1
Elementary Analysis Math 140B—Winter 2007 Homework answers—Assignment 19; March 12, 2007 Exercise 30.2 (a) lim x0 x 3 sin x - x = lim x0 3x 2 cos x - 1 = lim x0 6x - sin x = -6. (b) lim x0 tan x - x x 3 = lim x0 sec 2 x - 1 3x 2 = lim x0 2 sec 2 x tan x 6x = 2 lim x0 sec 2 x lim x0 sin x x lim x0 1 6 cos x =2·1·1· 1 6 = 1 3 . (c) lim x0 1 sin x - 1 x = lim x0 x - sin x x sin x = lim x0 1 - cos x x cos x + sin x = lim x0 sin x -x sin x + 2 cos x =0. (d) cos x is positive for x near 0 ; hence lim x0 log cos x x 2 = lim x0 - sin x cos x 2x = - lim x0 1 2 1 cos x sin x x = - 1 2 . Hence lim x0 (cos x) 1/x 2 = e -1/2 . Exercise 30.3 (a) lim x→∞ x - sin x x = lim x→∞ 1 - sin x x =1 - 0=1. (b) sin 1 x log x = - sin 1 x log 1 x so if t = 1 x we have lim t0+ sin t log t = lim t0+ sin t t t log t = 1 lim t0+ t log t , and lim t0+ t log t = lim t0+ log t 1/t = lim t0+ 1/t -1/t 2 = lim t0+ (-t)=0 from the left. Hence lim x→∞ sin 1 x log x = -1 -0 =+. Therefore lim x→∞ x sin(1/x) = e = . (c) lim x0+ 1 + cos x e x - 1 = 2 0 = . (d) lim x0 1 - cos 2x - 2x 2 x 4 = lim x0 2 sin 2x - 4x 4x 3 = lim x0 4 cos 2x - 4 12x 2 = lim x0 -8 sin 2x 24x = lim x0 -8 12 sin 2x 2x = - 2 3 . Exercise 30.4 Let f be a function defined on some interval (0,a) and define g(y)= f (1/y) for y (a -1 , ). Show that lim x0+ f (x) exists if and only if lim y→∞ g(y) exists, in which case they are equal. Solution: : Suppose that L := lim x0+ f (x) exists. Then given > 0 there exists δ> 0 such that |f (x) - L| < whenever 0 <x<δ. Let M =1. Then for y>M , we have 0 < 1/y < 1/M = δ, so |f (1/y) - L| <, proving that lim y→∞ g(y) exists, and equals L. : Suppose that lim y→∞ g(y) exists. Then given > 0 there exists M> 0 such that |g(y)-L| < whenever y>M . Let δ =1/M . Then for 0 <x<δ, we have 1/x > 1= M , so |g(1/x) - L| <, proving that lim x0+ f (x) exists and equals L. Exercise 30.6 Let f be differentiable on some interval (c, ) and suppose that lim x→∞ [f (x)+ f (x)] = L. Prove that lim x→∞ f (x)= L and that lim x→∞ f (x) = 0. Solution: lim x→∞ f (x) = lim x→∞ f (x)e x e x = lim x→∞ f (x)e x +f (x)e x e x = lim x→∞ [f (x)+ f (x)] = L, since e z →∞. (It doesn’t matter that lim x→∞ f (x)e x might not exist.) 1

Elementary Analysis Math 140B—Winter 2007brusso/140bhwsol19.pdf · Elementary Analysis Math 140B—Winter 2007 Homework answers—Assignment 19; March 12, 2007 Exercise 30.2 (a)

Embed Size (px)

Citation preview

Elementary Analysis Math 140B—Winter 2007Homework answers—Assignment 19; March 12, 2007

Exercise 30.2

(a) limx→0

x3

sinx− x= lim

x→0

3x2

cos x− 1= lim

x→0

6x

− sinx= −6.

(b) limx→0

tanx− x

x3= lim

x→0

sec2 x− 13x2

= limx→0

2 sec2 x tanx

6x= 2 lim

x→0sec2 x lim

x→0

sinx

xlimx→0

16 cos x

= 2·1·1·16

=13.

(c) limx→0

(1

sinx− 1

x

)= lim

x→0

x− sinx

x sinx= lim

x→0

1− cos x

x cos x + sinx= lim

x→0

sinx

−x sinx + 2 cos x= 0.

(d) cos x is positive for x near 0 ; hence

limx→0

log cos x

x2= lim

x→0

− sin xcos x

2x= − lim

x→0

12

1cos x

sinx

x= −1

2.

Hencelimx→0

(cos x)1/x2= e−1/2.

Exercise 30.3

(a) limx→∞

x− sinx

x= lim

x→∞

(1− sinx

x

)= 1− 0 = 1.

(b) sin1x

log x = − sin1x

log1x

so if t =1x

we have

limt→0+

sin t log t = limt→0+

sin tt

t log t=

1limt→0+ t log t

,

and

limt→0+

t log t = limt→0+

log t

1/t= lim

t→0+

1/t

−1/t2= lim

t→0+(−t) = 0

from the left. Hencelim

x→∞sin

1x

log x =−1−0

= +∞.

Therefore limx→∞ xsin(1/x) = e∞ = ∞.

(c) limx→0+

1 + cos x

ex − 1=

20

= ∞.

(d) limx→0

1− cos 2x− 2x2

x4= lim

x→0

2 sin 2x− 4x

4x3= lim

x→0

4 cos 2x− 412x2

= limx→0

−8 sin 2x

24x= lim

x→0

−812

sin 2x

2x= −2

3.

Exercise 30.4 Let f be a function defined on some interval (0, a) and define g(y) = f(1/y) fory ∈ (a−1,∞). Show that limx→0+ f(x) exists if and only if limy→∞ g(y) exists, in which case theyare equal.

Solution:⇒: Suppose that L := limx→0+ f(x) exists. Then given ε > 0 there exists δ > 0 such that

|f(x) − L| < ε whenever 0 < x < δ. Let M = 1/δ. Then for y > M , we have 0 < 1/y < 1/M = δ,so |f(1/y)− L| < ε, proving that limy→∞ g(y) exists, and equals L.

⇒: Suppose that limy→∞ g(y) exists. Then given ε > 0 there exists M > 0 such that |g(y)−L| < εwhenever y > M . Let δ = 1/M . Then for 0 < x < δ, we have 1/x > 1/δ = M , so |g(1/x)− L| < ε,proving that limx→0+ f(x) exists and equals L.

Exercise 30.6 Let f be differentiable on some interval (c,∞) and suppose that limx→∞[f(x) +f ′(x)] = L. Prove that limx→∞ f(x) = L and that limx→∞ f ′(x) = 0.

Solution: limx→∞ f(x) = limx→∞f(x)ex

ex = limx→∞f(x)ex+f ′(x)ex

ex = limx→∞[f(x)+f ′(x)] = L,since ez →∞. (It doesn’t matter that limx→∞ f(x)ex might not exist.)

1