45
Electric Circuit Theory Nam Ki Min 010-9419-2320 [email protected]

Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected] Chapter 13 The

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

Electric Circuit Theory

Nam Ki Min

010-9419-2320 [email protected]

Page 2: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

The Laplace Transform in Circuit Analysis

Chapter 13

Nam Ki Min

010-9419-2320 [email protected]

Page 3: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 3 Contents and Objectives

Chapter Contents

13.1 Circuit Elements in the s Domain

13.2 Circuit Analysis in the s Domain

13.3 Applications

13.4 The Transfer Function

13.5 The Transfer Function in Partial Fraction Expansions

13.6 The Transfer Function and the Convolution Integral

13.7 The Transfer Function and the Steady-State Sinusoidal Response

13.8 The Impulse Function in Circuit Analysis

Chapter Objectives

1. Be able to transform a circuit into the s domain using Laplace transforms; be sure you understand how to represent the initial conditions on energy-storage elements in the s domain.

2. Know how to analyze a circuit in the s-domain and be able to transform an s-domain solution back to the time domain.

3. Understand the definition and significance of the transfer function and be able to calculate the transfer function for a circuit using s-domain techniques.

4. Know how to use a circuit’s transfer function to calculate the circuit’s unit impulse response, its unit step response, and its steady-state response to a sinusoidal input.

Page 4: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 4 Circuit Elements in the s Domain

Page 5: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 5 Introduction

The Laplace transform has two characteristics that make it an attractive tool in circuit analysis

• It transforms a set of linear constant-coefficient differential equations into a set of linear polynomial equations, which are easier to manipulate.

• It automatically introduces into the polynomial equations the initial values of the current and voltage variables. Thus, initial conditions are an inherent part of the transform process.

This contrasts with the classical approach to the solution of differential equations, in which initial conditions are considered when the unknown coefficients are evaluated.

Page 6: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 6 Circuit Elements in the s Domain

Steps in Applying the Laplace Transformation to Circuits

• Transform the circuit from the time domain to the 𝑠 domain.

Having mastered how to obtain the Laplace transform and its inverse, we are now prepared to employ the Laplace transform to analyze circuits. This usually involves three steps.

• Solve the circuit using nodal analysis, mesh analysis, source transformation, superposition, or any circuit analysis technique with which we are familiar.

• Take the inverse transform of the solution and thus obtain the solution in the time domain.

Page 7: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 7

A Resistor in the s Domain

Circuit Elements in the s Domain

• Voltage-current relationship in the time domain

• Voltage-current relationship in the s domain

𝑣 = 𝑅𝑖

𝑉 = 𝑅𝐼

𝑉 = ℒ{𝑣}

𝐼 = ℒ{𝑖}

𝑉 = 𝑅𝐼

Phasor

(13.1)

(13.2)

Page 8: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 8 Circuit Elements in the s Domain

• Voltage-current relationship in the time domain

𝑣 = 𝐿𝑑𝑖

𝑑𝑡

= ℒ 𝐿𝑑𝑖

𝑑𝑡= 𝑉 = ℒ{𝑣} 𝐿 𝑠𝐼 − 𝑖 0−

= 𝑠𝐿𝐼 − 𝐿𝐼0

𝑉 = 𝑠𝐿𝐼

If 𝐼0 = 0

𝑠𝐿: 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑉 = 𝑗𝜔𝐿𝐼

Phasor

An Inductor in the s Domain

(13.3)

• Voltage-current relationship in the s domain

(13.4)

Page 9: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 9 Circuit Elements in the s Domain

If 𝐼0 ≠ 0

𝑉 = 𝑠𝐿𝐼 − 𝐿𝐼0

𝐼 =𝑉 + 𝐿𝐼0

𝑠𝐿=

𝑉

𝑠𝐿+

𝐼0𝑠

or

(13.5)

(13.4)

An Inductor in the s Domain

Page 10: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 10 Circuit Elements in the s Domain

• Voltage-current relationship in the time domain

𝑖 = 𝐶𝑑𝑣

𝑑𝑡

𝐶[𝑠𝑉 − 𝑣 0 ]

