71
Electroweak eects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions Electroweak corrections for LHC physics MarekSchonherr Universit atZurich Freiburg, 18/11/2014 MarekSchonherr Electroweak corrections for LHC physics 1/38

Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Electroweak corrections for LHC physics

Marek Schonherr

Universitat Zurich

Freiburg, 18/11/2014

Marek Schonherr Electroweak corrections for LHC physics 1/38

Page 2: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Introduction

Electroweak correction come in two variants: virtual corrections and realemission correction.

Virtual electroweak corrections often studied in the context of jetproduction at large transverse momentum (EW-Sudakov suppression).Usually negative and rising with p⊥.

Real electroweak corrections usually constitute a separate process.However, largest BR of W /Z bosons is hadronic, thus (almost)indistinguishable in jet production. Nonetheless may constitute signal initself.

When large scale differences occur resummation is needed in either case.Practically at LHC13/14 these scale differences are moderate.

Marek Schonherr Electroweak corrections for LHC physics 2/38

Page 3: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Outline

1 Electroweak effects in multijet mergingQCD parton showers and multijet mergingMultijet merging beyond improving parton shower kernels

2 Electroweak parton showersConstruction of EW parton showersCase study: Finding W bosons inside jets

3 Electroweak corrections at NLOPreliminary: pp →W +jetsFirst results

4 Conclusions

Marek Schonherr Electroweak corrections for LHC physics 3/38

Page 4: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Electroweak corrections for LHC physics

1 Electroweak effects in multijet mergingQCD parton showers and multijet mergingMultijet merging beyond improving parton shower kernels

2 Electroweak parton showersConstruction of EW parton showersCase study: Finding W bosons inside jets

3 Electroweak corrections at NLOPreliminary: pp →W +jetsFirst results

4 Conclusions

Marek Schonherr Electroweak corrections for LHC physics 4/38

Page 5: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton shower• approximate higher orders in (soft-)collinear limit

dσn+1(t, z , φ) ≈ dσn

∑ı

nspec∑s

dt dzdφ

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

• using universal splitting kernels K(t, z) ∝ αs

2πt P(z)

• phase space dΦ1 = dt dz dφ2π J(t, z)

emission variable t, splitting variable z , azimuthal angle φ• spectators needed for local recoil,

also ensure colour coherence in non-angular ordered showers• construct emission probability at scale t

dPem(t) =dσn+1(t)

dσn=∑ı

nspec∑s

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

Marek Schonherr Electroweak corrections for LHC physics 5/38

Page 6: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton shower• approximate higher orders in (soft-)collinear limit

dσn+1(t, z , φ) ≈ dσn

∑ı

nspec∑s

dt dzdφ

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

• using universal splitting kernels K(t, z) ∝ αs

2πt P(z)

• phase space dΦ1 = dt dz dφ2π J(t, z)

emission variable t, splitting variable z , azimuthal angle φ• spectators needed for local recoil,

also ensure colour coherence in non-angular ordered showers• construct emission probability at scale t

dPem(t) =dσn+1(t)

dσn=∑ı

nspec∑s

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

Marek Schonherr Electroweak corrections for LHC physics 5/38

Page 7: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton shower• emission probability at scale t

dPem(t) =dσn+1(t)

dσn=∑ı

nspec∑s

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

• Poisson statistics leads to no-emission probability

Pno-em(t, t ′) = exp

−∑ı

nspec∑s

∫ t′

t

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

→ Sudakov form factor ∆(t, t ′) = Pno-em(t, t ′)

⇒ probability of a parton produced at t ′ to radiate/resolve anotherparton at t

dP(t) = dPem(t)dPno-em(t, t ′) = dtd∆(t, t ′)

dt

Marek Schonherr Electroweak corrections for LHC physics 6/38

Page 8: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton shower• emission probability at scale t

dPem(t) =dσn+1(t)

dσn=∑ı

nspec∑s

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

• Poisson statistics leads to no-emission probability

Pno-em(t, t ′) = exp

−∑ı

nspec∑s

∫ t′

t

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

→ Sudakov form factor ∆(t, t ′) = Pno-em(t, t ′)

⇒ probability of a parton produced at t ′ to radiate/resolve anotherparton at t

dP(t) = dPem(t)dPno-em(t, t ′) = dtd∆(t, t ′)

dt

Marek Schonherr Electroweak corrections for LHC physics 6/38

Page 9: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton shower• emission probability at scale t

dPem(t) =dσn+1(t)

dσn=∑ı

nspec∑s

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

• Poisson statistics leads to no-emission probability

Pno-em(t, t ′) = exp

−∑ı

nspec∑s

∫ t′

t

dt

∫dz

1

nspecJ(t, z) Kı(s)→ij(s)(t, z)

→ Sudakov form factor ∆(t, t ′) = Pno-em(t, t ′)

