8
Electro-Optics: Yoonchan Jeong School of Electrical Engineering, Seoul National University Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: [email protected] Electromagnetic Fields (1)

Electro-Optics · 2018. 4. 17. · Electro -optics – Chap. 8. Electro -optic Devices – Theory of lasers – Noise in optical detection and generation . Topics to Study . Exam

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Electro-Optics:

    Yoonchan Jeong School of Electrical Engineering, Seoul National University

    Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: [email protected]

    Electromagnetic Fields (1)

  • 2

    • Textbook: Optical Waves in Crystals (Propagation and Control of Laser Radiation), A. Yariv and P. Yeh, Wiley, 1983.

    – Chap. 1. Electromagnetic Fields

    – Chap. 2. Propagation of Laser Beams

    – Chap. 3. Polarization of Light Waves

    – Chap. 4. Electromagnetic Propagation in Anisotropic Media

    – Chap. 5. Jones Calculus and its Application to Birefringent Optical Systems

    – Chap. 6. Electromagnetic Propagation in Periodic Media

    – Chap. 7. Electro-optics

    – Chap. 8. Electro-optic Devices

    – Theory of lasers – Noise in optical detection and generation

    Topics to Study

    Exam 1 (Paper)

    Exam 2 (Take-home)

    Exam 3 (Verbal)

  • Electromagnetic Fields and Waves

    3

    “The ideal laser emits coherent electromagnetic radiation which can be described by its electric and magnetic field vectors. The propagation of this radiation field is governed by Maxwell’s equations”

    Maxwell’s equations & constitutive (material) equations:

    Energy density

    Energy flow

    Poynting theorem

    Conservation laws

    Wave equations: Monochromatic plane waves

    Phase velocity & group velocity

    Physics Soton UK

  • Faraday’s law

    Ampère’s law

    Gauss’s law

    Constitutive relations

    0=⋅∇

    =⋅∇∂∂

    +=×∇

    ∂∂

    −=×∇

    B

    D

    DJH

    BE

    ρt

    t

    Ready for electromagnetics!

    The two divergence equations can be derived from the two curl equations!

    James Clerk Maxwell (1831−1879)

    Michael Faraday (1791−1867)

    Andre Marie Ampere (1775 - 1835)

    Carl Friedrich Gauss (1777 - 1855)

    → 12 unknowns & 12 equations!

    Maxwell’s Equations

    4

    MBBH

    PEED

    −==

    +==

    0

    0

    11µµ

    εε

    Oliver Heaviside (1850−1925)

  • James Clerk Maxwell (1831−1879)

    5

    Source: https://www.youtube.com/watch?v=LjY1x5CDvD4

  • Oliver Heaviside (1850−1925)

    6

    Source: https://www.youtube.com/watch?v=5hZvzpr2SDU

  • 0=∂∂

    +×∇tBE

    JDH =∂∂

    −×∇t

    ρ=⋅∇ D

    0=⋅∇ B

    7

    Continuity conditions:

    2

    1

    C

    2na

    2

    1 2na

    ∫∫ ⋅∂∂

    −=⋅→SC

    dt

    d sBlE

    )A/m()( 212 sn JHHa =−×→

    ∫∫ ⋅

    ∂∂

    +=⋅→SC

    dt

    d sDJlH

    )V/m(21 tt EE =→

    )C/m()( 2212 sn ρ=−⋅→ DDa

    )T(21 nn BB =→

    Electromagnetic Boundary Conditions

  • JDH =∂∂

    −×∇t

    8

    Ampère’s law:

    t∂∂⋅−×∇⋅=⋅→

    DEHEEJ )(

    )()()( HEEHHE ×∇⋅−×∇⋅=×⋅∇←

    tt ∂∂⋅−

    ∂∂⋅−×⋅−∇=⋅→

    DEBHHEEJ )(

    Poynting Theorem and Conservation Laws

    Energy density and Poynting vector:

    )(21 HBDE ⋅+⋅=U

    HES ×=Poynting theorem (Conservation of energy):

    EJS ⋅−=⋅∇+∂∂

    tU

    Internal heat dissipation Outward power flow

    Electro-Optics:Topics to StudyElectromagnetic Fields and WavesSlide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8