578
Element Help

Element Help - literature.cdn.keysight.comliterature.cdn.keysight.com/litweb/pdf/genesys200708/element.pdf · Nonlinear GaAsFET transistor models (TOM2_N and TOM2_P).....363 Nonlinear

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Element Help

  • Copyright Notice Copyright 1994-2007 Agilent Technologies, Inc. All rights reserved.

    Notice The information contained in this document is subject to change without notice.

    Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

    Warranty A copy of the specific warranty terms that apply to this software product is available upon request from your Agilent Technologies representative.

    U.S. Government Restricted Rights Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

    © Agilent Technologies, Inc. 1994-2007

    395 Page Mill Road, Palo Alto, CA 94304 U.S.A.

  • Acknowledgments Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries.

    Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

    Pentium® is a U.S. registered trademark of Intel Corporation.

    PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated.

    UNIX® is a registered trademark of the Open Group.

    Java(TM) is a U.S. trademark of Sun Microsystems, Inc.

    SystemC® is a registered trademark of Open SystemC Initiative, Inc. in the United States and other countries and is used with permission.

    Drawing Interchange file (DXF) is a trademark of Auto Desk, Inc.

    EMPOWER/ML, GENESYS, SPECTRASYS, HARBEC, and TESTLINK are trademarks of Eagleware-Elanix Corporation.

    GDSII is a trademark of Calma Company.

    Sonnet is a registered trademark of Sonnet Software, Inc.

  • v

    Contents

    Chapter 1: Overview and Miscellaneous .....................................................................................1 Circuit Elements .................................................................................................................................1 Commonly used Symbols (a reference figure)...............................................................................5 Extra Symbols .................................................................................................................................. 10 Net Block.......................................................................................................................................... 11

    Chapter 2: Lumped Elements ................................................................................................... 13 Air core inductor (AIRIND1) ....................................................................................................... 13 Air core inductor 2 (AIRIND2).................................................................................................... 14 Air core inductor 3 (AIRIND3).................................................................................................... 15 Capacitor (CAP)............................................................................................................................... 16 Frequency Dependent Loss Admttance (GLOSS) .................................................................... 17 Frequency-independent Impedance (IMP) ................................................................................. 18 Inductor (IND) ................................................................................................................................ 19 Inductor with Q (INDQ)............................................................................................................... 20 Impedance Inverter (INVERTER) .............................................................................................. 21 Modelithics Capacitor (CAP_nnnn)............................................................................................. 22 Two Mutually Coupled Inductors (MUI).................................................................................... 25 Mutually Coupled Coils (MUCQx)............................................................................................... 26 Parallel L-C resonator (PFC) ......................................................................................................... 28 Parallel L-C resonator (PFL) ......................................................................................................... 29 Parallel L-C Network (PLC) .......................................................................................................... 30 Parallel R-C Network (PRC).......................................................................................................... 31 Parallel R-L Network (PRL) .......................................................................................................... 32 Parallel R-L-C Network (PRX) ..................................................................................................... 33 Resistor (RES).................................................................................................................................. 34 Frequency Dependent Loss Resistance (RLOSS)...................................................................... 35 Series L-C resonator (SFC) ............................................................................................................ 36 Series L-C resonator (SFL) ............................................................................................................ 37 Series inductor and capacitor network (SLC) ............................................................................. 38 Spiral Inductor (SPIND) ................................................................................................................ 39 Series resistor and capacitor network (SRC)............................................................................... 41 Series resistor and inductor network (SRL) ................................................................................ 42 Thin film capacitor (TFC).............................................................................................................. 44 Thin Film Resistor (TFR)............................................................................................................... 45 Toroidal Core Inductor (TORIND) ............................................................................................ 46

  • Element Help

    vi

    Ideal Transformer (TRF)................................................................................................................ 47 Tapped Transformer (TRFCT) ..................................................................................................... 48 Ruthroff transformer (TRFRUTH).............................................................................................. 49 Piezoelectric resonator (XTL) ....................................................................................................... 50

    Chapter 3: Linear Devices, Controlled Sources, and Matrix Parameters ..................................51 ABCD parameters (ABC)............................................................................................................... 51 Bipolar transistor model (BIP) - LINEAR.................................................................................. 52 Current controlled current source (CCC) - LINEAR ............................................................... 54 Current controlled voltage source (CCV) - LINEAR............................................................... 55 FET transistor model (FET) - LINEAR..................................................................................... 56 Gyrator (GYR) ................................................................................................................................. 59 Operational Amplifier (OPA) - LINEAR................................................................................... 60 PIN Diode (PIN) - LINEAR........................................................................................................ 61 S-parameters (SPA) ......................................................................................................................... 63 Voltage Controlled Current Source (VCC) - LINEAR............................................................. 64 Voltage Controlled Voltage Source (VCV) -LINEAR.............................................................. 65 POLY (Polynomial Controlled Sources) ..................................................................................... 66

    Chapter 4: System Elements and Behavioral Models ............................................................... 69 ADC - Analog to Digital Converter (Basic) [ADC_BASIC].................................................... 69 Antenna (Coupled) [AntCpld] ....................................................................................................... 73 Antenna (Path Loss) [PATH]........................................................................................................ 75 Attenuator (Fixed) [ATTN_Linear].............................................................................................. 77 Attenuator (NonLinear) [ATTN_NonLinear]............................................................................ 79 DC Controlled Attenuator [ATTN_Ctrl].................................................................................... 81 Attenuator (Variable) [ATTN_VAR_Linear] ............................................................................. 83 Single Directional Coupler [COUPLER1] .................................................................................. 85 Dual Directional Coupler [COUPLER2] .................................................................................... 87 Hybrid 90 Degree Coupler [HYBRID1] ..................................................................................... 89 Hybrid 180 Degree Coupler [HYBRID180] ............................................................................... 92 RF Circulator [CIR]......................................................................................................................... 95 Time Delay [DELAY]..................................................................................................................... 97 Digital Frequency Divider [DIG_DIV]....................................................................................... 99 RF Frequency Divider [FREQ_DIV] ........................................................................................ 103 RF Frequency Multiplier (FREQ_MULT)................................................................................ 107 Isolator [ISO].................................................................................................................................. 111 Log Detector [LOG_DET] .........................................................................................................113 Basic Mixer [MIXER_BASIC] .................................................................................................... 115 Double Balanced Mixer [MIXER_DBAL] ............................................................................... 121 Intermod Mixer Table [MIXER_TBL]...................................................................................... 127

  • Table Of Contents

    vii

    Phase Shifter [PHASE]................................................................................................................. 137 RF Amplifier (2nd - 3rd Order) [RFAMP] .............................................................................. 139 RF Amplifier (High Order ) [RFAMP_HO] ............................................................................ 143 S Parameter (Non Linear) [SDATA_NL] ................................................................................. 151 S Parameter (Non Linear - High Order) [SDATA_NL_HO] ............................................... 155 RF 2 Way - 0° Splitter / Combiner [SPLIT2]........................................................................... 159 RF 2 Way - 0°/ 180° Splitter / Combiner [SPLIT2180] ........................................................ 161 RF 2 Way - 0°/ 90° Splitter / Combiner [SPLIT290]............................................................. 163 RF N Way - 0° Splitter / Combiner [SPLITn]......................................................................... 165 RF Switch [SWITCH_Linear] ..................................................................................................... 168 RF Switch [SWITCH_NonLinear] ............................................................................................. 171 Variable Gain Amplifier [VarAmp] ............................................................................................ 174 Voltage Based Models................................................................................................................... 180

    Basic Mixer Voltage [MIXER_BASICV].............................................................................. 180 RF Amplifier Voltage (2nd - 3rd Order) [RFAmp1V & RFAmp2V] .............................. 188 RF Amplifier Voltage (High Order ) [RFAMP_HOV] ...................................................... 193 Variable Gain Amplifier Voltage [VarAmp1V].................................................................... 201

    Chapter 5: System Sources ...................................................................................................... 207 Multisource ..................................................................................................................................... 207

    MultiSource General (Spectrasys - System and Linear Simulation Only) ........................ 207 Add / Edit Source (MultiSource) ........................................................................................... 210 CW Source (MultiSource) ........................................................................................................ 213 Wideband Source (MultiSource) ............................................................................................. 216 Continuous Frequency Source (MultiSource)....................................................................... 217 White Noise Source (MultiSource)......................................................................................... 221 Intermod Source Wizard (MultiSource) ................................................................................ 222