= 𝑠𝐶𝑉 − 𝐶𝑉0

𝐼 = ℒ 𝑖 = ℒ 𝐶𝑑𝑣

𝑑𝑡=

𝐼 = 𝑠𝐶𝑉

If 𝑉0 = 0

𝑠𝐶: 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑉 =𝐼

𝑠𝐶

• Voltage-current relationship in the s domain

(13.6)

𝑉 =𝐼

𝑗𝜔𝐶

Phasor

(13.7)

A Capacitor in the s Domain

Page 11: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 11 Circuit Elements in the s Domain

If 𝑉0 ≠ 0

or

𝑉 =1

𝑠𝐶𝐼 +

𝑉0

𝑠

𝐼 = 𝑠𝐶𝑉 − 𝐶𝑉0 (13.7)

=𝑉

1𝑠𝐶

− 𝐶𝑉0

(13.8)

A Capacitor in the s Domain

Page 12: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 12 Circuit Elements in the s Domain

Summary of the s Domain Equivalent Circuits

Page 13: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 13

Time-domain and s-domain representations of passive elements under zero initial conditions

Circuit Elements in the s Domain

𝐼0 = 0 𝑉0 = 0

𝑉(𝑠) = 𝑅𝐼 𝑠 𝑉 𝑠 = 𝑠𝐿𝐼 𝑠 𝑉 𝑠 =1

𝑠𝐶𝐼(𝑠)

𝑍(𝑠) = 𝑅 𝑍 𝑠 = 𝑠𝐿 𝑍 𝑠 =1

𝑠𝐶

𝑍 = 𝑅 𝑍 = 𝑗𝜔𝐿 𝑍 =1

𝑗𝜔𝐶 Phasor

Page 14: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 14 Circuit Analysis in the s Domain

Ohm’s law in the s-domain

Impedance and Admittance in the s-domain

Kirchhoff’s laws

𝑉(𝑠) = 𝑍(𝑠)𝐼(𝑠)

𝑍(𝑠) =𝑉(𝑠)

𝐼(𝑠)

𝑌(𝑠) =1

𝑍(𝑠)=

𝐼(𝑠)

𝑉(𝑠)

alg 𝐼(𝑠) = 0 KCL:

KVL: alg 𝑉(𝑠) = 0

Basic Laws in the s Domain

(13.9)

(13.11)

(13.10)

Page 15: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 15 Circuit Analysis in the s Domain

• In the time domain

RC Circuits

KVL :

• In the s domain

𝑉0

𝑠=

1

𝑠𝐶𝐼 + 𝑅𝐼

KVL :

𝑅𝐼 −𝑉0

𝑠+

1

𝑠𝐶𝐼 = 0

Or

𝐼(𝑠) =𝐶𝑉0

𝑅𝐶𝑠 + 1=

𝑉0

𝑅 𝑠 +1

𝑅𝐶

(13.12)

(13.13)

𝑖 𝑡 =𝑉0

𝑅𝑒−

𝑡𝑅𝐶 𝑢(𝑡)

ℒ 𝑒−𝑎𝑡 =1

𝑠 + 𝑎 𝑎 =

1

𝑅𝐶

𝑖𝑅 − 𝑉0 +1

𝐶 𝑖𝑑𝑡

𝑡

0−= 0

𝑅𝑑𝑖

𝑑𝑡+

𝑖

𝐶= 0

𝑑𝑖

𝑑𝑡+

𝑖

𝑅𝐶= 0

𝑖 𝑡 = 𝑖 0 𝑒−𝑡/𝑅𝐶

𝑖 𝑡 = 0 =𝑉𝑜𝑅

𝑖 𝑡 =𝑉0

𝑅𝑒−

𝑡𝑅𝐶 𝑡 ≥ 0

(13.14)

Page 16: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 16 Circuit Analysis in the s Domain

• In the time domain

RC Circuits

𝐶𝑑𝑣

𝑑𝑡+

𝑣

𝑅= 0

KCL :

𝑑𝑣

𝑑𝑡+

𝑣

𝑅𝐶= 0

𝑣 𝑡 = 𝑣 0 𝑒−𝑡/𝑅𝐶

𝑣 𝑡 = 0 = 𝑉𝑜

𝑣 𝑡 = 𝑉𝑜 𝑒−𝑡/𝑅𝐶

= 𝑉𝑜 𝑒−𝑡/𝜏

𝜏 = 𝑅𝐶

𝑖 𝑡 =𝑣(𝑡)