⇒ probability of a parton produced at t ′ to radiate/resolve anotherparton at t

dP(t) = dPem(t)dPno-em(t, t ′) = dtd∆(t, t ′)

dt

Marek Schonherr Electroweak corrections for LHC physics 6/38

Page 10: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton showerGeneral form

dσLOPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax)

]

• first term: probability of resolving no additional parton in [tmax, tc ]

• second term: probability and distribution of resolving another partonat scale t ′ (but not above)

• iterate:- approximate n + 2 parton matrix element by showering the n + 1parton expression, now t′ being the upper limit (strong ordering)

• Sudakov form factor: (soft-)collinear LL all-orders virtual correctionemission term: (soft-)collinear approximated real correction

• choose αs = αs(k2⊥) to resum certain class of higher logs from

1-loop running

Marek Schonherr Electroweak corrections for LHC physics 7/38

Page 11: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Construction of a parton showerGeneral form

dσLOPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax)

]

• first term: probability of resolving no additional parton in [tmax, tc ]

• second term: probability and distribution of resolving another partonat scale t ′ (but not above)

• iterate:- approximate n + 2 parton matrix element by showering the n + 1parton expression, now t′ being the upper limit (strong ordering)

• Sudakov form factor: (soft-)collinear LL all-orders virtual correctionemission term: (soft-)collinear approximated real correction

• choose αs = αs(k2⊥) to resum certain class of higher logs from

1-loop running

Marek Schonherr Electroweak corrections for LHC physics 7/38

Page 12: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Resummation properties of parton showers

Example: Drell-Yan production

tI

• core process: arbitrary scaleµR = µcore

• define initial conditions: settmax = tI

• first emission at t1 with αs(t1)

• second emission at t2 withαs(t2)

• third emission at t3 with αs(t3)

• third emission at t4 with αs(t4)

• strong orderingtI > t1 > t2 > t3 > t4 > tc

Marek Schonherr Electroweak corrections for LHC physics 8/38

Page 13: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Resummation properties of parton showers

Example: Drell-Yan production

t1

tI

• core process: arbitrary scaleµR = µcore

• define initial conditions: settmax = tI

• first emission at t1 with αs(t1)

• second emission at t2 withαs(t2)

• third emission at t3 with αs(t3)

• third emission at t4 with αs(t4)

• strong orderingtI > t1 > t2 > t3 > t4 > tc

Marek Schonherr Electroweak corrections for LHC physics 8/38

Page 14: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Resummation properties of parton showers

Example: Drell-Yan production

t2

t1

tI

• core process: arbitrary scaleµR = µcore

• define initial conditions: settmax = tI

• first emission at t1 with αs(t1)

• second emission at t2 withαs(t2)

• third emission at t3 with αs(t3)

• third emission at t4 with αs(t4)

• strong orderingtI > t1 > t2 > t3 > t4 > tc

Marek Schonherr Electroweak corrections for LHC physics 8/38

Page 15: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Resummation properties of parton showers

Example: Drell-Yan production

t3

t2

t1

tI

• core process: arbitrary scaleµR = µcore

• define initial conditions: settmax = tI

• first emission at t1 with αs(t1)

• second emission at t2 withαs(t2)

• third emission at t3 with αs(t3)

• third emission at t4 with αs(t4)

• strong orderingtI > t1 > t2 > t3 > t4 > tc

Marek Schonherr Electroweak corrections for LHC physics 8/38

Page 16: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Resummation properties of parton showers

Example: Drell-Yan production

t4

t3

t2

t1

tI

• core process: arbitrary scaleµR = µcore

• define initial conditions: settmax = tI

• first emission at t1 with αs(t1)

• second emission at t2 withαs(t2)

• third emission at t3 with αs(t3)

• third emission at t4 with αs(t4)

• strong orderingtI > t1 > t2 > t3 > t4 > tc

Marek Schonherr Electroweak corrections for LHC physics 8/38

Page 17: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 18: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 19: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 20: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 21: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 22: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 23: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging• higher order real emission corrections in (soft-)collinear limit→ identify hard region, replace kernel with LO matrix element

dσMEPS = dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

]+ dσLO

n+1 ∆n(t ′, tmax) Θ(Q − Qcut)

= dσLOn

[∆(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax) Θ(Qcut − Q)

+

∫ tmax

tc

dt ′dσLO

n+1

dσLOn

∆n(t ′, tmax) Θ(Q − Qcut)

]+ dσLO

n+1 Θ(t − tmax)

• need to identify scales ti in n + k matrix element to set scales in αs

⇒ must use inverse parton shower• Sudakovs must match ⇒ use trial showers

Marek Schonherr Electroweak corrections for LHC physics 9/38

Page 24: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 25: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

t4

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 26: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

t4

t3

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 27: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

t4

t3

t2

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 28: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

t4

t3

t2

t1

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 29: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

t4

t3

t2

t1

tI

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 30: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