    CW Source...................................................................................................................................... 226 CW Source with Phase Noise...................................................................................................... 228 Wideband Source........................................................................................................................... 231 Multicarrier Source ........................................................................................................................ 233 Intermod Source (2 Tone) ........................................................................................................... 236 Intermod Source - Receiver (3 Tone) ........................................................................................ 238 Continuous Frequency Source .................................................................................................... 241 Noise Source (INP_PNOISE).................................................................................................... 243 Oscillator with Phase Noise......................................................................................................... 245

    Chapter 6: Linear Data Files and Deembedding .................................................................... 249 1-Port Data File (ONE) - LINEAR........................................................................................... 249 2-Port Data File (TWO) - LINEAR .......................................................................................... 250 3-Port Data File (THR) ................................................................................................................ 252

  • Element Help

    viii

    Four-Port Data (FOU) - LINEAR............................................................................................. 253 Negation Operator (NEG1 and NEG2) ................................................................................... 254 Negation Operator with Dataset input (NEGD1 and NEGD2).......................................... 256 NPOx (N-Port Datafile Import)................................................................................................. 257 NPODx - Use x-port data from Data Set ................................................................................. 258

    Chapter 7: Filters (on System Toolbar)....................................................................................259 Bessel Lowpass Filter (LPF_BESSEL)..................................................................................... 259 Bessel Bandpass Filter (BPF_BESSEL) ................................................................................... 262 Bessel Highpass Filter (HPF_BESSEL) ................................................................................... 265 Bessel Bandstop Filter (BSF_BESSEL).................................................................................... 268 Butterworth Lowpass Filter (LPF_BUTTER) ........................................................................ 271 Butterworth Bandpass Filter (BPF_BUTTER)....................................................................... 274 Butterworth Highpass Filter (HPF_BUTTER)....................................................................... 277 Butterworth Bandstop Filter (BSF_BUTTER) ....................................................................... 280 Chebyshev Bandpass Filter (BPF_CHEBY)............................................................................ 286 Chebyshev Highpass Filter (HPF_CHEBY) ........................................................................... 289 Chebyshev Bandstop Filter (BSF_CHEBY)............................................................................ 292 Elliptic Lowpass Filter (LPF_ELLIPTIC) ............................................................................... 295 Elliptic Bandpass Filter (BPF_ELLIPTIC).............................................................................. 298 Elliptic Highpass Filter (HPF_ELLIPTIC) ............................................................................. 301 Elliptic Bandstop Filter (BSF_ELLIPTIC).............................................................................. 304 Pole / Zero Lowpass Filter (LPF_POLES) ............................................................................ 307 Pole / Zero Highpass Filter (HPF_POLES)........................................................................... 312 Pole / Zero Bandstop Filter (BSF_POLES) ........................................................................... 314 Duplexer with Chebyshev Filters (DUPLEXER_C) ............................................................. 317 Duplexer with Elliptic Filters (DUPLEXER_E).................................................................... 319

    Chapter 8: Nonlinear Elements ...............................................................................................321 BJT ................................................................................................................................................... 321

    Nonlinear Bipolar Transistor MEXTRAM models (MEXRAM_NPN , MEXTRAM_PNP, MEXRAM_NPN4, MEXTRAM_PNP4, MEXRAM_NPN5, MEXTRAM_PNP5) ................................................................................................................. 324 Heterojunction Bipolar Transistor (HBT) models (UCSDHBT_NPN, and UCSDHBT_PNP)..................................................................................................................... 329 Vertical Bipolar Transistor (VBIC) Models .......................................................................... 333

    Diode ............................................................................................................................................... 338 Nonlinear diode model (DIODE).......................................................................................... 338 Nonlinear Philips MOST devices junction capacitances Model (JUNCAP)................... 340

    JFET ................................................................................................................................................ 342 Nonlinear Junction FET transistor models (JFET_N and JFET_P) ............................... 342

    MESFET......................................................................................................................................... 344

  • Table Of Contents

    ix

    Nonlinear GaAsFET transistor Curtice Quadratic models (CURTICE2_N and CURTICE2_P) .......................................................................................................................... 348 Nonlinear GaAsFET transistor Advanced Curtice Quadratic models (CURTICE2A_NFET and CURTICE2A_PFET).............................................................. 350 Nonlinear GaAsFET transistor Curtice Cubic models (CURTICE3_N and CURTICE3_P) .......................................................................................................................... 353 Nonlinear GaAsFET transistor PARKER-SKELLERN models..................................... 356 Nonlinear GaAsFET transistor models (STATZ_N and STATZ_P) ............................. 359 Nonlinear GaAsFET transistor models (TOM_N and TOM_P)..................................... 361 Nonlinear GaAsFET transistor models (TOM2_N and TOM2_P) ................................ 363 Nonlinear GaAsFET transistor models (TOM3_NFET and TOM3_PFET) ............... 366 Nonlinear MOSFET transistor models (BSIM2_N and BSIM2_P) ................................ 368 Nonlinear MOSFET transistor models (BSIM3_N , BSIM3_P, BSIM3_NFET and BSIM3_PFET ).......................................................................................................................... 374 Nonlinear MOSFET transistor models (BSIM4_NFET and BSIM4_PFET) ............... 375 Nonlinear MOSFET transistor models (BSIMSOI_NFET and BSIMSOI_PFET)..... 376 Nonlinear MOSFET transistor models (EKV_N and EKV_P)....................................... 377 Nonlinear IGFET transistor models (HISIM _NMOS, and HISIM_PMOS).............. 379 Nonlinear Motorola LDMOS transistor models (base or die models) ............................ 383 Nonlinear MOSFET transistor models (MOS1_N and MOS1_P) .................................. 386 Nonlinear MOSFET transistor models (MOS2_N and MOS2_P) .................................. 388 Nonlinear MOSFET transistor models (MOS3_N and MOS3_P) .................................. 390 Nonlinear MOSFET transistor models (MOS9_NMOS and MOS9_PMOS)............... 393 Nonlinear MOSFET transistor models (MOS11_NMOS and MOS11_PMOS) .......... 394 Polymorphous Si TFT model PSIA2.0 (TFT_PSIA2_NMOS, TFT_PSIA2_PMOS) . 395 Amorphous Si TFT model ASIA2 (TFT_ASIA2_NMOS, TFT_ASIA2_PMOS)........ 397

    Miscellaneous ................................................................................................................................. 399 Nonlinear voltage and current sources (NLCCCS, NLCCVS, NLVCCS, and NLVCVS)399 CCSW, VCSW (Current Controlled nonlinear switch, Voltage Controlled nonlinear switch) ......................................................................................................................................... 401

    Chapter 9: Sources, Ports, Grounds, and Probes..................................................................... 407 Ground (GND) ............................................................................................................................. 407 AC Current Source (IAC)- NONLINEAR .............................................................................. 408 DC Current Source (IDC) - NONLINEAR ............................................................................ 409 Current Noise Source (INOISE) - LINEAR .......................................................................... 410 Standard Input (*INP).................................................................................................................. 411 Input AC Current (INP_IAC) - NONLINEAR ..................................................................... 412 Input DC Current (INP_IDC) - NONLINEAR .................................................................... 413 Input Pulsed Current (INP_IPULSE) - NONLINEAR........................................................ 414 Input Custom Current Waveform (INP_IPWL) - NONLINEAR...................................... 415 Input AC Power (INP_PAC) - NONLINEAR....................................................................... 416