𝑅=

𝑉0

𝑅𝑒−

𝑡𝑅𝐶 𝑡 ≥ 0

• In the s domain

KCL :

(13.16)

(13.18)

𝑣 𝑡 = 𝑖 𝑡 𝑅 = 𝑉0𝑒−

𝑡𝑅𝐶 𝑢(𝑡)

ℒ 𝑒−𝑎𝑡 =1

𝑠 + 𝑎 𝑎 =

1

𝑅𝐶

𝑉

𝑅+ 𝑠𝐶𝑉 = 𝐶𝑉0

𝑉(𝑠) =𝑉0

𝑠 +1

𝑅𝐶

𝑣 𝑡 = 𝑉0𝑒−

𝑡𝑅𝐶 = 𝑉0𝑒

−𝑡𝜏 𝑢(𝑡)

(13.17)

From Eq.(13.14)

(13.15)

Page 17: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 17 Circuit Analysis in the s Domain

In the circuit in Figure, the switch moves from position 𝑎 to position 𝑏 at 𝑡 = 0. Find 𝑖(𝑡) for 𝑡 > 0.

𝐿 → 𝑠𝐿 − 𝐿𝐼0

𝑉0 → 𝑉0

𝑠

𝑅 → 𝑅

• We first transform the circuit from the time domain to the 𝑠 domain.

• Using mesh analysis

𝐼 𝑅 + 𝑠𝐿 − 𝐿𝐼0 −𝑉0

𝑠= 0

𝐼 𝑠 =𝐿𝐼0

𝑅 + 𝑠𝐿+

𝑉0

𝑠(𝑅 + 𝑠𝐿)=

𝐼0

𝑠 +𝑅𝐿

+

𝑉0𝐿

𝑠 𝑠 +𝑅𝐿

RL Circuits

=𝐼0

𝑠 +𝑅𝐿

+𝑘1

𝑠+

𝑘2

𝑠 +𝑅𝐿

Page 18: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 18 Circuit Analysis in the s Domain

𝐼 𝑠 =𝐼0

𝑠 +𝑅𝐿

+𝑘1

𝑠+

𝑘2

𝑠 +𝑅𝐿

𝑉0𝐿

𝑠 𝑠 +𝑅𝐿

=𝑘1

𝑠+

𝑘2

𝑠 +𝑅𝐿

𝑉0𝐿

𝑠 +𝑅𝐿

𝑠=0

= 𝑘1 +𝑠𝑘2

𝑠 +𝑅𝐿

𝑠=0

𝑉0𝐿

𝑠 +𝑅𝐿

= 𝑘1 +𝑠𝑘2

𝑠 +𝑅𝐿

𝑉0

𝑅= 𝑘1 +0

𝑉0𝐿𝑠

=𝑘1 𝑠 +

𝑅𝐿

𝑠+ 𝑘2

𝑉0𝐿𝑠

𝑠=−𝑅𝐿

=𝑘1 𝑠 +

𝑅𝐿

𝑠

𝑠=−𝑅𝐿

+ 𝑘2

−𝑉0

𝑅= 0 + 𝑘2

RL Circuits

𝑘1 =𝑉0

𝑅 𝑘2 = −

𝑉0

𝑅

Page 19: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 19 Circuit Analysis in the s Domain

𝐼 𝑠 =𝐿𝐼0

𝑅 + 𝑠𝐿+

𝑉0

𝑠(𝑅 + 𝑠𝐿)=

𝐼0

𝑠 +𝑅𝐿

+

𝑉0𝐿

𝑠 𝑠 +𝑅𝐿

=𝐼0

𝑠 +𝑅𝐿

+𝑘1

𝑠+

𝑘2

𝑠 +𝑅𝐿

𝑘1 =𝑉0

𝑅 𝑘2 = −

𝑉0

𝑅

𝐼 𝑠 =𝐼0

𝑠 +𝑅𝐿

+𝑉0

𝑅

1

𝑠−

𝑉0

𝑅

1

𝑠 +𝑅𝐿

𝑖 𝑡 = 𝐼0𝑒−

𝑅𝐿𝑡 +

𝑉0

𝑅−

𝑉0

𝑅𝑒−

𝑅𝐿𝑡

= 𝐼0 −𝑉0

𝑅𝑒−

𝑅𝐿𝑡 +

𝑉0

𝑅 𝑡 ≥ 0

RL Circuits

Page 20: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 20 Circuit Analysis in the s Domain

