31
Electrokinetics in Micro- and Nano-fluidics Gilad Yossifon Technion Israel Institute of Technology, Faculty of Mechanical Engineering, Micro- and Nano- Fluidics Laboratory

Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Electrokinetics in

Micro- and Nano-fluidics

Gilad Yossifon

Technion – Israel Institute of Technology, Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory

Page 2: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Micro- and Nano-fluidics

Structures of m/nm scale

Devices (pumps, valves, mixers, etc.)

Advantages:

• Reduced consumption of reagents

• Reduced power consumption

• Shorter reaction times

• Parallel processing

• Batch fabrication

• Integrated systems (Lab-on-a-chip)

• Portable devices

• New concepts / functionalities

Page 3: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

• Surface force rules

Surface force (e.g. tension, viscous friction)

Volume force (e.g. weight, buoyancy, inertial)

• Viscosity rules

Low Reynolds number:

Laminar flow (no turbulence),

No inertia effects

• Diffusion rules ( )

Low Peclet number:

Mixing through diffusion

Re 1cos

inertia VL

vis ity

Schulte et al., 2002

mm

m

2300Re

Re 1

2

e 1convection L D LV

Pdiffusion L V D

2t L D

1surface force A

volume force V L

Why Electrokinetics ?

Page 4: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

• Large pressure gradients:

• Electro-osmotic flow:

2

12pU

L h

Yeast cells

Li et al., 1997

40m

0 f

E U

Helmholtz-

Smoluchowski

slip velocity

h

Why Electrokinetics ?

Page 5: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Electric-Double-Layer (EDL)

• Electrolyte (dissolved ions)

• EDL - screens surface charge

• Diffuse layer - mobile ions, net charge

( )

01 cD

mMfornmD 1001.01001.0~

- -

- - - - - - -

-

-

-

-

+

+

+

+

+

+

+ +

+

+

+

+

+ +

+ +

+

+

Compact

layer Diffuse layer

Slip plane

x

ic

x

0c

c

c

+

+

+

Bulk solution

-

-

-

+

+

+

-

+

+

+

-

-

Page 6: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Electro-Osmosis Flow (EOF)

• Electrostatic body force ( )

• Diffuse layer drag fluid along

the wall

Eel

• Outside EDL: EU

Helmholtz-Smoluchowski

slip velocity

y

U

Slip plane

Page 7: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Non-Linear EOF in Microfluidics

Increasing field intensity Yossifon, Frankel & Miloh, Phys. Fluids (2006)

Eckstein, Yossifon, Seifert & Miloh, J. Colloid Interface Sci. (2009)

Linear EOF Non-linear EOF

)(~ 2

0 aEO||v Eveq )(~ 0aEOi

Zehavi & Yossifon, Phys. Fluids (submitted)

Page 8: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

E E

Induced-charge electrophoresis

(ICEP)

Induced-charge electroosmosis

(ICEO)

Induced Charge Electro-Phoresis (ICEP)

Squires & Bazant, J. Fluid Mech (2004)

Boymelgreen & Miloh, Phys. Fluids, (2011)

T. M. Squires and M. Z. Bazant,

J. Fluid Mech(2006)

Page 9: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

2orbitr m 25.6orbitr m

Experimental pathlines

Boymelgreen, Yossifon, Park, & Miloh, Phys. Rev. E, 89, 011003 (2014)

E E

T. M. Squires and M. Z. Bazant,

J. Fluid Mech(2006)

Page 10: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Comparison to a kinematic model

Boymelgreen, Yossifon, Park, & Miloh, Phys. Rev. E, 89, 011003 (2014)

Page 11: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Dielectrophoresis - movement of neutral matter caused

by polarization effects in a non-uniform electric field

Medium polarizability < Particle Polarizability

Positive DEP (pDEP)

Particle is attracted to high electric fields

Negative DEP (nDEP)

Particle is repelled from high electric fields

Medium polarizability > Particle polarizability

F1 F2

FDEP

- - -

+

+ +

- - -

+

+ +

- -

+ +

F2 F1

FDEP

E E

Dielectrophoresis (DEP)

Page 12: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Particles

40µm

40µm

f=50 kHz

f=10 MHz

Particles move towards

high electric fields

Particles are repelled from

high electric fields

Electric field Simulation

A

B

Morgan et al., J. Phys. D: Appl. Phys. 33, 632 (2000)