QCD parton showers and multijet merging

Improvements through merging

Example: Drell-Yan production in association with jets

t4

t3

t2

t1µcore

• cluster external particlesusing inverse parton shower→ flavour conscious, initialstate aware, probabilitydetermined through splittingkernels

• identify a shower history(probabilistically), determinescale ti up to predefined tI

• choose

αn+ks (µ2

R ) = αks (µ2

core)n∏

i=1

αs(ti )

Marek Schonherr Electroweak corrections for LHC physics 10/38

Page 31: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Multijet merging beyond improving parton shower kernels

ME also provides expression beyond tmax

two types of configuration: pp → Z +jets and pp →jets+Z

Electroweak clustering

• different core process, naıvelynot part of pp → Z +jets butindistinguishable

• configuration that wouldhave arisen from dijets plusQCD+EW showering

• necessitates EW splittingkernels to calculate splittingprobability→ see next part

• leads to different scalechoices

Marek Schonherr Electroweak corrections for LHC physics 11/38

Page 32: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Multijet merging beyond improving parton shower kernels

ME also provides expression beyond tmax

two types of configuration: pp → Z +jets and pp →jets+Z

t3

Electroweak clustering

• different core process, naıvelynot part of pp → Z +jets butindistinguishable

• configuration that wouldhave arisen from dijets plusQCD+EW showering

• necessitates EW splittingkernels to calculate splittingprobability→ see next part

• leads to different scalechoices

Marek Schonherr Electroweak corrections for LHC physics 11/38

Page 33: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Multijet merging beyond improving parton shower kernels

ME also provides expression beyond tmax

two types of configuration: pp → Z +jets and pp →jets+Z

t3

t2

Electroweak clustering

• different core process, naıvelynot part of pp → Z +jets butindistinguishable

• configuration that wouldhave arisen from dijets plusQCD+EW showering

• necessitates EW splittingkernels to calculate splittingprobability→ see next part

• leads to different scalechoices

Marek Schonherr Electroweak corrections for LHC physics 11/38

Page 34: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Multijet merging beyond improving parton shower kernels

ME also provides expression beyond tmax

two types of configuration: pp → Z +jets and pp →jets+Z

t2

t3

t1

Electroweak clustering

• different core process, naıvelynot part of pp → Z +jets butindistinguishable

• configuration that wouldhave arisen from dijets plusQCD+EW showering

• necessitates EW splittingkernels to calculate splittingprobability→ see next part

• leads to different scalechoices

Marek Schonherr Electroweak corrections for LHC physics 11/38

Page 35: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Multijet merging beyond improving parton shower kernels

ME also provides expression beyond tmax

two types of configuration: pp → Z +jets and pp →jets+Z

t2

t3

t1

tI

Electroweak clustering

• different core process, naıvelynot part of pp → Z +jets butindistinguishable

• configuration that wouldhave arisen from dijets plusQCD+EW showering

• necessitates EW splittingkernels to calculate splittingprobability→ see next part

• leads to different scalechoices

Marek Schonherr Electroweak corrections for LHC physics 11/38

Page 36: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Multijet merging beyond improving parton shower kernels

vs.

Marek Schonherr Electroweak corrections for LHC physics 12/38

Page 37: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Importance of electroweak clustering

QCD+EW clusteringstrict QCD ordering

10 1

10 2

10 3

10 4

Inclusive jet multiplicity (p⊥ > 20 GeV)

σ(≥

Nje

t)[p

b]

0 1 2 3 4 5

11.21.41.61.8

Njet

Rat

io

QCD+EW clusteringstrict QCD ordering

10−4

10−3

10−2

10−1

1

10 1

10 2

Transverse momentum of leading jet

/d

p ⊥(j

et1)

[pb/

GeV

]

10 2 10 3

11.21.41.61.8

p⊥(jet 1) [GeV]

Rat

io

⇒ large impact at high p⊥ and multiplicity

Marek Schonherr Electroweak corrections for LHC physics 13/38

Page 38: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Importance of electroweak clustering

) [p

b]je

t N≥

) +

- l

+ l→

*(γ(Z

-310

-210

-110

1

10

210

310

410

510

610

= 7 TeV)sData 2011 (ALPGENSHERPAMC@NLO

+ SHERPAATHLACKB

ATLAS )µ)+jets (l=e,-l+ l→*(γZ/-1

L dt = 4.6 fb∫ jets, R = 0.4tanti-k

| < 4.4jet

> 30 GeV, |yjet

Tp

0≥ 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

NLO

/ D

ata

0.60.8

11.21.4 + SHERPAATHLACKB

0≥ 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

MC

/ D

ata

0.60.8

11.21.4 ALPGEN

jetN

0≥ 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

MC

/ D

ata

0.60.8

11.21.4 SHERPA

[1/G

eV]