  • Element Help

    x

    Input AC Voltage (INP_VAC) - NONLINEAR.................................................................... 417 Input DC Voltage (INP_VDC) - NONLINEAR ................................................................... 418 Input Pulsed Voltage (INP_VPULSE) - NONLINEAR....................................................... 419 Input Custom Voltage Waveform (INP_VPWL) - NONLINEAR..................................... 420 Pulsed Current Source (IPULSE) - NONLINEAR................................................................ 421 Custom Current Waveform Source (IPWL) - NONLINEAR.............................................. 422 Current Probe (IPROBE) ............................................................................................................ 423 Standard Output (*OUT)............................................................................................................. 424 Signal Ground Source (*SGND) ................................................................................................ 425 Test Point (TEST_POINT)......................................................................................................... 426 AC Power Source (PAC) - NONLINEAR............................................................................... 427 AC Voltage Source (VAC) - NONLINEAR............................................................................ 428 DC Voltage Source (VDC) .......................................................................................................... 429 Voltage Noise Source (VNOISE) - LINEAR......................................................................... 430 Pulsed Voltage Source (VPULSE).............................................................................................. 431 Custom Voltage Waveform Source (VPWL)............................................................................ 432 Input AC Power with Noise ( INP_PAC_NOISE )............................................................... 433 OSCPORT (Oscillator Port)........................................................................................................ 434 Balanced Port (PORT).................................................................................................................. 435 Modulated Sources (MOD_VAC, MOD_IAC, MOD_VPULSE, MOD_IPULSE, MOD_VPWL, MOD_IPWL, MOD_IBTSR, MOD_VBSTR)............................................ 436 Combined Frequency Source (COMB_VAC / COMB_IAC ) - NONLINEAR.............. 437

    Chapter 10: Ideal Transmission Lines, Coupled Lines, and Wires ...........................................439 Coupled lines (CPL) ...................................................................................................................... 439 Multiple coupled transmission lines (CPNn) ............................................................................ 441 Distributed RC transmission line (RCLIN) .............................................................................. 443 Transmission line (TLE)............................................................................................................... 444 Four Terminal Transmission Line (TLE4)................................................................................ 445 Transmission Line (TLP) ............................................................................................................. 446 Four Terminal Transmission Line (TLP4) ................................................................................ 447 Distortionless TEM Transmission Line (TLRLDC) ............................................................... 448 Uniform TEM Transmission Line (TLRLGC) ........................................................................ 449 Exponential TEM Transmission Line (TLX) ........................................................................... 450 Rectangular Wire (RIBBON) ...................................................................................................... 451 Length of Conducting Wire (WIRE).......................................................................................... 452

    Chapter 11: Coax .......................................................................................................................453 Coaxial Cable (CABLE)................................................................................................................ 453 Coaxial Cable Types (RG6, RG8, RG58, RG59, RG214) ...................................................... 455 Coaxial open end (CEN).............................................................................................................. 457

  • Table Of Contents

    xi

    Coaxial center conductor gap (CGA)......................................................................................... 458 Coaxial transmission line (CLI)................................................................................................... 459 Four terminal coaxial line (CLI4)................................................................................................ 460 Square Coax Line with Round Inner Conductor (CSQLI) .................................................... 461 Square Coax Line with Square Inner Conductor (CSQLX)................................................... 462 Coaxial conductor step (CST) ..................................................................................................... 463

    Chapter 12: Microstrip (Standard, Inverted, and Suspended) .................................................. 465 Microstrip Bend (MBN) ............................................................................................................... 465 Optimally Mitered Microstrip Bend (MBN3)........................................................................... 466 Microstrip Bend, Arbitrary Angle with Optimal Miter (MBNA) .......................................... 468 Multiple Coupled Microstrip Lines (MCN) .............................................................................. 469 Asymmetric Coupled Microstrip Lines (MCN4A) .................................................................. 470 Two Coupled Microstrip Lines (MCP)...................................................................................... 471 Microstrip Cross (MCR)............................................................................................................... 472 Microstrip Curved Bend (MCURVE)........................................................................................ 474 Microstrip Open End (MEN) ..................................................................................................... 475 Microstrip Gap (MGA) ................................................................................................................ 476 Microstrip Interdigital Capacitor (MIDCAP) ........................................................................... 477 Inverted Microstrip (MINV) ....................................................................................................... 479 Lange Coupler (MLANG) ........................................................................................................... 480 Microstrip Line (MLI)................................................................................................................... 481 Microstrip Rectangular Inductor (MRIND) ............................................................................. 482 Microstrip Radial Stub (MRS) ..................................................................................................... 484 Microstrip Spiral Inductor (MSPIND) ...................................................................................... 486 Microstrip Step (MST).................................................................................................................. 488 Suspended Microstrip (MSUS).................................................................................................... 489 Microstrip Linearly Tapered Line (MTAPER) ......................................................................... 490 Microstrip Symmetrical or Asymmetrical Tee Junction (MTE) ............................................ 491 Microstrip Via Hole (MVH) ........................................................................................................ 493

    Chapter 13: Slabline................................................................................................................... 495 Multiple Coupled Rods (slabline) (RCN) .................................................................................. 495 Coupled Slabline (RCP)................................................................................................................ 496 Slabline (RLI) ................................................................................................................................. 497

    Chapter 14: Stripline.................................................................................................................. 499 Offset Broadside Coupled Striplines (SBCP) ........................................................................... 499 Stripline Bend (SBN) .................................................................................................................... 501 Multiple Coupled Striplines (SCN)............................................................................................. 502 Coupled Striplines (SCP).............................................................................................................. 503

  • Element Help

    xii

    Stripline Open End (SEN)........................................................................................................... 504 Stripline gap (SGA) ....................................................................................................................... 505 Stripline (SLI) ................................................................................................................................. 506 Offset Stripline (SLIO)................................................................................................................. 507 Stripline Step in Width (SSP)....................................................................................................... 508 Stripline Tee Junction (STE)........................................................................................................ 509

    Chapter 15: Coplanar Waveguide .............................................................................................. 511 Coplanar Microstrip Line without and with Ground Plane ( CPW and CPWG ) ............. 511 Coplanar Gap (CPWCGAP)........................................................................................................ 512

    Chapter 16: Rectangular Waveguide .........................................................................................513 Waveguide-to-TEM Adapter (WAD) ........................................................................................ 513 Rectangular Waveguide Line (WLI) ........................................................................................... 514

    Chapter 17: EM Based Transmission Lines..............................................................................515 SMTLP and MMTLP.................................................................................................................... 515

    Chapter 18: Antenna ..................................................................................................................517 Dipole antenna (DIPOLE) .......................................................................................................... 517 Monopole Antenna (MONOPOLE) ......................................................................................... 518

    Chapter 19: Transmission Line Type Reference .......................................................................519 Microstrip........................................................................................................................................ 519 Suspended Microstrip ................................................................................................................... 521 Inverted Microstrip ....................................................................................................................... 522 Coupled Microstrip ....................................................................................................................... 523 Round Microstrip .......................................................................................................................... 525 Coplanar Waveguide ..................................................................................................................... 526 Coplanar Waveguide with Ground............................................................................................. 527 Stripline............................................................................................................................................ 528 Coupled Stripline ........................................................................................................................... 529 Broadside Horizontal Coupled Stripline.................................................................................... 530 Broadside Vertical Coupled Stripline ......................................................................................... 531 Rounded Edge Stripline................................................................................................................ 532 Slabline............................................................................................................................................. 533 Square Slabline/Coax.................................................................................................................... 534 Coupled Slabline ............................................................................................................................ 535 Coaxial ............................................................................................................................................. 536 Eccentric Coaxial ........................................................................................................................... 537 Partially Filled Coax....................................................................................................................... 538

  • Table Of Contents

    xiii

    Square Coaxial................................................................................................................................ 539 Coaxial Stripline ............................................................................................................................. 540 Equal-Gap Rectangular Coax...................................................................................................... 541 Unscreened Twin Wire................................................................................................................. 542 Single Wire Above Ground ......................................................................................................... 543 Trough Line.................................................................................................................................... 544

    Chapter 20: Substrate Parameter Tables ................................................................................... 545 Loss Tangent .................................................................................................................................. 545 Metal Thickness ............................................................................................................................. 547 Relative Dielectric Constants....................................................................................................... 548 Relative Permeability..................................................................................................................... 549 Resistivity ........................................................................................................................................ 550 Surface Roughness ........................................................................................................................ 551

    Chapter 21: References.............................................................................................................. 553 GENESYS References ................................................................................................................. 553 Transmission Line & Filter Shape Reference ........................................................................... 556

    Index ............................................................................................................................... 559

  • 1

    Chapter 1: Overview and Miscellaneous

    Circuit Elements

    The following index shows the built-in linear elements organized by schematic toolbar. For an alphabetic listing, see the index. The code at the end is the model name which must be used when switching models or when typing in a netlist.

