and (~,. .<) be e l e m e n - t a r i ly equivalent . By L e m m a 3.5, ax iom (12)holds on ~ ( _ ~ , ~ ) . Consequently, this ax iom holds on s e m i - groups ~ ) ( ~ 2 ; ~ ) and by L e m m a 3.5, ( ~ / ~ ) is an o .se t . F u r t h e r m o r e , s ince the par t ia l groupoids A ( ~ . ~ ) and A (A-2 '~) a r e fo rma l ly in the cor responding semlg roups (see L e m m a 3.1) they will be e l e - men ta r i ly equivalent . Hence, also e l e m e n t a r i l y equivalent will be the quas io rde red se ts (,4 692,~3, ~', ) and (A(_(2:.~),~, where % and ~z a r e the quas io rde r ings defined by p red ica te o . Then, there ex is t s a win- ning s t r e t egy for p l aye r I I in the game

for any ,z [9]. Using this s t r a t egy , and taldng L e m m a 3.4 into account, we can eas i ly cons t ruc t a winning s t r a t egy for p l aye r H in the game

. (~'2/_,~ r) a re e l emen ta r i l y equivalent . for any ,7- Consequently, the o. se ts ( ~ 2 r , ~ r) and '

In c los ing the proof of T h e o r e m 3.1 we adduce an example of two e l emen ta r i l y equivalent o. se ts

(g'2 f ~ ) m~d C_~'2 z, ~ ) such that the o. se t s ( A 2 r , ~ r) and (~2r , ~gr) a r e e l emen ta r i l y equivalent whlle the

s emig roups ~DC~2,~) aad ~DCg2,~-= ) a r e not e l emen ta r i l y equivalent .

Let A'J,', ~ , g 2 ~ be countable se t s ; l e t ~ ? be a se t with card ina l i ty of the continuum; let 6 ;&z ~. ,

and o -a be e l emen t s belonging to none of these se t s . We a s s u m e that _4~/. ~2;,_4-2f, /,~z z a r e pa i rwise

nonin te rsec t ing . We set _42~--~ff2,',Sff2 ' -4"2 z z , z

we suppose that ._4~.._4, ~ - - ~ ,~-~.. , @ ~.0", f .~ e.. , 5 -- .9 , ~'~.-~.f~, ~-.'z~ 6~, oz--~ o;, o " 4 A i ~ f " 4 e~;'.

We shal l show that the cons t ruc ted o. se t s a r e e l e m e n t a r i l y equivalent . Fo r fl~is we shall make use of the g a m m a - t h e o r e t i c a / c r i t e r ion of e l e m e n t a r y equivalence [9], cons t ruc t ing a wim~ing s t r a t egy for p l aye r II

in the game ~,, ((..42 /.~ ), (A2 z, -4 )} for any n. If on the E -th move p laye r I chose e lement ~x Y¢ e if2 ~Z • ~ .

then p l a y e r II mus t choose e lement ~c~'-~i ~ ~ 2 ~ - ~ in the following the ru les : a) if ~ c = e"~ then g

oc~-~z'=a'-~L;b) if cc.~ ' --__ @~i then oc~ -~=- /-~:E; c) if oc.<g~_¢~.~, L then a~i ~e . ' d) if

o~i = ~ e z when ¢ . - ~ then

~ i = oc, e e. C ( = ¢ . . . . . "z, ;

Consider the one - to -one {by v i r tue of d)) co r re spondence pc between the se t s [% ..... o~ i . . . . ,oct. ] and

.,oc,~] obtained after all zt moves, considering /-~ = oc~ By considering all possible 1 t case s of d ispos i t ion of the pa i r s of e l ements co i , ocj in the o. se t ( ~ ~ ~ ) one can eas i ly show, using

ru l e s a)-d) , that / is an i s o m o r p h i s m and, consequently, these ru les provide a winning s t ra tegy , i .e . , the cons t ruc ted o. se t s a re e l e m e n t a r i l y equivalent .

Fo r convenience in the ensuing d iscuss ion we introduce the following p red ica tes :

X,z c,c) d ~ C9,:z ) ( 3 ~ ) ( x c-= )&Xca)&x (8)&,SCa' ,~)&,s (.z, 8~),

Xo, c:~) ~ (.ga)Cx c~=)~ x~ Ca)& ~ (.~,,:z)),

177

Page 10: Elementary properties of semigroups of transformations of ordered sets

Xoz (x) ~(.ea)(X(~)8,. xa~ (a)&~X~a C~=)&~(~,a)).

We use the notation ~ = | o ~} . g 2 ~ = { e ~ } . Then, the truth of formula x~.(~:) (where 6<j; ~;,]= o,¢,.z,~

on semigroup ~D(~2,£)~(g2,~)) will mean: ~---- ~z~.~ where ~ ¢ e _ ~ , / ~ e $27 (~=¢,z~ . It is obvious with this that formula x(~c) wi~ be t rue on the semigroup

f ~

if and only if one of the formulas ×g]- (~c) is t rue .

