11
Nils Walter: Chem 260 Electronic transitions: The visible electromagnetic spectrum Atkins, Chapter 18 Red light: 14,000 cm -1 (171 kJ/mol) Blue light: 21,000 cm -1 (254 kJ/mol) Ultraviolet radiation: 50,000 cm -1 (598 kJ/mol) Chlorophyll absorption: Plants appear green because of this gap Blue Red

Electronic transitions: The visible electromagnetic spectrumchem260/winter00/lecnotes/lecture14-15.pdf · Electronic transitions: The visible electromagnetic spectrum Atkins, Chapter

  • Upload
    ledat

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Nils Walter: Chem 260

Electronic transitions: The visible electromagnetic spectrum

Atkins, Chapter 18

Red light: 14,000 cm-1 (171 kJ/mol)Blue light: 21,000 cm-1 (254 kJ/mol)Ultraviolet radiation: 50,000 cm-1

(598 kJ/mol)Chlorophyll absorption:

Plants appear green because of this gap

Blue

Red

Nils Walter: Chem 260

The Franck-Condon principleThe heavy nuclei don’t have time to react to fast changes in the

electronic distribution

⇒⇒⇒⇒ Vertical transition

⇒⇒⇒⇒ Photochemistry;Photoelectron spectroscopy

Nils Walter: Chem 260

Absorption intensity

IdxJdI ][κ−=IJ

II ][

0

10 ε−= Beer-Lambert law

Strong transitions havemaximum molar

absorption coefficientεεεεmax = 104-105 l/(mol cm)

Nils Walter: Chem 260

Circular dichroism

Chiral molecules have optical activity

An optically active polypeptide shows

differential absorption of left-

and right-circularly polarized light

Light can be left- or right-circularly

polarized

Nils Walter: Chem 260

Specific transitionsCharge transfer:Example MnO4

-

hνννν (420-700 nm)

n-to-ππππ* transition in carbonyl

ππππ-to-ππππ* in C=C double bond

Nils Walter: Chem 260

Vision

rhodopsin

2

22

8mLhnEn =

ππππ-to-ππππ*

Nils Walter: Chem 260

FluorescenceJablonski diagram

Dissipation inenvironment as

heat

If colliding molecules cannot accept this larger

energy

nsecfsec

Nils Walter: Chem 260

Fluorescence quenching

Molecular species (e.g., H2O, I-) with

suitable energy gaps can take up

this energy⇒⇒⇒⇒ quenching

of fluorescence

fsec

→→→→ M + hνννν2(fluorescence, kf)M + hνννν1 →→→→ M* →→→→ M + heat (internal conversion, ki)

+ Q →→→→ M + Q* →→→→ M + Q + heat (quenching, kQ)

][1 Qkkk Qif ++=τkf + ki

Nils Walter: Chem 260

nsecfsec

Green: Donor fluorophoreRed: Acceptor fluorophore

⇓⇓⇓⇓The molecular dynamics of a

single biomolecule can be observed by modern

fluorescence techniques

Fluorescence quenching:An example from actual research

601

=

rRk

DT τ 6

06

60

RrREFRET +

=

Nils Walter: Chem 260

Phosphorescence

min, hoursfsec

Triplet→→→→Singlet state transition is NOT allowed ⇒⇒⇒⇒ takes long

radiationless

Nils Walter: Chem 260

Lasers: Light Amplification by Stimulated Emission of Radiation

Population inversion

equilibrium population

inverted population

laser effect

pumping