    Main schematic toolbar Wire Connections (LINE) Inputs (INP, INP_VDC, INP_IDC, INP_VAC, INP_IAC, INP_PAC, INP_VPULSE, INP_IPULSE, INP_VPWL, and INP_IPWL) Output True Ground Signal Ground Power Sources (PAC, VDC, IDC, VAC, IAC, VPULSE, IPULSE, VPWL and IPWL) NET block Text

    Lumped Toolbar Air-Core Inductor (AIRIND1) Capacitor (CAP) Crystal RLC Model (XTL) Dipole Antenna Element (DIPOLE) Inductor (IND) Gain Block (Ideal) (GAIN) Monopole Antenna Element (MONOPOLE) Mutually Coupled Inductors (MUI) Phase Block (Ideal) (PHASE) Resistor (RES) Spiral Inductor (SPIND) Thin Film Capacitor (TFC) Thin Film Resistor (TFR) Three-Port Circulator (CIR3) Toroidal Core Inductor (TORIND) Transformer (Ideal) (TRF) Transformer (Center Tapped Secondary) (TRFCT) Two-Port Isolator (Ideal) (ISOLATOR)

    Linear Toolbar 1 Port (ONE) 2 Port (TWO) 3 Port (THR)

  • Element Help

    2

    4 Port (FOU) Bipolar Transistor Model (BIP) Current Controlled Current Source (CCC) Current Controlled Voltage Source (CCV) FET Model (FET) Gyrator Model (GYR) N-Ports (5 to 20 Ports) (NPOn) Negation Operator (NEG1 and NEG2) Operational Amplifier (OPA) PIN Diode (PIN) Voltage Controlled Current Source (VCC) Voltage Controlled Voltage Source (VCV)

    Nonlinear Toolbar Nonlinear FETs (CURTICE2, CURTICE2A, CURTICE3, JFET, STATZ, TOM and TOM2) Nonlinear MOSFETs (MOS1) Nonlinear BJTs (BIPNPN, BIPPNP, BIPNPN4, and BIPPNP4) Nonlinear power sources (NLCCCS, NLCCVS, NLVCCS, and NLVCVS) Nonlinear Diode (DIODE) Nonlinear Resistor (NLRES) Nonlinear Capacitor (NLCAP)

    T-Line Toolbar Coupled Lines (2 Lines) (CPL) Coupled Lines (3 to 10 Lines) (CPNn) Distributed RC Transmission Line (RCLIN) Multi-Mode Lines (EMPOWER generated) (MMTLP) Single Line (2 Nodes) (TLE) Single Line (4 Nodes) (TLE4) Single Line With Physical Dimensions (2 Nodes) (TLE) Single Line With Physical Dimensions (4 Nodes) (TLE4) Single Mode Line (EMPOWER generated) (SMTLP) Transmission Line (Distortionless TEM) (TLRLDC) Transmission Line (Uniform TEM) (TLRLGC) Transmission Line (Exponential TEM) (TLX) Wire (Rectangular Cross Section) (RIBBON) Wire (Circular Cross Section) (WIRE)

    Coaxial Toolbar Coaxial Cable (CABLE) Coaxial Cable Types (CABLE TYPES) End Effect (CEN) Gap (CGA) Single Line (2 Nodes) (CLI) Single Line (4 Nodes) (CLI4) Square Coax Line with Round Inner Conductor (CSQLI)

  • Overview and Miscellaneous

    3

    Square Coax Line with Square Inner Conductor (CSQLX) Step (CST)

    Coplanar Toolbar Coplanar Line without and with Ground Plane (CPW and CPWG) Coplanar Line with Gap (CPWCGAP)

    Microstrip Toolbar Bend (MBN) Coupled Lines (2 Lines) (MCP) Coupled Lines (3 to 10 Lines) (MCNn) Cross (MCR) Curved Line (MCURVE) End Effect (MEN) Gap (MGA) Interdigital Capacitor (MIDCAP) Inverted Microstrip (MINV) Lang Coupler (MLANG, MLANG6, and MLANG8) Radial Stub (MRS) Rectangular Inductor (MRIND) Single Line (MLI) Spiral Inductor (MSPIND) Step (MST) Suspended Microstrip (MSUS) Tapered Line (MTAPER) Tee (MTE) Via-Hole (MVH)

    Slabline Toolbar Single Line (RLI) Coupled Lines (2 Lines) (RCP) Coupled Lines (3 to 10 Lines) (RCNn)

    Stripline Toolbar Bend (SBN) Coupled Lines (2 Lines) (SCP) Coupled Lines (3 to 10 Lines) (SCNn) End Effect (SEN) Gap (SGA) Offset (SLIO) Offset Coupled (SBCP) Single Line (SLI) Step (SSP) Tee (STE)

    System Toolbar NON SOURCES Analog to Digital Converter ( Basic ) [ ADC_BASIC ] Antenna ( Coupled ) [ AntCpld ]

  • Element Help

    4

    Antenna ( Path Loss ) [ PATH ] Attenuator ( Fixed ) [ Attn_Linear ] Attenuator ( DC Controlled ) [ ATTN_Ctrl ] Attenuator ( Variable ) [ATTN_VAR_Linear ] Coupler ( Single Directional ) [ COUPLER1 ] Coupler ( Dual Directional ) [ COUPLER2 ] Coupler ( Hybrid 90 Degree ) [ HYBRID1 ] Coupler ( Hybrid 180 Degree ) [ HYBRID180 ] Circulator [ CIRCULATOR ] Delay [ DELAY ] Digital Divider [ DIG_DIV ] Frequency Divider [ FREQ_DIV ] Frequency Multiplier [ FREQ_MULT ] Isolator [ ISO ] Log Detector [ LOG_DET ] Mixer ( Basic ) [ MIXER_BASIC ] Mixer ( Double Balanced ) [ MIXER_DBAL ] Mixer ( Intermod Table ) [ MIXER_TBL ] Phase Shifter [ PHASE ] RF Amplifier ( 2nd and 3rd Order ) [ RFAMP ] RF Amplifier ( High Order ) [ RFAMP_HO ] Splitter ( 2 Way 0 Degree ) [ SPLIT2 ] Splitter ( 2 Way 180 Degree ) [ SPLIT2180 ] Splitter ( 2 Way 90 Degree ) [ SPLIT290 ] Splitter ( N Way 0 Degree ) [ SPLITN ] Switch ( N Way ) [ SWITCH_Linear ] Variable Gain Amplifier [ VGA ] SOURCES Continuous Frequency Source [ ContFreq ] CW Source [ CWSource ] CW Source ( Phase Noise ) [ CWPNSource ] Intermod Source [ IntermodSource ] Intermod Source ( Receiver ) [ RxIntermodSource ] Multicarrier Source [ MulticarrierSource ] Noise Source ( INP_PNOISE ) Oscillator ( Power ) [ PwrOscillator ] Wideband Source [ WidebandSource ]

    Waveguide Toolbar Rectangular Waveguide (WLI) Waveguide-to-TEM Adapter (WAD)

    Extra Symbols All Symbols (a reference figure)

  • Overview and Miscellaneous

    5

    Commonly used Symbols (a reference figure)

    To use a symbol not otherwise available, place a part and change its symbol.

  • Element Help

    6

  • Overview and Miscellaneous

    7

  • Element Help

    8

  • Overview and Miscellaneous

    9

    The following are a some representative samples of the plethora of internally generated elements that are available:

  • Element Help

    10

    Extra Symbols

    These extra symbols may be used by placing a similar part on the schematic and double-clicking the part to display the Parts dialog box. Then click the "Symbols..." button to select a custom symbol.

    Usage:

    The best way to use these symbols is to place a part with a similar shape and then change the visual symbol. For CAP_POLARIZED try starting with a CAPACITOR; for SPST try using a RESISTOR with R=.001 ohms. For LED start with a DIODE and for CHASSIS_GROUND use a true GROUND. MIXER and VARACTOR are best represented by a user model.

    Tip: You can duplicate a custom symbol by selecting it and pressing Ctrl+D.