jet

T/d

) d

- l+ l

→* γZ

(1/

-710

-610

-510

-410

-310

-210

-110

= 7 TeV)sData 2011 (ALPGENSHERPAMC@NLO

+ SHERPAATHLACKB

ATLAS )µ 1 jet (l=e,≥)+ -l+ l→*(γZ/-1

L dt = 4.6 fb∫ jets, R = 0.4tanti-k

| < 4.4jet

> 30 GeV, |yjet

Tp

100 200 300 400 500 600 700

NLO

/ D

ata

0.60.8

11.21.4 + SHERPAATHLACKB

100 200 300 400 500 600 700

MC

/ D

ata

0.60.8

11.21.4 ALPGEN

(leading jet) [GeV]jetT

p100 200 300 400 500 600 700

MC

/ D

ata

0.60.8

11.21.4 SHERPA

Marek Schonherr Electroweak corrections for LHC physics 14/38

Page 39: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Example: Forward-backward asymetry @ Tevatron

Hoche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)1,014040

b

b

b

b

bc

bc

bc

bc

Parton level

Sherpa+GoSam

b CDF dataPhys. Rev. D87 (2013) 092002

bc DØ dataarXiv:1405.0421Meps@Nlo µcore = µQCDperturbative uncertaintyMeps@Nlo µcore = mttperturbative uncertainty

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7Rapidity dependent forward-backward asymmetry

∆y, tt

AFB(∆

y,tt)

b

b

b

b

bcbc

bcbc

bc

bc

Parton level

Sherpa+GoSam

b CDF dataPhys. Rev. D87 (2013) 092002

bc DØ dataarXiv:1405.0421

Meps@Nlo µcore = µQCDperturbative uncertaintyMeps@Nlo µcore = mttperturbative uncertainty

350 400 450 500 550 600 650 700 750

-0.4

-0.2

0

0.2

0.4

0.6

Mass dependent forward-backward asymmetry

mtt [GeV]

AFB(m

tt)

Chose two different µcore → largest impactElectroweak histories not an issue, but merging works nicely

Marek Schonherr Electroweak corrections for LHC physics 15/38

Page 40: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Multijet merging beyond improving parton shower kernels

Recent NNLO+NNLL results:Forward-backward asymetry @ Tevatron

Czakon, Fiedler, Mitov arXiv:1411.3007

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

AFB

|∆Y|

mt=173.3 GeV

MSTW2008 pdf

NLONNLOCDFD0

-0.4

-0.2

0

0.2

0.4

0.6

350 400 450 500 550 600 650 700 750

AFB

Mtt [GeV]

mt=173.3 GeV

MSTW2008 pdf

NLONNLOCDFD0

MEPS@NLO result very well reproduced by higher order calculation

Marek Schonherr Electroweak corrections for LHC physics 16/38

Page 41: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Electroweak corrections for LHC physics

1 Electroweak effects in multijet mergingQCD parton showers and multijet mergingMultijet merging beyond improving parton shower kernels

2 Electroweak parton showersConstruction of EW parton showersCase study: Finding W bosons inside jets

3 Electroweak corrections at NLOPreliminary: pp →W +jetsFirst results

4 Conclusions

Marek Schonherr Electroweak corrections for LHC physics 17/38

Page 42: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Construction of EW parton showers

Collinear limit with E � m

• approximation to collinear (vector) boson emission in limit E � m,in dipole language (splitter-spectator pairs): f (s)→ f (′)V (s)

dσn+V = dσn

∑f

nspec∑s

dt dzdφ

1

nspecJ(t, z) Kf (s)→f (′)V (s)(t, z)

• emitter fermion f , suitable spectator s

• flavour change f → f ′ in case of W emissions

• IS kernels contain ratio of PDFs (change in x,Q,flavour)

• similar ansatz with diff. kernels in Christiansen, Sjostrand JHEP04(2014)115

• same ansatz as used for clustering in multijet merging

Marek Schonherr Electroweak corrections for LHC physics 18/38

Page 43: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Construction of EW parton showers

Choice of spectator

Role of the spectator:

• needed for momentum conservation in splitting 1(s)→ 2(s)

• colour coherence for soft emissions

Which particles are allowed as spectators?