FD

EP

Frequency (Hz)

0

Cross-over frequency

(COF)

Quadrupole electrode array

Page 13: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Inlet Outlet

2mm

Flow

35µm

Glass slide

PDMS

Electrodes

Experimental setup

Rozitsky, Fine, Dado, Nussbaum-Ben-Shaul, Levenberg & Yossifon, Biomed. Microdevices 15, 859 (2013)

Page 14: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Trapping Measurements

Flow

Fibroblasts (f=2MHz)

in

outin

J

JJTrapping

%

Measurement method

Rozitsky, Fine, Dado, Nussbaum-Ben-Shaul, Levenberg & Yossifon, Biomed. Microdevices 15, 859 (2013)

Page 15: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

-50

0

50

100

10 100 1000 10000 100000 1000000

Freq (kHz)

Nor

mal

ized

For

ce

HUVEC

HUVEC - model

-50

0

50

100

10 100 1000 10000 100000 1000000

Freq (kHz)

Nor

mal

ized

For

ce

mES

mES - model

-50

0

50

100

10 100 1000 10000 100000 1000000

Freq (kHz)

Nor

mal

ized

For

ce

HNDF

HNDF - model

σcyto [μS/cm] σmem [μS/cm] Cell type

2240 0.16 HNDF

3750 0.26 HUVEC

3970 0.78 mESCs

8760 2.92 *hES

Curve fitting – cells

Rozitsky, Fine, Dado, Nussbaum-Ben-Shaul, Levenberg & Yossifon, Biomed. Microdevices 15, 859 (2013)

Page 16: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

16

Why Nanofluidics ?

• Ion separation

• Electro-chemo-mechanical energy conversion

• Desalination / water purification

d ~ 50 nm +

+

+

+

+ +

+ - - +

+ +

+ +

+ +

+ +

+ -

- - -

- - +

-

-

Microchannel Nanochannel

+ +

+ +

- - - - - - -

- - - - - - -

• EDLs overlap ion permselectivity (membranes / ion-channels)

-

-

-

+ +

+

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ - - - - - - -

+

+

+ +

+

+

+ ~100 μm ~ 100 nm

d ~ 50 nm

- - - - - - -

+ -

Pressure gradient

+ -

Pressure gradient

+

Page 17: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

17

• Concentration-polarization

Pre-concentration (106-fold !)

• Nanofluidic electronics (diode,

field-effect transistor)

• Artificial ion-channels

• EDLs overlap ion permselectivity (membranes / ion-channels)

Nanochannel

+ +

+

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ - - - - - - -

+

+

+ +

+

+

+ ~ 100 nm

d ~ 50 nm

- - - - - - - +

- +

Electric field anode

+

cathode

-

Depletion

layer

Enrichment

layer C0

-

-

- -

- + + +

+

+

cathode

-

anode

+

Why Nanofluidics ?

Yossifon, Chang & H.-C. Chang,

Phys. Rev. Lett. (2009) An ion channel

Page 18: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Some Practical Implementations

Chun et al., 2007

Wang et al., Anal. Chem. (2005)

Kim et al., Nature Nanotech. (2010)

Mixing Biomolecule

preconcentration

Desalination

Page 19: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Anomalies in Nanofluidics

0

25

50

75

100

0 10 20 30 40

Voltage (V)

Cu

rren

t (n

A)

1 mM

0.03 mM

Ohmic limiting Overlimiting

Nonlinear IV curve

Enrichment-depletion and

Pattern formation Interchannel communication

Nanocolloid-nanoslot interaction

Yossifon, Mushenheim, Chang & H.-C. Chang,

Phys. Rev. E (2009)

Chang & Yossifon, Biomicrofluidics (2008)

Yossifon & Chang, Phys. Rev. Lett. (2008)

Yossifon, Mushenheim & Chang, Euro. Phys. Lett. (2010) Yossifon, Chang & H.-C Chang,

Phys. Rev. Lett. (2009)

Yossifon & Chang, Phys. Rev. E (2010)

Secondory overlimiting

transition Field-Focusing Effect Yossifon, Mushenheim & Chang,

Phys. Rev. E (2010)

Page 20: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Non-Linear I-V

0

25

50

75

100

0 10 20 30 40

Voltage (V)

Cu

rre

nt

(nA

)

1 mM

0.03 mM

Ohmic limiting Overlimiting

Yossifon & Chang, Phys. Rev. Lett. (2008)