  • Overview and Miscellaneous

    11

    Net Block

    This element allows a network or EM simulation to be reused. A NET block is an internally generated model that has many symbol variations based on the number of terminal connections. This symbol is available in the main Schematic toolbar. Here are a few examples:

    Netlist Syntax:

    In a netlist, simply use the name of the network followed by the node numbers Parameters:

    Network to Reuse The name of another design or EM simulation (in the current project)

    Examples: NETLIST1 1 2 0

  • 13

    Chapter 2: Lumped Elements

    Air core inductor (AIRIND1)

    This physical inductor symbol is available in the LUMPED toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    N Number of Turns none 50

    D Diameter of Form mil 20

    L Length mil 200

    WD Wire Diameter mil 1

    Rho

    Resistivity relative to copper none 1

    This model uses physical dimensions to derive C and L for a parallel LC model.

  • Element Help

    14

    Air core inductor 2 (AIRIND2)

    This physical inductor symbol is available in the LUMPED toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    N Number of Turns none 10

    D Diameter (inner) mil 1000

    WD Wire Diameter mil 50

    Er

    Relative Dielectric Constant none 1

    H Thickness of PWB mil 135

    S Spacing between coils mil 100

    WG Wire Gauge (Optional) none 18

    UseGauge

    Use Gauge = 1, Use Wire Diameter = 0 none 0

    This model uses a modification of Wheeler's formula that implements a transmission line model of the inductor with periodic resonances.

  • Lumped Elements

    15

    Air core inductor 3 (AIRIND3)

    This physical inductor symbol is available in the LUMPED toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    L Inductance at low frequency nH 10

    C Capacitance at low frequency pF 20

    This model uses a transmission line model with capacitance per length and inductance per length equal to the low-frequency measured parameters of the inductor.

  • Element Help

    16

    Capacitor (CAP)

    Lumped capacitance with optional Q. This symbol is available in the LUMPED toolbar or by pressing the "C" key. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part. You can select an alternate symbol, CAP_POLARIZED, just like any other extra symbol. There is also a nonlinear capacitor model (NLCAP) available for your use.

    Note: Use the keyboard shortcut key "C" to place a capacitor.

    Netlist syntax: CAP n1 n2 C= [Q=] [Name=]

    Parameters: Capacitance (pF) Specifies the value of the capacitor in picoFarads. Capacitor Q (optional) Specifies the quality factor of the capacitor, modeled as constant with frequency. This parameter is not required, and defaults to 1 million if not specified.

    Examples: CAP 1 2 C=22 CAP 3 0 C=470 Q=300 N=C1

    Q is modeled as constant with frequency. It can be specified higher or lower than the default value.

    Touchstone Translation: CAP n1 n2 C=

    or (if Q is specified) CAPQ n1 n2 C= Q= F=1 MOD=3

    Default SPICE Translation: C1_NAME n1 n2 C

    Warning: Q is not modeled in SPICE.

  • Lumped Elements

    17

    Frequency Dependent Loss Admttance (GLOSS)

    Lumped admittance with frequency dependent loss. This model can be placed either by placing a standard resistor and changing the model to GLOSS or by searching for GLOSS in the Eagleware library of the part selector. See RLOSS for a resistance version of this element.

    Netlist Syntax:

    GLOSS n1 n2 R0= R1= R2= [Name=] Parameters:

    G0 (Siemens): Constant Admittance G1 (S/sqrt(Hz)): Admittance proportional to sqrt(frequency[Hz]) G2 (S/Hz): Admittance proportional to frequency (Hz)

    Example: GLOSS 1 2 G0=2 G1=1e-3 G2=3.5e-6

    The admittance at frequency f (in Hz) is given by:

    G = G0 + G1 * sqrt(f) + G2*f

    In the example above, the admittance at 1MHz (1e6 Hz) is

    2 + 1e-3 * sqrt(1e6) + 3.5e-6 * 1e6 = 6.5 Siemens

    An alternative method for creating frequency dependent resistance is to use the FREQ variable in an equation. However, the GLOSS element is preferred for the following reasons:

    1. It simulates much faster than a standard resistor with frequency dependent equations.

    2. When used with Cayenne transient simulation, the GLOSS element looks at the "Always Use Constant Loss" setting to avoid convolution whenever possible. If that option is checked, Cayenne will calculate the admittance at the "Most Accurate Frequency" and use that admittance at all frequencies (including DC).

  • Element Help

    18

    Frequency-independent Impedance (IMP)

    This symbol is available in the LUMPED Toolbar.

    Netlist Syntax :

    IMP 1 2 R= X= Parameters:

    R Real part of Impedance [default=50] X Imaginary part of Impedance [default=0]

    The Impedance (Z ) is equal to : Z = R + j X where both R and X are constant, .i.e independent of frequency.

    Example: IMP 1 2 R=10 X=10

  • Lumped Elements

    19

    Inductor (IND)

    Lumped inductance with optional Q. This symbol is available in the LUMPED toolbar or by pressing the "L" key. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part.

    Note: Use the keyboard shortcut key "L" to place an inductor.

    Netlist Syntax: IND n1 n2 L= [Q=] [Name=]

    Parameters: Inductance (nH) Specifies the value of the inductor in nanoHenries. Inductor Q (optional) Specifies the quality factor of the inductor, modeled as constant with frequency. This parameter is not required, and defaults to 1 million if not specified.

    Examples: IND 1 2 L=22 IND 3 0 L=470 Q=300 N=L1

    Q is modeled as constant with frequency. It can be specified higher or lower than the default value.

    Touchstone Translation: IND n1 n2 L=

    or (if Q is specified) INDQ n1 n2 C= Q= F=1 MOD=3

    Default SPICE Translation: L1_NAME n1 n2 L

    Warning: Q is not modeled in SPICE.

  • Element Help

    20

    Inductor with Q (INDQ)

    This symbol is available in the LUMPED Toolbar.

    Normally, the standard Inductor element is used. This element is provided only for ADS compatibility. This element is implemented as a series inductor plus frequency dependent resistor.

    Netlist Syntax: INDQ n1 n2 L= QL= F= MODE= RDC= [Name=]

    Parameters: L Inductance in nanohenries. QL Quality factor (default=1e+6) F Frequency for Q value (MHz) MODE Selects the frequency variation of Q MODE = 1: Q proportional to frequency (f) (default) MODE = 2: Q proportional to sqrt (f) MODE = 3: Q constant MODE = 4: Identical to ADS Mode = sqrt(f), incorrect topology used as in ADS. RDC Resistance at dc (default = 1e-6 ohm)

    Example: INDQ 1 2 L=100 QL=100 MODE=3

    Touchstone Translation: None Default SPICE Translation: None

  • Lumped Elements

    21

    Impedance Inverter (INVERTER)

    This symbol is available in the LUMPED Toolbar.

    Netlist Syntax :

    INVERTER 1 2 0 K= Parameters:

    K Impedance "gain", where Zin = K2 / Zload [default=50]

    The Impedance Inverter or "K-inverter" is useful in the filter synthesis process to make changes in topology. The result is that the input impedance is inversely proportional to the load impedance and is scaled by the gain factor "K". Similarly, an admittance inverter or "J-inverter" is the same as an impedance inverter, when K = 1/J, where J is the admittance factor.

  • Element Help

    22

    Modelithics Capacitor (CAP_nnnn)

    Surface mount chip capacitor model with substrate-scaling capability. This model is an equivalent circuit topology that will emulate capacitor performance as a function of the substrate or printed circuit board on which it is mounted. The model is valid over a range of specific part values offered by the component manufacturer. The frequency-dependent effective series resistance (ESR) has been characterized and incorporated into the model. The fundamental resonance and up to two higher-order resonance pairs are accurately predicted.

    A substrate definition must exist in the workspace and be associated with the model. Substrate dielectric constant, loss tangent, metal thickness and height will be used in the model. The model can be specified to provide an ideal element response for any part value by setting the Sim_mode parameter equal to 1.

    See Modelithics Substrate-Scalable Capacitor Models data sheets for details on model development and use.

    Parameters

    Capacitance (pF) Specifies the nominal value of the capacitor in picoFarads. Sim_mode Specifies whether the full parasitic model is to be used (Sim_mode=0) or if an ideal element should be used (Sim_mode = 1).