We now show that the following axiom is t rue on semigroup ~C~o, ~ )

(~a)(.,~ ¢ ~ Ca)), (13)

where

~ f £,=t"

Indeed, if we choose as 0- the t ransformat ion providing a one-to-one mapping of set J 2 f on set g ~ and

' "- " ~ , t ransformat ion leaving fixed each element X ~,_(2 A~¢ then, since ~ ~ & for any ~ . . ( 2 [ and ~ ~ ¢

belongs to semigroup ~ G ~ , ~ . Fur ther , let formula Xej(o?5~.}, where e # ¢ or ] ~ , b e t rue . Then,

~ , ~ r ¢ or / ~ ' ~ ' 2 : . If ~ ' . . (2¢ ¢ , then o.~--~ and ~z~z~=o/6~o .~ , s ince otherwise, in view of the d i rec ted- ness of ~. and o_$~, we would have ~--.j~ ,which is a contradiction. If, now, ~ e ~ f i t h e n / ~ f ' ~ , i .e. ,

= e r and ~ c~---a~ ~= e ~, but ~z~c~ ~2J , i .e. , ~_~c~ ~.' and, consequently, again a ~ ~cz . Thus, we have shown that formula ¢~ C~z) is t rue . Let h,=a~.~ , where ~ _ 4 2 , ¢, ~ e ~ 2 a ' . By definition of a

t 0 element ~=_~ belongs to _42~ . Hence the truth of formula K (aa~ ,a4 $) (see L e m m a 3.3) and, obviously,

~ a ~ = ~ i .e., formula ~z (a) is t rue . Finally, le t ~ = ,z,~ , ~=,:zl,~ , o=,:z g$ , ~ : ~ , a.r.=~. ,:z~ = ~ and

let the formulas x , z (~ )x , z ( u ) , xz. ~ (~) be t rue . Since c~ maps ~ 2 ' on g2~ in one-to-one fashion, for anY ~., gz e_4~, :~ ,~e_Q' such that ~ = Z , , ~z~z= ~'~ the equation ~ = ~ holds ff and only if the equa- tion ~'~=-~z holds. It follows f rom the equations c z ~ a, a~: ~ a and f rom the t ruth of formulas X~z,(~) ,

x,z(z.z),x~ a ( o ) that ~ = / ~ and a=3----~ because / ~ ~ (since r . -~-~z~ ~,=.zz) a n d e i t h e r A ~ p or _ ~ ~ , i .e . , e i ther 2~(z, o) or ~ ( u , o) is false (see Lemma 3.2). Thus, formula ~ (a) is also t rue and, consequently, axiom (13) is t rue on semigroup ~(_~,~-_~).

We now show that axiom (13) is false on semigroup ~)(f~,~) . Assume the converse, i .e . , that for some t ransformat ion v ~ ( ~ ~, ~ the formulas cP¢co-), cP~co_), cp~ca~ are t rue . If o_¢~ =/~ ¢oc then c z % ~ = o_ and, i nv iew of ~ Cry), the formula X z z ( ~ , ) is t rue , i .e. , ~ _ Q ~ , / s ~ . ~ z . Con-

sequently, t ransformat ion ~ leaves fixed all the e lements , with the possible exception of elements of set _42~ and, with tiffs, elements of _Q~ can, under the action of ~z , go over only into e lements of _4~ Formula % Ca) shows that for any _ ~ ~2~ the element cz~ belongs to _<~:, i .e . , ~ maps ~,-~z in ~ : . Formula % (~] a s se r t s that ~ is a one-to-one mapping of _Qz in ~ . This la t ter contradicts

the fact that ~ ) ~ a n d ~ ; have different cardinal i t ies .

Theorem 3.1 is proven.

178

Page 11: Elementary properties of semigroups of transformations of ordered sets

We now p rove T h e o r e m 3.2. We f i r s t note that the o. se t s ( ~ f 2 [ ~ ) and ( ~ , ~ ) cons t ruc ted above have g r e a t e s t and l e a s t e l emen t s . Consequently, the example we cons ide red shows that f r o m the e l e m e n t a r y equivalence of the o. se t s (~2,~) and ('_4-2~,.4) (see the fo rmula t ion of T h e o r e m 3.2) does not follow, in genera l , the e l e m e n t a r y equivalence of s emig roups ~ ( g 2 ~ ) and ~DC~,,~4 ) . Now, le t s emig roups ~)(_c2,~)

~2 ~ and ~ ( ~ 7 g , ~ ) be e l e m e n t a r i l y equivalent . By L e m m a 3.5, ( , 4 ) i s an o. se t such that (-4~r,~r) and (~-2/, ~r ) a r e e l emen ta r i l y equivalent (see, T h e o r e m 3.1). In pa r t i cu l a r , the o. se t ( ~ 2 f , ~ ) contains a l eas t e lement . We now show that t he re is also a g r e a t e s t e l emen t in the o. set ; with this , T h e o r e m 3.2 will be comple te ly proven.

