9
Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline Background “SWNT quantum dot” Four-fold degeneracy & two-fold degeneracy Vernier spectrum Motivation Electronic states of armchair SWNTs → “1D ladder model” Result “vernier spectrum” Summary 200nm nanotube S. Sapmaz et al.; nature429, p389-392 (2004) Electrode(source) Electrode(drain)

Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline Background “SWNT quantum

Embed Size (px)

Citation preview

Page 1: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

Electronic states of finite length carbon nanotubes

Yuki Tatsumi, Wataru IzumidaTohoku University, Department of Physics

Outline Background “SWNT quantum dot”

・ Four-fold degeneracy & two-fold degeneracy・Vernier spectrum

Motivation Electronic states of armchair SWNTs → “1D ladder model” Result “vernier spectrum” Summary

200nm

nanotube

S. Sapmaz et al.; nature429, p389-392 (2004)

Electrode(source)

Electrode(drain)

Page 2: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

Carbon nanotube as a quantum dotSchematic of a quantum dot

Nanotube quantum dot

S. Sapmaz et al.; Phys. Rev. B 71, 153402 (2005)Addition energy

Coulomb oscillation

Valley degeneracy(K, K’)Spin degeneracy(↑, ↓)

Fourfold degeneracy

200nm

nanotube

S. Sapmaz et al.; nature429, p389-392 (2004)

fourfold

Peak distance Addition energy

=0 (If degenerate)

: Chemical potential : N-th energy level : Coulomb energy with other electron

Electrode(source)

Electrode(drain)

Page 3: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

Two-fold & four-fold degeneracy

Twofold degeneracy?

Two-fold? Four-fold?

Fourfold degeneracy Twofold degeneracy? ・・・ Periodically?

A. Makarovski et al,: Phys. Rev. B 74, 155431 (2006)

=0 (If degenerate)

Peak distance

Fourfold

BUT

Page 4: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

“Vernier” spectrum ?W. Izumida et al,: Phys. Rev. B 85, 165430 (2012)

“Vernier” spectrum

Energy level

of QD

2- or 4-fold degeneracy

Right-going@K Left-going@K’

Energy band tiltingSWNT curvature

What is the electronic states in finite length carbon nanotubes?

Motivation

Standing wave ・・・ K-left-going + K’-right-going

?

π π

Quantum dot

Page 5: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

𝐻nn=∑𝒌

¿¿

𝐶𝐴 𝒌

+¿= 1√𝑁 𝑦

∑𝑦𝑒𝑖 𝑘𝑦 𝑦𝐶𝐴𝑘

𝑥𝑦+¿¿ ¿

𝐶𝐵𝒌=1

√𝑁 𝑦

∑𝑦

𝑒−𝑖𝑘 𝑦 𝑦𝐶𝐵𝑘𝑥 𝑦

Partially ( only) Fourier transformation

1D ladder model for armchair SWNTsL. Balents, et al,; Phys. Rev. B, 55, R11973 (1996)

Only Cutting line

Armchair tube

Nearest neighbor

Second nearest neighbor

𝑘𝑥=0

Nearest neighbor Second neighbor

Method・ Open boundary condition・ Tight binding method

Calculate this model !!

1D Ladder model

Tilting effect

K K’

Second nearest also …

Page 6: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

(eV)

eigenenergy

Right-going Left-going

Vernier spectrum

Result : vernier spectrum for 1D ladder model

Armchair SWNT, diametr 0.8nm, length 200nm

𝐸addition=(𝜀𝑁+1−𝜀𝑁 )+𝑈 coulomb

fourfold

fourfold

twofold

twofold

twofold twofoldfourfold

2 and 4 fold degeneracy

Page 7: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

SummaryVernier spectrum of 1D Ladder model (armchair

nanotube model)

→ Two and Four fold degeneracy

A. Makarovski et al,: Phys. Rev. B 74, 155431 (2006)

𝐸addition=(𝜀𝑁+1−𝜀𝑁)+𝑈 coulomb

twofold twofold

twofold twofold

fourfold

fourfold

Page 8: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

Armchair → Ladder model𝑯=𝑯𝟏+𝑯𝟐

𝑯𝟐= ∑𝒏 , 𝒊=𝑨 ,𝑩

¿¿

Nearest neighbor Second neighbor

Page 9: Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum

fourfold

fourfold

twofold

twofold