    See Also: Modelithics Capacitor Overview in the User's Guide

  • Lumped Elements

    23

    Modelithics Inductor (IND_nnnn) Surface mount inductor model with substrate-scaling capability. This model is an equivalent circuit topology that will emulate inductor performance as a function of the substrate or printed circuit board on which it is mounted. The model is valid over a range of specific part values offered by the component manufacturer. The frequency-dependent effective series resistance (ESR) has been characterized and incorporated into the model. The fundamental resonance and up to two higher-order resonance pairs are accurately predicted.

    A substrate definition must exist in the workspace and be associated with the model. Substrate dielectric constant, loss tangent, metal thickness and height will be used in the model. The model can be specified to provide an ideal element response for any part value by setting the Sim_mode parameter equal to 1.

    See Modelithics Substrate-Scalable Inductor Models data sheets for details on model development and use.

    Parameters Inductance - Specifies the nominal value of the inductor. Sim_mode - Specifies whether the full parasitic model is to be used (Sim_mode=0) or if an ideal element should be used (Sim_mode = 1).

    See Also: Modelithics Capacitor Overview

  • Element Help

    24

    Modelithics Resistor (RES_nnnn) Surface mount chip resistor model with substrate-scaling capability. This model is an equivalent circuit topology that will emulate resistor performance as a function of the substrate or printed circuit board on which it is mounted. The model is valid over a range of specific part values offered by the component manufacturer.

    A substrate definition must exist in the workspace and be associated with the model. Substrate dielectric constant, loss tangent, metal thickness and height will be used in the model. The model can be specified to provide an ideal element response for any part value by setting the Sim_mode parameter equal to 1.

    See Modelithics Substrate-Scalable Resistor Models data sheets for details on model development and use.

    Parameters Resistance - Specifies the nominal value of the resistor. Sim_mode - Specifies whether the full parasitic model is to be used (Sim_mode=0) or if an ideal element should be used (Sim_mode = 1).

    See Also: Modelithics Capacitor Overview

  • Lumped Elements

    25

    Two Mutually Coupled Inductors (MUI)

    This symbol is available in the LUMPED Toolbar.

    Netlist Syntax:

    MUI n1 n2 n3 n4 L1= L2= K= [Name=] Parameters:

    L1 Inductance of coil between n1 and n2 in nanohenries. L2 Inductance of coil between n3 and n4 in nanohenries. Coupling, K Coefficient of coupling.

    WARNING: “K” must not equal 1.

    Example: MUI 1 2 3 4 L1=100 L2=100 K=.999999

    A negative value of “K” inverts the phase. MUI is used to model a transformer including finite winding inductance and coupling, providing for a more realistic model.

    Touchstone Translation: MUC n1 n3 n2 n4 L1= L2= M=

    Default SPICE Translation: .SUBCKT X$NAME 1 2 3 4 L_IND1 1 2 L1 nH L_IND2 3 4 L2 nH K_MUI L_IND1 L_IND2 k .ENDS X$NAME

  • Element Help

    26

    Mutually Coupled Coils (MUCQx)

    The symbol for 'x' coupled coils is available in the LUMPED Toolbar. For 'x' between 2 and 10.

    [ Symbol for x = 4 ]

    Netlist Syntax: MUCQx n1 n2 ... n2x L1= L2= ... Lx= K12= K13= K23= ....Q1= Q2= ... Qx= RDC1= RDC2= ...RDCx= F= MODE= [Name=]

    Parameters: L1, L2, ... Lx Inductance of coils in nanohenries. K12, K13, ... K1x Coefficient of coupling between coil #1 and coil #x (for x > 1) K23, K24, ... K2x Coefficient of coupling between coil #2 and coil #x (for x > 2) K (x-1) (x) Coefficient of coupling between coils #(x-1) and coil #x Q1, Q2, ... Qx Quality factor for coils (default=1e+6) RDC1, RDC2, ... RDCx Resistance at dc for coils (default = 1e-6 ohm) F Frequency for Q value (MHz) [REQUIRED if any Q value is entered] MODE Selects the frequency variation of Q MODE = 1: Q proportional to frequency (f) (default) MODE = 2: Q proportional to sqrt (f) MODE = 3: Q constant

    WARNING: Coupling coefficients “Kij” must be less than 1.

    Example: MUCQ4 1 2 3 4 5 6 7 8 L1=100 L2=100 L3=90 L4=50 K12=0.1 K13=0.9 K14=0.1K23=0 K24=0 K34=0 Q1=100 Q2=100 Q3=100 Q4=100 F=100 MODE=1

    Touchstone Translation: None

  • Lumped Elements

    27

    Default SPICE Translation: None

  • Element Help

    28

    Parallel L-C resonator (PFC)

    The symbol for this element is available in the Lumped Toolbar.

    Netlist Syntax :

    PFC n1 n2 Frequency= C= [Ql=] [Qc=] [Name=] Parameters:

    f Frequency of resonance (MHz). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: PFC 1 2 F=88 C=100 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

    This code generates the same network as PLC. However, the frequency and capacitance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

  • Lumped Elements

    29

    Parallel L-C resonator (PFL)

    The symbol for this element is available in the Lumped Toolbar.

    Netlist Syntax:

    PFL n1 n2 Frequency= L= [Ql=] [Qc=] [Name=] Parameters:

    f Frequency of resonance (MHz). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: PFL 1 2 F=88 L=100 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

    This code generates the same network as PLC. However, the frequency and inductance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

  • Element Help

    30

    Parallel L-C Network (PLC)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    PLC n1 n2 L= C= [Ql=] [Qc=] [Name=] Parameters:

    L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: PLC 1 2 L=100 C=22 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Lumped Elements

    31

    Parallel R-C Network (PRC)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    PRC n1 n2 R= C= [Qc=] [Name=] Parameters:

    R Resistance (ohms). C Capacitance (pF). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: PRC 1 2 R=50 C=22 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Element Help

    32

    Parallel R-L Network (PRL)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    PRL n1 n2 R= L= [Ql=] [Name=] Parameters:

    R Resistance (ohms). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million).

    Example: PRL 1 2 R=50 L=100 Ql=35

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Lumped Elements

    33

    Parallel R-L-C Network (PRX)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    PRX n1 n2 R= L= C= [Ql=] [Qc=] [Name=] Parameters:

    R Resistance (ohms). L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: PRX 1 2 R=50 L=100 C=22 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Element Help

    34

    Resistor (RES)

    Lumped resistance. This symbol is available in the LUMPED Toolbar or by pressing the "R" key. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part. There is also a nonlinear resistor (NLRES) available for your use.

    Note: Use the keyboard shortcut key "R" to place a resistor in the schematic editor.

    Netlist Syntax: RES n1 n2 R= [Name=]

    Parameters: Resistance (ohms) Specifies the value of the resistor in ohms.

    Examples: RES 1 2 R=22 RES 3 0 R=470 N=R1

    Touchstone Translation: RES n1 n2 R=

    Default SPICE Translation: R1_NAME n1 n2 R

  • Lumped Elements

    35

    Frequency Dependent Loss Resistance (RLOSS)

    Lumped resistance with frequency dependent loss. This model can be placed either by placing a standard resistor and changing the model to RLOSS or by searching for RLOSS in the Eagleware library of the part selector. See GLOSS for an admittance version of this element.

    Netlist Syntax:

    RLOSS n1 n2 R0= R1= R2= [Name=] Parameters:

    R0 (ohms): Constant Resistance R1 (ohms/sqrt(Hz)): Resistance proportional to sqrt(frequency[Hz]) R2 (ohms/Hz): Resistance proportional to frequency (Hz)

    Example: RLOSS 1 2 R0=2 R1=2e-3 R2=1.5e-6

    The resistance at frequency f (in Hz) is given by:

    R = R0 + R1 * sqrt(f) + R2*f

    In the example above, the resistance at 1MHz (1e6 Hz) is

    2 + 2e-3 * sqrt(1e6) + 1.5e-6 * 1e6 = 5.5 Ohms

    An alternative method for creating frequency dependent resistance is to use the FREQ variable in an equation. However, the RLOSS element is preferred for the following reasons:

    1. It simulates much faster than a standard resistor with frequency dependent equations.

    2. When used with Cayenne transient simulation, the RLOSS element looks at the "Always Use Constant Loss" setting to avoid convolution whenever possible. If that option is checked, Cayenne will calculate the resistance at the "Most Accurate Frequency" and use that resistance at all frequencies (including DC).