• First transform the circuit from the time domain to the s domain

1 H → 𝑠𝐿 = 𝑠

𝑢 𝑡 → 1

𝑠

1

3F →

1

𝑠𝐶=

3

𝑠

• Now apply mesh analysis

For mesh 1,

→ 1

𝑠= 1 +

3

𝑠𝐼1 −

3

𝑠𝐼2

For mesh 2,

5 + 𝑠 𝐼2 +3

𝑠𝐼2 − 𝐼1 = 0 → 0 = 5 + 𝑠 𝐼2 +

3

𝑠(𝐼2 − 𝐼1)

1𝐼1 +3

𝑠𝐼1 − 𝐼2 −

1

𝑠= 0

V

→ 𝐼1 =1

3𝑠2 + 5𝑠 + 3 𝐼2

(1)

(2)

RLC Circuits

Page 21: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 21 Circuit Analysis in the s Domain

• Substituting Eq.(2) into Eq.(1),

• Multiplying through by 3s gives

1

𝑠= 1 +

3

𝑠

1

3𝑠2 + 5𝑠 + 3 𝐼2 −

3

𝑠𝐼2 (3)

(4) 3 = 𝑠3 + 8𝑠2 + 18𝑠 𝐼2

𝐼2 =3

𝑠3 + 8𝑠2 + 18𝑠

𝑉𝑜 𝑠 = 𝑠𝐼2 =3

𝑠3 + 8𝑠2 + 18𝑠 =

3

2

2

(𝑠 + 4)2+( 2)2

Taking the inverse transform yields

𝑣(𝑡) =3

2𝑒−4𝑡 sin 2𝑡

• Output voltage

(5)

(6)

(7) V, 𝑡 ≥ 0

RLC Circuits

Page 22: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 22 Circuit Analysis in the s Domain

The Step Response of a RLC Parallel Circuit

• Now apply nodal analysis

• We first transform the circuit from the time domain to the 𝑠 domain.

ℒ 𝐼𝑑𝑐𝑢(𝑡) =𝐼𝑑𝑐

𝑠

𝐼𝑑𝑐

𝑠= 𝑠𝐶𝑉 +

𝑉

𝑅+

𝑉

𝑠𝐿 (13.20)

Page 23: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 23 Circuit Analysis in the s Domain

The Step Response of a RLC Parallel Circuit

𝐼𝑑𝑐

𝑠= 𝑠𝐶𝑉 +

𝑉

𝑅+

𝑉

𝑠𝐿 (13.20)

𝑉 =𝐼𝑑𝑐/𝐶

𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

(13.21)

𝐼𝐿 =𝑉

𝑠𝐿 =

𝐼𝑑𝑐/𝐿𝐶

𝑠 𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

𝐼𝐿 =384 × 105

𝑠 𝑠2 + 64,000𝑠 + 16 × 108

(13.22)

(13.23)

Page 24: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 24 Circuit Analysis in the s Domain

The Step Response of a RLC Parallel Circuit

𝐼𝐿 =384 × 105

𝑠 𝑠2 + 64,000𝑠 + 16 × 108 (13.23)

=384 × 105

𝑠 𝑠 + 32,000 − 𝑗24,000)(𝑠 + 32,000 + 𝑗24,000

(13.24)

=𝐾1

𝑠+

𝐾2

𝑠 + 32,000 − 𝑗24,000+

𝐾2∗

𝑠 + 32,000 + 𝑗24,000 (13.26)

• The partial fraction coefficients are

𝐾1 =384 × 105

16 × 108 = 24 × 10−3 𝐾2 =384 × 105

(−32,000 + 𝑗24,000)(𝑗48,000)= 20 × 10−3∠126.87°

(13.27)

Page 25: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 25 Circuit Analysis in the s Domain