Yossifon, Mushenheim, Chang & H.-C. Chang, PRE (2009)

cathode

Nanochannel

+ +

+

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ - - - - - - -

+

+

+ +

+

+

+ ~ 100 nm

d ~ 50 nm

- - - - - - - +

- +

Electric field anode

+

cathode

-

Depletion

layer

Enrichment

layer C0

-

-

- -

- + + +

+

+

Rubinstein & Sthilman, J. Chem. Soc. (1979)

ILimiting

Levich (1962)

• EDLs overlap ion permselectivity (counterions)

• Concentration-polarization

• Limiting current overlimiting current

• Overlimiting current high throughput of ion transport

• Depletion layer thickness selection mechanism ?

Page 21: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Experimental setup

• Nano-slot: h=190nm deep (W>>h) Pseudo-1D

• Solutions: DI, KCl solution (10M-1mM), Rhodamine (10M)

• Colloids: 1m negatively charged fluorescent polystyrene

beads (0.02% vol.)

Nanoslot Glass Micro-

chamber

1 mm

1 mm

Electrodes

Top-view

Side-view

d=0.5 mm

3 m

m

h=190 nm

W=

2.5

mm

Page 22: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Permselective

membrane

Bulk

region

Rubinstein & Zaltzman, PRE (2000)

+ -

Micro-Vortices & Colloid Dynamics Voltage sweep (low ionic concentrations)

+ -

Increase of voltage Ohmic /

Limiting Over-limiting

c0=100M

Green & Yossifon & Chang, Phys. Rev. E, 87, 033005 (2013)

Page 23: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Eliminating the Limiting Resistance Region

Yossifon, Mushenheim & Chang, PRE (2010)

W= 0.05 mm W = 2.5 mm

W

0

2

4

6

8

10

0 5 10 15 20

Voltage (V)

No

rma

lize

d c

urr

en

t (A

/S)

2.5 mm

1 mm

0.5 mm

0.05 mm

י

f

cczF

0

2 )~~(~

0~~~

c

RT

DzFcD

0~

)~~(~~' 2 cczFpu

0~ u

En

Et

Page 24: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

3D Geometric Field Focusing

Green & Yossifon, Phys. Rev. E (2013)

Page 25: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

3D and 3 Layers Micro-Nano-Micro device

Green & Yossifon, Phys. Rev. E (submitted)

Page 26: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

High voltage (Overlimiting) current rectification

• Symmetric electro-chemical potential, Asymmetric entrance

geometry

(+) (-)

(-) (+)

forward

reverse

reverse

forward

• Ohmic: R = Iforward / Ireverse = 1

• Over-limiting: R > 1

• R increases with decreasing C

• R increases with V

1 mm 3 X 3 mm

2.3 X 3 mm

Ohmic Over-limiting

30 V

Yossifon, Chang & H.-C Chang, Phys. Rev. Lett. (2009)

Page 27: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

EIS of Microchannel-Nanochannel

Interface Devices

Schiffbauer, Park & Yossifon, Phys. Rev. Lett. (2013)

Schiffbauer & Yossifon, Phys. Rev. E 86, 056309 (2012)

Page 28: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

EIS of Microchannel-Nanochannel

Interface Devices

Schiffbauer, Liel & Yossifon, Phys. Rev. E (submitted)

Schiffbauer & Yossifon, Phys. Rev. E (submitted)

Page 29: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Nanoslot impedance sensor

~

P. Musenheim, S. Basuray, G. Yossifon, S. Senapati and H.-C. Chang,

A Nanoslot DNA Sensor for Quantitative Real-Time PCR, US Patent application CU8651.

Page 30: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Summary Ion-permselectivity (ion-channel, membrane)

Non-linear electrokinetic effects:

Concentration-polarization preconcentration

Overlimiting current high ionic flux throughput

Vortex instability mixing

Current rectification nanofluidic diode

Interchannel cross-talk synergy effect, multi-target sensing

Nanocolloid-nanoslot interaction additional transitions in the IV

curve

Future directions: optimum nanochannel array separation,

nanocolloid-nanochannel interaction

Page 31: Electrokinetics in Micro- and Nano-fluidicsinrep.org.il/wp-content/uploads/2017/07/electrokinetics.pdf · Micro- and Nano-fluidics Structures of m/nm scale Devices (pumps, valves,

Acknowledgements

Questions ?