  • Element Help

    36

    Series L-C resonator (SFC)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    SFC n1 n2 Frequency= C= [Ql=] [Qc=] [Name=] Parameters:

    f Frequency of resonance (MHz). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: SFC 1 2 F=88 C=22 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

    This code generates the same network as SLC. However, the frequency and capacitance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

  • Lumped Elements

    37

    Series L-C resonator (SFL)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    SFL n1 n2 Frequency= L= [Ql=] [Qc=] [Name=] Parameters:

    f Frequency of resonance (MHz). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: SFL 1 2 F=88 L=100 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

    This code generates the same network as SLC. However, the frequency and inductance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

  • Element Help

    38

    Series inductor and capacitor network (SLC)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    SLC n1 n2 L= C= [Ql=] [Qc=] [Name=] Parameters:

    L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: SRL 1 2 L=100 C=22 Ql=35 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Lumped Elements

    39

    Spiral Inductor (SPIND)

    Planar spiral inductor without a ground plane. This physical inductor symbol is available in the LUMPED toolbar.

    Netlist syntax:

    SPIND n1 n2 RI= W= S= N= T= RHO= [Name=] Parameters:

    (See figure below for parameter illustrations.) Inner Radius (RI) Inner radius, measured edge-to-edge of conductor (mm). Strip Width (W) Outer radius, measured edge-to-edge of conductor (mm). Strip Spacing (S) Spacing between conductors (mm). Number of Turns (N) Total number of turns. This does not have to be an integer. Conductor Thickness (T) Thickness of conductor. Resistivity (RHO) Resistivity of conductor relative to copper.

    Examples:

    SPIND 1 2 RI=20 W=5 S=5 N=1.6 T=1 RHO=1 Note: Resistance is based on d-c or skin effect depending upon which is larger. Series R-L with inductance (self and mutual) determined by Remke and Burdick formulas. Resistance is d-c resistance or skin-effect resistance, whichever is greater.

    Touchstone Translation: None

    Default SPICE Translation:

  • Element Help

    40

    None

  • Lumped Elements

    41

    Series resistor and capacitor network (SRC)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    SRC n1 n2 R= C= [Qc=] [Name=] Parameters:

    R Resistance (ohms). C Capacitance (pF). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: SRC 1 2 R=50 L=22 Qc=600

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Element Help

    42

    Series resistor and inductor network (SRL)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    SRL n1 n2 R= L= [Ql=] [Name=] Parameters:

    R Resistance (ohms). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million).

    Example: SRL 1 2 R=50 L=100 Ql=35

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Lumped Elements

    43

    Series resistor, inductor and capacitor network (SRX)

    The symbol for this element is in the Lumped Toolbar.

    Netlist Syntax:

    SRX n1 n2 R= L= C= [Ql=] [Qc=] [Name=] Parameters:

    R Resistance (ohms). L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

    Example: SRX 1 2 R=50 L=100 C=50 Ql=35

    Q is modeled as constant with frequency and may be specified higher or lower than the default value.

  • Element Help

    44

    Thin film capacitor (TFC)

    This symbol is available in the LUMPED toolbar.

    Netlist syntax:

    TFC n1 n2 W= L= T= ER= RHO= TAND= [Name=] Parameters:

    W Width (mm) L Length (mm) T Thickness of dielectric film (mm) ER Relative dielectric constant of dielectric film (dimensionless) RHO Resistivity relative to copper (dimensionless) TAND Dielectric loss tangent of dielectric film (dimensionless)

    Examples: TFC 1 2 W=10 L=10 T=0.04 ER=2 RHO=1 TAND=0.0001

    Touchstone Translation: TFC n1 n2 W= L= T= ER= RHO= TAND=

    Default SPICE Translation: None

  • Lumped Elements

    45

    Thin Film Resistor (TFR)

    Thin film resistor on dielectric above ground plane. This symbol is available in the LUMPED toolbar.

    Note: This model requires a substrate definition. Parameters:

    W Width of line L Length of line RS Surface resistivity (ohms/square)

    Examples: TFR 1 2 W=25 L=100 RS=100

    Note: Model makes use of microstrip distributed inductance and capacitance and series resistance per unit length based on RS.

    Touchstone Translation: TFR n1 n2 W= L= RS= F=0

    Default SPICE Translation: None

  • Element Help

    46

    Toroidal Core Inductor (TORIND)

    This physical inductor symbol is available in the LUMPED toolbar.

    Netlist syntax:

    TORIND n1 n2 N= AL= RS= QC= FQ= [Name=] Parameters:

    (See figure below for a model illustration.) N Number of turns (dimensionless). AL Inductance index used to calculate inductance from number of turns (supplied by manufacturer). RS Total winding resistance (ohms). QC Core quality factor (dimensionless). FQ Reference frequency of QC (MHz).

    Examples:

    TORIND 1 2 N=10 AL=10 RS=5 QC=100 FQ=50 Touchstone Translation:

    CIND2 n1 n2 N= AL= R=RS Q=QC F=FQ Default SPICE Translation:

    None

  • Lumped Elements

    47

    Ideal Transformer (TRF)

    This symbol is available in the LUMPED Toolbar.

    Netlist Syntax:

    TRF n1 n2 n3 n4 Option={TR|IM} Primary= [Secondary=] [Condition=] [Name=] Parameters:

    Primary # turns on primary (TR) or primary impedance (IM). Secondary # turns on secondary (TR) or sec. impedance (IM). This parameter is optional, and defaults to 1 if not specified. Conditioning Factor Conditioning factor. Certain networks using TRF may require a conditioning factor (typically 0.001 to.1) to avoid math errors. This parameter is optional. TR: Turns Ratio Choose this option to specify a turns ratio. IM: Impedance Ratio Choose this option to specify an impedance ratio.

    Example: TRF 1 2 0 0 Option=IM P=200 S=50

    The turns and impedance are relative. For example, 200 and 50 will have the same result as 4 and 1. If an inverting transformer is desired, primary is negative. An ideal tranformer can ill-condition the matrix GENESYS must solve. This causes the red error bar to illuminate. To eliminate this problem, certain networks using TRF may require a conditioning factor, typically 0.001 to.1.

    Touchstone Translation: XFER n1 n2 n3 n4 N=

    Default SPICE Translation: None

  • Element Help

    48

    Tapped Transformer (TRFCT)

    Ideal transformer with a center tapped secondary. This symbol is available in the LUMPED toolbar.

    Netlist syntax:

    TRFCT n1 n2 n3 n4 n5 P= S1= S2= [Name=] Parameters:

    P Number of primary turns(dimensionless). S1 Number of secondary turns for one section (dimensionless). S2 Number of secondary turns for other section (dimensionless).

    Examples: TRFCT 1 2 0 3 0 P=1 S1=2 S2=2

    Note: P, S1, and S2 are used to obtain turns ratios. The absolute values are immaterial. The ratio is all that matters.

    Touchstone Translation: None

    Default SPICE Translation: None

  • Lumped Elements

    49

    Ruthroff transformer (TRFRUTH)

    Ruthroff transformer modeled as a transmission line (TLE4) with shunt inductance. This symbol is available in the T-LINE toolbar.

    Netlist Syntax :

    TRFRUTH n1 n2 n3 N= AL= Z= L= F=[Name=] Parameters:

    Number of Turns Total number of turns (dimensionless). Inductance Index Inductance index (nH/turn/turn). This number is used to calculate the equivalent shunt inductance. Transmission Line Zo (Ohms) Characteristic impedance of the transmission line in ohms. Electrical Line Length Electrical length of the transmission line at the specified frequency, in degrees. Frequency for Electrical Length Frequency for the given electrical length, in MHz.

    Example: TRFRUTH 1 2 3 N=1 AL=1 Z=2 L=45 F=1000

    This is an ideal model based on the paper by Ruthroff. The shunt inductance is given by:

    L = N2*AL.

    Touchstone Translation: XFERRUTH N=N AL=AL Z=Z E=L F=F

    SPICE Translation: None

  • Element Help

    50

    Piezoelectric resonator (XTL)

    This symbol is available in the LUMPED Toolbar. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part.