The Step Response of a RLC Parallel Circuit

𝑖𝐿(𝑡) = [24 × 10−3 + 2 × 20 × 10−3 × 𝑒−32,000𝑡 cos(24,000𝑡 + 126.87° )]𝑢(𝑡) A

• Substituting the numerical values of and into Eq. 13.26 yields

𝐼𝐿 =24 × 10−3

𝑠+

20 × 10−3∠126.87°

𝑠 + 32,000 − 𝑗24,000+

20 × 10−3∠ − 126.87°

𝑠 + 32,000 + 𝑗24,000

𝓛−1𝐾

𝑠 + 𝛼 − 𝑗𝛽+

𝐾∗

𝑠 + 𝛼 + 𝑗𝛽

= 2 𝐾 𝑒−𝛼𝑡 cos 𝛽𝑡 + 𝜃

𝛼 = 32,000

𝐾 = 20 × 10−3

𝛽 = 24,000

= [24 + 40𝑒−32,000𝑡 cos(24,000𝑡 + 126.87° )]𝑢(𝑡) mA

𝜃 = 126.87°

• Inverse transforming the resulting expression Eq.(13.28) gives

(13.28)

(13.29)

Page 26: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 26 Circuit Analysis in the s Domain

The Step Response of a RLC Parallel Circuit

• Final value of 𝑖𝐿

𝑖𝐿(𝑡) = [24 + 40𝑒−32,000𝑡 cos(24,000𝑡 + 126.87° )]𝑢(𝑡) mA (13.29)

𝐴𝑠 𝑡 → ∞, 𝑒−32,000𝑡 → 0

𝑖𝐿 ∞ = 24 mA (13.25)

lim𝑡→∞

𝑓 𝑡 = lim𝑠→0

𝑠𝐹(𝑠) (12.94)

Or from the final-value theorem

lim𝑠→0

𝑠𝐼𝐿 =384 × 105

16 × 108 = 24 mA 𝐼𝐿 =384 × 105

𝑠 𝑠2 + 64,000𝑠 + 16 × 108 (13.23)

Page 27: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 27 Circuit Analysis in the s Domain

The Transient Response of a RLC Parallel Circuit

(13.30) 𝑖𝑔 = 𝐼𝑚cos𝜔𝑡 A

• A sinusoidal current source

𝐼𝑚 = 24 mA

𝜔 = 40,000 rad/s

The s-domain expression for the source current is

𝐼𝑔 =𝑠𝐼𝑚

𝑠2 + 𝜔2 (13.31)

𝐼𝑔 = 𝑠𝐶𝑉 +𝑉

𝑅+

𝑉

𝑠𝐿

(13.32)

• A node equation :

𝑉 =

𝐼𝑔𝐶 𝑠

𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

• The voltage across the parallel elements is:

Page 28: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 28 Circuit Analysis in the s Domain

The Transient Response of a RLC Parallel Circuit

(13.32) 𝑉 =

𝐼𝑔𝐶 𝑠

𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

• The voltage across the parallel elements is:

=

𝐼𝑚𝐶 𝑠2

𝑠2 + 𝜔2 𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

(13.33)

• The current 𝐼𝐿

𝐼𝐿 =𝑉

𝑠𝐿=

𝐼𝑚𝐶 𝑠2

𝑠2 + 𝜔2 𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

(13.34)

Page 29: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 29 Circuit Analysis in the s Domain

The Transient Response of a RLC Parallel Circuit

• The current 𝐼𝐿

𝐼𝐿 =𝑉

𝑠𝐿=

𝐼𝑚𝐶 𝑠2

𝑠2 + 𝜔2 𝑠2 +1

𝑅𝐶 𝑠 +1𝐿𝐶

(13.34)

𝐼𝐿 =384 × 105𝑠

𝑠2 + 16 × 108 (𝑠2 + 64,000𝑠 + 16 × 108)

=384 × 105𝑠

(𝑠 − 𝑗𝜔)(𝑠 + 𝑗𝜔)(𝑠 + 𝛼 − 𝑗𝛽)(𝑠 + 𝛼 + 𝑗𝛽)

(13.35)

(13.36)

𝐼𝐿 =𝐾1

𝑠 − 𝑗40,000+

𝐾2∗

𝑠 + 𝑗40,000+

𝐾2

𝑠 + 32,000 − 𝑗24,000+

𝐾2∗

𝑠 + 𝑗32,000 + 𝑗24,000 (13.37)

Page 30: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 30 Circuit Analysis in the s Domain