• kernels are derived in collinear limit→ collinear emissions exhibit no coherence, any spectator would dofor momentum conservation

• to fit into dipole shower picture choose any other electroweakparticle, in particular any fermion

Marek Schonherr Electroweak corrections for LHC physics 19/38

Page 44: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Construction of EW parton showers

Splitting kernelsDenner, Hebenstreit unpublished

• use Denner-Hebenstreit expressions modified into CDST form

Kf (s)→f ′W (s)(t, z) =α

2πt

[fW cW

⊥ VCDSTf (s)→f ′b(s)(t, z) + fh cW

L12 (1− z)

]Kf (s)→fZ(s)(t, z) =

α

2πt

[fZ cZ⊥ VCDST

f (s)→fb(s)(t, z) + fh cZL

12 (1− z)

]• contain a transverse component as standard splitting functions→ in limit E � m revert to CDST splitting functions for emission ofa massless gauge boson

Catani, Dittmaier, Seymour, Trocsanyi Nucl.Phys.B627(2002)189-265

• contain a longitudinal component→ in limit E � m this is the emission of the corresponding scalarHiggs component/Goldstone boson

• construct phase space with massive bosons (fully differential)→ emulates some mass effects a la ACOT

Marek Schonherr Electroweak corrections for LHC physics 20/38

Page 45: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Construction of EW parton showers

Splitting kernelsDenner, Hebenstreit unpublished

• use Denner-Hebenstreit expressions modified into CDST form

Kf (s)→f ′W (s)(t, z) =α

2πt

[fW cW

⊥ VCDSTf (s)→f ′b(s)(t, z) + fh cW

L12 (1− z)

]Kf (s)→fZ(s)(t, z) =

α

2πt

[fZ cZ⊥ VCDST

f (s)→fb(s)(t, z) + fh cZL

12 (1− z)

]with

cW⊥ = seff

12s2

W|Vff ′ |2 , cZ

⊥ = seffs2

W

c2W

Q2f + (1− seff)

(I 3f −s2

W Qf )2

s2W c2

W,

cWL = 1

2s2W|Vff ′ |2

[seff

m2f ′

m2W

+ (1− seff)m2

f

m2W

], cZ

L =I 3f

s2W

m2f

m2W,

• couplings ff (′)V depend on spin of f , but standard parton showersare spin avaraged (no spin information)

• process dependent avarage spin of fermion line seff

⇒ pp → jj : seff = 12 , pp →W : seff = 1, undefined in general

• factors fW , fZ , fh modify couplings to test sensitivity

Marek Schonherr Electroweak corrections for LHC physics 21/38

Page 46: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Construction of EW parton showers

Interaction with QCD shower

Want to have simultaneous evolution of QCD+EW:→ emissions compete for phase space

• combined evolution kernel

Ktot(t, z) = KQCD(t, z) +KEW(t, z) +KQED(t, z)

⇒ emissions occur in correct proportions⇒ splittings into heavy bosons are suppressed at small t

How to embed decays into parton evolution?

• decay bosons immediately

• ensures that evolution of singlet q − q pair is consistently embedded

• neglects secondary splittings of the type W± →W±γ,W± →W±Z or Z →W±W∓

Marek Schonherr Electroweak corrections for LHC physics 22/38

Page 47: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Krauss, Petrov, MS, Spannowsky Phys.Rev.D89(2014)114006

Can we see radiated W bosons inside jets at the LHC (14 TeV)?

• need high-p⊥ jets to produce real W bosons at sufficient rate

• need high-p⊥ jets to satisfy assumption E � m

Boosted analysis:

• isolated leptons (p⊥ > 25 GeV, |η| < 2.5, max. 10% in ∆R = 0.2)

• find jets (anti-k⊥, R = 1.5, p⊥ > 200 GeV) on remainder

• two cases: no isolated leptons ⇒ hadronic analysisone isolated lepton ⇒ leptonic analysis

• require further two jets with p⊥ > 500, 750, 1000 GeV to drive Wradiation into collinear region

Marek Schonherr Electroweak corrections for LHC physics 23/38

Page 48: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Hadronic analysis• proposed three analysis

strategies, here method B

• recluster fat jets into C/A(R = 0.3, p⊥ > 20 GeV)microjets

• discard leading microjet aslikely from leading quark

• use m23 as em. gluons tendto be softer then decay prod.of em. W

• accept candidate ifm23 ∈ [70, 86] GeV

f = 2.0

f = 1.1

f = 1.0

f = 0.0pTJ> 500GeV

m23 [GeV]

dσ/d

m23[pb/2

GeV

]

1009080706050

3.4

3.2

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

⇒ large, but continuous QCD background, clear signal shape

⇒ more W emissions with hight p⊥, but peak shifts

Marek Schonherr Electroweak corrections for LHC physics 24/38

Page 49: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Hadronic analysis• proposed three analysis

strategies, here method B

• recluster fat jets into C/A(R = 0.3, p⊥ > 20 GeV)microjets

• discard leading microjet aslikely from leading quark

• use m23 as em. gluons tendto be softer then decay prod.of em. W

• accept candidate ifm23 ∈ [70, 86] GeV

f = 2.0

f = 1.1

f = 1.0

f = 0.0pTJ> 750GeV

m23 [GeV]

dσ/d

m23[pb/2

GeV

]