    Netlist Syntax:

    XTL n1 n2 Rs= Lm= CM= CO= [Name=] Parameters:

    Series Resistance Series resistance in ohms. Motional Inductance Motional inductance in nanohenries. Motional Capacitance Motional Capacitance in picofarads. Parallel Capacitance Parallel Capacitance in picofarads.

    Example: XTL 1 2 Rs=26 Lm=4.97e6 Cm=.012741 Co=4.18

    Touchstone Translation: SRLC n1 n2 R=Rs L=Lm C=Cm CAP n1 n2 C=Co

    Default SPICE Translation: .SUBCKT X$NAME 1 2 R_series 1 3 Rs L_motion 3 4 Lm nH C_motion 4 2 Cm pF C_parall 1 2 Co pF .ENDS X$NAME

  • 51

    Chapter 3: Linear Devices, Controlled Sources, and Matrix Parameters

    ABCD parameters (ABC)

    This symbol is available in the LINEAR Toolbar under the Two-port element.

    Model Parameters

    Parameter Description UnitsDefault Value

    AR A Real none 0

    AI A Imaginary none 0

    BR B Real Ohm 0

    BI B Imaginary Ohm 0

    CR C Real S 0

    CI C Imaginary S 0

    DR D Real none 0

    DI D Imaginary none 0

  • Element Help

    52

    Bipolar transistor model (BIP) - LINEAR

    This symbol is available in the LINEAR toolbar. (BIP_NPN, BIP_PNP)

    Model Parameters

    Parameter Description UnitsDefault Value

    RBE Base - emitter resistance Ohm 1250

    RC Collector - emitter resistance Ohm 50000

    GM Transconductance S -0.5

    RBB Base resistance Ohm 250

    CB Base - emitter capacitance pF 15

    CC Collector - base capacitance pF 1

    BIP models a bipolar transistor using a voltage controlled current source plus additional components. The BIP code is based on the common emitter hybrid-pi model shown below.

  • Linear Devices, Controlled Sources, and Matrix Parameters

    53

    Typical parameters for a low power, low frequency, NPN bipolar transistor are:

    Rbe = 1250 ohms Rce = 50,000 ohms Gm = -0.05 mhos Rbb = 250 ohms Cbe = 15 pF Cc = 1 pF

    Some of the parameters are related to the emitter current, beta and Ft via simple expressions. First, the emitter diffusion resistance, a function of the emitter current, is found.

    where = 25.7mV at 25 C. Then:

    Rbe = (1+beta)Re

    Gm = beta/[(1+beta)Re]

    CBe = 1/[2pi*Ft*Re]

    Modeling attempts to describe a complex physical process via a simple equivalent electrical circuit. The result is only approximate, and the errors tend to increase with frequency. Measured device data is more accurate. However, modeling is useful at lower frequencies and for special simulation purposes.

    Default SPICE Translation:

    None (User may specify a SPICE subcircuit or library model.)

  • Element Help

    54

    Current controlled current source (CCC) - LINEAR

    This symbol is available in the LINEAR Toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    RIN Input Resistance Ohm 1

    ROUT Output Resistance Ohm 100

    BETA Current Gain none 20

  • Linear Devices, Controlled Sources, and Matrix Parameters

    55

    Current controlled voltage source (CCV) - LINEAR

    This symbol is available in the LINEAR Toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    RIN Input Resistance Ohm 1

    ROUT Output Resistance Ohm 100

    TR Transresistance Ohm 200

  • Element Help

    56

    FET transistor model (FET) - LINEAR

    This symbol is available in the LINEAR Toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    RI RI Ohm 2

    RD RD Ohm 200

    GM GM S -0.07

    RG RG Ohm 2.5

    CGS CGS pF 0.25

    CDG CDG pF 0.1

    RS RS Ohm 2

    CSD CSD pF 0.1

    TO TO ns 1e-6

    (See figure below for parameter illustrations)

    Note: RD = 1/GD

  • Linear Devices, Controlled Sources, and Matrix Parameters

    57

    FET models a junction or insulated-gate field effect transistor using a voltage controlled current source plus additional components. FET is based on a common source, voltage controlled current source model.

    An example for the ATF-101XX at 2 volts and 20 mA is

    RI = 2 ohms RD = 200 ohms GM = -0.07 mhos RG = 2.5 ohms CGs = 0.25 pF CDg = 0.10 pF RS = 2 ohms CSd = 0.10 pF To = 1E-6 nanoseconds

    The Wolf and Avantek models place the drain-source capacitance in slightly different positions. Also, the Avantek model includes information on chip and bond-wire inductances. The Wolf model includes a shunt R-L network at the input. In critical applications, these differences are readily incorporated in GENESYS by externally adding the appropriate components to the FET model.

    Modeling describes a complex physical process via a simple equivalent electrical circuit. The result is approximate, and the error tends to increase with frequency. Measured device data is more accurate. Models are best for lower frequencies and special purposes.

    Equations which reduce the model to exact equivalent Y or other parameters for use in a simulation program are quite complex. Authors (including Wolf in his derivation of Y-parameters) often make simplifying assumptions to the equations. This is not the case in GENESYS, where the program exactly matches the model schematic. Therefore, you may experience small differences in the response computed by GENESYS and other simulation programs. The differences are generally insignificant in relation to errors associated with the modeling process.

    Default SPICE Translation:

  • Element Help

    58

    .SUBCKT X$NAME 1 2 3 R_g 1 4 rg C_dg 4 2 cdg pF C_Gs 4 5 cgs pF R_i 5 6 ri R_s 3 6 rs R_d 2 6 rd pF C_sd 2 3 csd pF G_Gm 6 2 5 6 Gm. ENDS X$NAME

  • Linear Devices, Controlled Sources, and Matrix Parameters

    59

    Gyrator (GYR)

    This symbol is available in the LINEAR Toolbar.

    Parameters:

    Gyrator Ratio Gyrator ratio. This is defined as the ratio of input voltage to output current, or the negative ratio of output voltage to input current.

    The gyrator network is connected to nodes as indicated in the diagram below. The gyrator may be considered as back-to-back current controlled voltage sources,

    where R is the gyrator ratio. S-parameters are:

    where

  • Element Help

    60

    Operational Amplifier (OPA) - LINEAR

    This symbol is available in the LINEAR Toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    RI Input Resistance Ohm 1e+6

    RO Output Resistance Ohm 1e-6

    G DC Open Loop Gain none 1e+6

    F

    Unity Gain Crossover Frequency MHz 1e+6

    Default SPICE Translation: .SUBCKT X$NAME 1 2 3 R_In1 1 0 Rin R_In2 2 0 Rin R_Out 4 3 Rout E_VCV 4 0 1 2 Gdc .ENDS X$NAME

    Warning: Crossover frequency is not modeled in SPICE.

  • Linear Devices, Controlled Sources, and Matrix Parameters

    61

    PIN Diode (PIN) - LINEAR

    This symbol is available in the LINEAR Toolbar.

    Model Parameters

    Parameter Description UnitsDefault Value

    CP Package Capacitance pF 10

    LS Series Inductance nH 20

    RS Series Resistance Ohm 1

    CE Gap Capacitance pF 10

    CJ Junction Capacitance pF 10

    CD Diffusion Capacitance pF 10

    CI Intrinsic Layer Capacitance pF 10

    RJ Junction Resistance Ohm 1

    RI Intrinsic Layer Resistance Ohm 1

  • Element Help

    62

  • Linear Devices, Controlled Sources, and Matrix Parameters

    63

    S-parameters (SPA)

    This symbol is available in the LINEAR Toolbar. under the Two-port element.

    Model Parameters

    Parameter Description UnitsDefault Value

    Z Impedance Ohm 0

    MAG11 S11 Magnitude none 0

    ANG11 S11 Angle deg 0

    MAG12 S12 Magnitude none 0

    ANG12 S12 Angle deg 0

    MAG21 S21 Magnitude none 0

    ANG21 S21 Angle deg 0

    MAG22 S22 Magnitude none 0

    ANG22 S22 Angle deg 0

  • Element Help

    64

    Voltage Controlled Current Source (VCC) - LINEAR

    This symbol is available in the LINEAR Toolbar.

    Model Parameters

    Parameter Desc