LEMMA 3.6. Let ( ~ , ~ ) be an o. se t with a l e a s t e l emen t ~ . F o r this se t to contain a g r e a t e s t e lement , i t is n e c e s s a r y and suff icient that the following ax ioms hold on semigroup ~ ( ~ , ~ ) :

C~c~ ) (x ) ( . x , ca )& x~ ca)&.. C.,~,(..v.),~ ×~,(=c).---,-..~= ~ )),

c=K...,=¢)Cx~ (&& C×(=)--.- 8(.=,~) v ~ (.,,-))),

where

(14)

(15)

x , ¢x) ~z~, cy) ( x c..=) & ( x (y) * -~ ~ (~:, 5'))),

l e t t he re be the g r e a t e s t e lement ~ . Then, for any t r an s fo rma t ion cz/~ Proof . In o. se t C-Q,~ ) ~ ( $ 2 , , ~ ) we have - 1 8 ( a ~ , a p ~ ) and ~ ( c r ~ , c ~ o ~ (see L e m m a 3.2) and, s ince ~ is a g r e a t e s t e l ement and a a l ea s t e l ement of o. se t (~'-2, ~ ) , the only t r a n s f o r m a t i o n which has this proper~y is c~# . Consequently, on ~ ( ~ 2 , -~) ax iom (14) is t rue . Fu r the r , for t r an s fo rma t ion c z ~ e i ther /~= e. and fo rmu la ×z(~z~.~) is t rue , o r / 3 - = ~ a n d t h e n fo rmula 5 ( c z ~ , ~ & p ) is t rue , i .e . , on ~b(_~2,~) ax iom (15) is t rue .

Converse ly , on semig roup ~ ( ~ , - - ~ ) l e t ax ioms (14) and (15) hold. Then, t r a n s f o r m a t i o n cc will have the f o r m ezra .where ~ is the sole max imal e l emen t of o. se t ( g 2 , ~ ) . We choose an a r b i t r a r y e l e - ment ~ ~ _42 di f ferent f r o m oc . By v i r tue of ax iom (15), for t r a n s f o r m a t i o n a j # we can find a t r a n s -

fo rmat ion ~ such that f o rm u l a X~C6) holds, and one of the fo rmulas ~(~x4a, ~), X~ C ~ ) i s t rue . Since .~=~c and ~ is the unique max ima l e l emen t in the se t ( $ 2 , . ~ ) fo rmula x~ CaSa) is fa l se . F r o m the t ru th of f o rmu la s XzC6), ~ Cc~, ~) and in view of the uniqueness of c~, follows t~e equali ty o~=cz~2 .

Whence, by the definit ion of t r a n s f o r m a t i o n ~ , we get ~ -= oc i .e . , ~c is a g r e a t e s t e lement in o. se t ('.4"2,~). Thus, the l e m m a , and with it T h e o r e m 3.2, a r e proven.

The author wishes to thank L. N. Shevrin for having posed the p r o b l e m and for help in wri t ing this

paper .

LITERATURE CITED

I. A.I. Mal'tsev, "Symmetric groupoids," Matem. Sb., 311, No. 2, 136-151 (1952). 2. E.S. Lyapin, "Abstract characteristics of certain semigroups of transformations," Uch. Zap. LGPI,

103, 5-30 (1955). 3. L .B . Shneperman, "Semigroups of endomorphisms of quasiordered sets," Ueh. Zap. LGPI, 238, 21-37

(1962). 4. Yu. M. Vazhenin, "Semigroups of in£-endomorphisms of ordered sets," Matem. Zap. Ur. GU, 7, No. 2

(1969). 5. A. Ya. Aizenshtat , nOn the s e m i s i m p l i c i t y of s emig roups of endomorph i sms of o r d e r e d se ts ," Dokl.

Akad. Nauk SSSR, 142, No. 1, 9-11 (1962). 6. L . M . Gluskin, ~Seraigroups of isotone t r a n s f o r m a t i o n s , " UMN, 16, No. 5, 157-162 (1961). 7. E . S . Lyapin, "Semigroups of d i rec ted t r a n s f o r m a t i o n s of o r d e r e d se t s , " Matem. Sb., 7__~4, No. 1, 39-46

(1967). 8. N . D . Fil ippov, "Graphs and pa r t i a l groupoids of the i r d i rec ted t r an s fo rma t ions , " Matem. Zap. UrGU,

6, No. 1, 144-156 (1967). 9. A. Ehrenfeucht , ~Applications of games to the comple t enes s p r o b l e m of fo rma l i zed theor ies , " Fund.

Math., 4__99, 129-141 (1961). 10. A. Robinson, Introduct ion to Model Theory and to the Mathemat ics of Algebra, Nor th-Hol land Pub-

l i shing Co., A m s t e r d a m (1963).

179