1009080706050

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

⇒ large, but continuous QCD background, clear signal shape

⇒ more W emissions with hight p⊥, but peak shifts

Marek Schonherr Electroweak corrections for LHC physics 24/38

Page 50: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Hadronic analysis• proposed three analysis

strategies, here method B

• recluster fat jets into C/A(R = 0.3, p⊥ > 20 GeV)microjets

• discard leading microjet aslikely from leading quark

• use m23 as em. gluons tendto be softer then decay prod.of em. W

• accept candidate ifm23 ∈ [70, 86] GeV

f = 2.0

f = 1.1

f = 1.0

f = 0.0pTJ> 1000GeV

m23 [GeV]

dσ/d

m23[pb/2

GeV

]

1009080706050

0.06

0.055

0.05

0.045

0.04

0.035

⇒ large, but continuous QCD background, clear signal shape

⇒ more W emissions with hight p⊥, but peak shifts

Marek Schonherr Electroweak corrections for LHC physics 24/38

Page 51: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Hadronic analysis

• use event shape variables onmicrojets of reconstructed Wcandidate to enhance S/B,e.g. ellipticity

t =Tmin

Tmaj

→ small when radiationpattern is 1D (W → qq)

• fat jet p⊥ > 750 GeV optimalbest balance between crosssection and emission rate

f = 2.0

f = 1.1

f = 1.0

f = 0.0

pTJ> 750GeV

tdσ/d

t[pb/0.05]

10.80.60.40.20

2.5

2

1.5

1

0.5

0

⇒ additional discrimination

Marek Schonherr Electroweak corrections for LHC physics 25/38

Page 52: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Hadronic analysis

Can we distinguish between f = 1 and f = 2?(simplified version of: How accurate can we measure the coupling?)

5.0%3.5%2.5%2.0%1.5%Syst. err.

500 GeVpTJ

>

m23

99.9%CL

95%CL

L [pb−1]

Confidence

Level

105104103102101100

100

10−1

10−2

10−3

10−4 5.0%3.5%2.5%2.0%1.5%Syst. err.

750 GeVpTJ

>

m23

99.9%CL

95%CL

L [pb−1]

Confidence

Level

105104103102101100

100

10−1

10−2

10−3

10−4 5.0%3.5%2.5%2.0%1.5%Syst. err.

1000 GeVpTJ

>

m23

99.9%CL

95%CL

L [pb−1]

Confidence

Level

105104103102101100

100

10−1

10−2

10−3

10−4

• signal: f = 2, background: f = 1 (SM)

• moderate sensitivity even under ideal conditionsbenefits from larger emission at large p⊥ despite smaller cross section

Marek Schonherr Electroweak corrections for LHC physics 26/38

Page 53: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Leptonic analysis

• exactly one isolated lepton

• require /ET > 50 GeV

• reconstruct

mT =√

2ETl/ET (1− cos θ)

• accept candidate ifmT ∈ [60, 100] GeV

f = 2.0

f = 1.1

f = 1.0

f = 0.0pTJ> 500GeV

mT [GeV]

dσ/d

mT[pb/3

GeV

]

200150100500

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

⇒ provides good background rejection

⇒ loose some sensitivity for higher fat jet p⊥ as isolation iscompromised for more collinear W emissions

Marek Schonherr Electroweak corrections for LHC physics 27/38

Page 54: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Leptonic analysis

• exactly one isolated lepton

• require /ET > 50 GeV

• reconstruct

mT =√

2ETl/ET (1− cos θ)

• accept candidate ifmT ∈ [60, 100] GeV

f = 2.0

f = 1.1

f = 1.0

f = 0.0pTJ> 750GeV

mT [GeV]

dσ/d

mT[pb/3

GeV

]

200150100500

0.006

0.005

0.004

0.003

0.002

0.001

0

⇒ provides good background rejection

⇒ loose some sensitivity for higher fat jet p⊥ as isolation iscompromised for more collinear W emissions

Marek Schonherr Electroweak corrections for LHC physics 27/38

Page 55: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Leptonic analysis

• exactly one isolated lepton

• require /ET > 50 GeV

• reconstruct

mT =√

2ETl/ET (1− cos θ)

• accept candidate ifmT ∈ [60, 100] GeV

f = 2.0

f = 1.1

f = 1.0

f = 0.0pTJ> 1000GeV

mT [GeV]

dσ/d

mT[pb/3

GeV

]

200150100500

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

⇒ provides good background rejection

⇒ loose some sensitivity for higher fat jet p⊥ as isolation iscompromised for more collinear W emissions

Marek Schonherr Electroweak corrections for LHC physics 27/38

Page 56: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Case study: Finding W bosons inside jets

Leptonic analysis

Can we distinguish between f = 1 and f = 1.1?(simplified version of: How accurate can we measure the coupling?)

5.0%3.5%2.5%2.0%1.5%Syst. err.

500 GeVpTJ

>

mT

99.9%CL

95%CL

L [pb−1]

Confidence

Level

105104103102101100

100

10−1

10−2

10−3

10−4 5.0%3.5%2.5%2.0%1.5%Syst. err.

750 GeVpTJ

>

mT

99.9%CL

95%CL

L [pb−1]

Confidence

Level

105104103102101100

100

10−1

10−2

10−3

10−4 5.0%3.5%2.5%2.0%1.5%Syst. err.

1000 GeVpTJ

>

mT

99.9%CL

95%CL

L [pb−1]

Confidence

Level

105104103102101100

100

10−1

10−2

10−3

10−4

• signal: f = 1.1, background: f = 1.0 (SM)

• improved sensitivity, despite small cross sections,benefits from ideal background rejection

Marek Schonherr Electroweak corrections for LHC physics 28/38

Page 57: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Electroweak corrections for LHC physics

1 Electroweak effects in multijet mergingQCD parton showers and multijet mergingMultijet merging beyond improving parton shower kernels

2 Electroweak parton showersConstruction of EW parton showersCase study: Finding W bosons inside jets

3 Electroweak corrections at NLOPreliminary: pp →W +jetsFirst results

4 Conclusions

Marek Schonherr Electroweak corrections for LHC physics 29/38

Page 58: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Preliminary: pp → W +jets

Electroweak corrections at NLO

Kallweit, Lindert, Maierhofer, Pozzorini, MS in preparation

• fixed-order next-to-leading order electroweak corrections topp →W + 1, 2, 3 jets production in on-shell approximation

• OPENLOOPS for virtual corrections using COLLIER for tensor integralsDenner, Dittmaier, Hofer PoS LL2014(2014)071

• SHERPA or private code by S. Kallweit for Born, real emission,subtraction and phase space integration

• combine QCD and EW to leading pp →W + 1, 2, 3 process(O(αn

sα)) in two schemesQCD+EW: σNLO QCD+EW = σLO (1 + δQCD + δEW)QCD×EW: σNLO QCD×EW = σLO (1 + δQCD) (1 + δEW)

• use NNPDF2.3QED with LO QED PDFideally would need NLO QED PDF

Marek Schonherr Electroweak corrections for LHC physics 30/38

Page 59: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Preliminary: pp → W +jets

Counting orders• same problem as in e.g. Dittmaier, Huss, Speckner JHEP11(2012)095

αnsα

m

α0sα

2α1sα

1

α0sα

1 pp → W + 0 jets

pp → W + 3 jets

pp → W + 2 jets

pp → W + 1 jet

α1sα

3

α1sα

2

α3sα

1

α2sα

1

α2sα

2 α0sα

4

α0sα

3

tree configuration

• consistent definition of orders and signature to be calculated needed

Marek Schonherr Electroweak corrections for LHC physics 31/38

Page 60: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Preliminary: pp → W +jets

Counting orders• same problem as in e.g. Dittmaier, Huss, Speckner JHEP11(2012)095

αnsα

m

α0sα

2α1sα

1

α0sα

1 pp → W + 0 jets

pp → W + 3 jets

pp → W + 2 jets

pp → W + 1 jet

α1sα

3

α1sα

2

α3sα

1

α2sα

1

α2sα

2 α0sα

4

α0sα

3

tree configuration

• consistent definition of orders and signature to be calculated needed

Marek Schonherr Electroweak corrections for LHC physics 31/38

Page 61: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Preliminary: pp → W +jets

Counting orders• same problem as in e.g. Dittmaier, Huss, Speckner JHEP11(2012)095

αnsα

m

α0sα

2α1sα

1

α0sα

1 pp → W + 0 jets

pp → W + 3 jets

pp → W + 2 jets

pp → W + 1 jet

α1sα

3

α1sα

2

α3sα

1

α2sα

1

α2sα

2 α0sα

4

α0sα

3

tree configuration

• consistent definition of orders and signature to be calculated needed

Marek Schonherr Electroweak corrections for LHC physics 31/38

Page 62: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Preliminary: pp → W +jets

Counting orders• same problem as in e.g. Dittmaier, Huss, Speckner JHEP11(2012)095

αnsα

m

α0sα

2α1sα

1

α0sα

1 pp → W + 0 jets

pp → W + 3 jets

pp → W + 2 jets

pp → W + 1 jet

α1sα

3

α1sα

2

α3sα

1

α2sα

1

α2sα

2 α0sα

4

α0sα

3

tree configuration+ two loop diagrams

• consistent definition of orders and signature to be calculated needed

Marek Schonherr Electroweak corrections for LHC physics 31/38

Page 63: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Preliminary: pp → W +jets

Counting orders• same problem as in e.g. Dittmaier, Huss, Speckner JHEP11(2012)095

αnsα

m

α0sα

2α1sα

1

α0sα

1 pp → W + 0 jets

pp → W + 3 jets

pp → W + 2 jets

pp → W + 1 jet

α1sα

3

α1sα

2

α3sα

1

α2sα

1

α2sα

2 α0sα

4

α0sα

3

tree configuration

+ two loop diagrams

• consistent definition of orders and signature to be calculated needed

Marek Schonherr Electroweak corrections for LHC physics 31/38

Page 64: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

First results

Preliminary results: pp → Wj

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + j @ 13TeV

103

100

10−3

10−6

10−9

10−12NLO QCD×EWNLO QCD+EWNLO QCDLON

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + j @ 13TeV

103

100

10−3

10−6

10−9

10−12

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j1/103

W+

dσ/d

pT[pb/G

eV]

∆φj1j2 < 3π/4

pp → W+ + j @ 13TeV

103

100

10−3

10−6

10−9

10−12NLO QCD×EWNLO QCD+EWNLO QCDLON

j1/103

W+

dσ/d

pT[pb/G

eV]

∆φj1j2 < 3π/4

pp → W+ + j @ 13TeV

103

100

10−3

10−6

10−9

10−12

Marek Schonherr Electroweak corrections for LHC physics 32/38

Page 65: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

First results

Preliminary results: pp → Wjj

pT [GeV]

pT,j2

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j2

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2 pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 2j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18 NLO QCD×EWNLO QCD+EWNLO QCDLON

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 2j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

pT [GeV]

pT,j2

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j2

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2 pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

HT,tot > 2TeV

pp → W+ + 2j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

NLO QCD×EWNLO QCD+EWNLO QCDLON

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

HT,tot > 2TeV

pp → W+ + 2j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

Marek Schonherr Electroweak corrections for LHC physics 33/38

Page 66: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

First results

Preliminary results: pp → Wjj

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

∆φj 1j 2[pb]

pp → W+ + jj @ 13TeV

5000

2000

1000

500

NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

∆φj 1j 2[pb]

pp → W+ + jj @ 13TeV

5000

2000

1000

500

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

∆φj 1j 2[pb]

HT,tot > 2TeV

pp → W+ + jj @ 13TeV

2

1

0.5

0.2

0.1

0.05

0.02

NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

∆φj 1j 2[pb]

HT,tot > 2TeV

pp → W+ + jj @ 13TeV

2

1

0.5

0.2

0.1

0.05

0.02

Marek Schonherr Electroweak corrections for LHC physics 34/38

Page 67: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

First results

Preliminary results: pp → Wjjj

pT [GeV]

pT,j3

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j3

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT,j2

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2 pT,j2

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2 pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j3/109

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 3j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18 NLO QCD×EWNLO QCD+EWNLO QCDLON

j3/109

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 3j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

pT [GeV]

pT,j3

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j3

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT,j2

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2 pT,j2

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2 pT,j1

σ/σNLO

QCD

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j3/109

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

HT,tot > 2TeV

pp → W+ + 3j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

NLO QCD×EWNLO QCD+EWNLO QCDLON

j3/109

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

HT,tot > 2TeV

pp → W+ + 3j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

Marek Schonherr Electroweak corrections for LHC physics 35/38

Page 68: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

First results

Preliminary results: pp → Wjjj

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

∆φj 1j 2[pb]

pp → W+ + jjj @ 13TeV

2000

1000

500

200

100

NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

∆φj 1j 2[pb]

pp → W+ + jjj @ 13TeV

2000

1000

500

200

100

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

∆φj1j2

σ/σNLO

QCD

π3π4

π2

π40

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

∆φj 1j 2[pb]

HT,tot > 2TeV

pp → W+ + jjj @ 13TeV

2

1

0.5

0.2

0.1

0.05

0.02

0.01

NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

∆φj 1j 2[pb]

HT,tot > 2TeV

pp → W+ + jjj @ 13TeV

2

1

0.5

0.2

0.1

0.05

0.02

0.01

Marek Schonherr Electroweak corrections for LHC physics 36/38

Page 69: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Conclusions

• electroweak effects are important at LHC at 13/14 TeV

• become large whenever the scale is large compared the electroweakscale

• should be incorporated in multijet merging to correctly describe theregions where a given configuration is rather a electroweakcorrection to a QCD process than a QCD correction to anelectroweak process (pp →W + jets vs. pp → jets + W )

• QCD+QED combined merging methods exist

• proper QCD+EW merging methods need to be defined

• automation of NLO EW follows on the heels of NLO QCD→ much more care with consistent schemes and order counting

Marek Schonherr Electroweak corrections for LHC physics 37/38

Page 70: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Thank you for your attention!

Marek Schonherr Electroweak corrections for LHC physics 38/38

Page 71: Electroweak corrections for LHC physicsmschoenherr/talks/20141118_Freiburg.… · using universal splitting kernels K (t; z)/ s 2ˇt P phase space d 1 = t zd˚ 2ˇ J( ; ) emission

Electroweak effects in multijet merging Electroweak parton showers Electroweak corrections at NLO Conclusions

Backup

Marek Schonherr Electroweak corrections for LHC physics 39/38