The Transient Response of a RLC Parallel Circuit

(13.37) 𝐼𝐿 =𝐾1

𝑠 − 𝑗40,000+

𝐾2∗

𝑠 + 𝑗40,000+

𝐾2

𝑠 + 32,000 − 𝑗24,000+

𝐾2∗

𝑠 + 𝑗32,000 + 𝑗24,000

• The partial fraction coefficients are

𝐾1 =384 × 105(𝑗40,000)

(𝑗80,000)(32,000 + 𝑗16,000)(32,000 + 𝑗64,000) = 7.5 × 10−3∠ − 90°

𝐾2 =384 × 105(−32,000 + 𝑗24,000)

−𝑗32,000 − 𝑗16,000 −32,000 + 𝑗64,000 (𝑗48,000) = 12.5 × 10−3∠90°

𝑖𝐿 = [15 cos 40,000𝑡 − 90° + 25𝑒−32,000𝑡 cos(24,000𝑡 + 90°)] mA

= (15 sin 40,000𝑡 − 25𝑒−32,000𝑡 sin 24,000𝑡)𝑢(𝑡) mA

• Inverse transforming the resulting expression gives

(13.38)

(13.39)

(13.40)

Page 31: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 31 Circuit Analysis in the s Domain

The Transient Response of a RLC Parallel Circuit

• The steady-state current:

𝑖𝐿(𝑡) = (15 sin 40,000𝑡 − 25𝑒−32,000𝑡 sin 24,000𝑡)𝑢(𝑡) mA

𝑖𝐿𝑠𝑠= 15 sin 40,000𝑡 mA (13.41)

𝐴𝑠 𝑡 → ∞, 𝑒−32,000𝑡 → 0

𝑖𝑔 = 𝐼𝑚cos𝜔𝑡 A

𝐼𝑚 = 24 mA

𝜔 = 40,000 rad/s

𝑍𝑐 =1

𝑗𝜔𝐶=

1

𝑗40,000 × 25 × 10−9

𝑍𝐿 = 𝑗𝜔𝐿 = 𝑗40,000 × 25 × 10−3 = 𝑗1000

= −𝑗1

10−3= −𝑗1000

𝐼𝑔 =𝑉

𝑍𝐶+

𝑉

𝑅+

𝑉

𝑍𝐿=

𝑉

−𝑗1000+

𝑉

625+

𝑉

𝑗1000=

𝑉

625

𝐼𝑔 = 𝐼𝑚∠0°

𝑉 = 625𝐼𝑔 = 625𝐼𝑚∠0° 𝐼𝐿 =𝑉

𝑍𝐿=

625𝐼𝑚∠0°

𝑗1000=

15000𝐼𝑚∠0°

1000∠90°= 15∠ − 90°

𝑖𝐿 𝑡 = 15 cos 40,000𝑡 − 90° = 15sin40,000𝑡 mA

Page 32: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 32 Circuit Analysis in the s Domain

The Step Response of a Multiple Mesh Circuit

• s-domain equivalent circuit

ZL1 = 8.4𝑠

ZL2 = 10𝑠

• The two mesh-current equations are

336

𝑠= 42 + 8.4𝑠 𝐼1 − 42𝐼2

0 = −42𝐼1 + (90 + 10𝑠)𝐼2

VS =336

𝑠

𝑉𝑆 = 336𝑢(𝑡)

(13.42)

(13.43)

Page 33: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 33 Circuit Analysis in the s Domain

The Step Response of a Multiple Mesh Circuit

• Using Cramer’s method to solve for 𝐼1 and 𝐼2 we obtain

336

𝑠= 42 + 8.4𝑠 𝐼1 − 42𝐼2

0 = −42𝐼1 + (90 + 10𝑠)𝐼2

(13.42)

(13.43)

∆ =42 + 8.4𝑠 −42

−42 90 + 10𝑠 = 84(𝑠2 + 14𝑠 + 24)

= 84(𝑠 + 2)(𝑠 + 12)

𝑁1 =336

𝑠−42

0 90 + 10𝑠

=3360(𝑠 + 9)

𝑠

(13.44)

(13.45)

𝑁2 = 42 + 8.4𝑠336

𝑠−42 0

=14,112

𝑠 (13.46)

𝐼1 =𝑁1

∆=

40(𝑠 + 9)

𝑠(𝑠 + 2)(𝑠 + 12)

𝐼2 =𝑁2

∆=

168

𝑠(𝑠 + 2)(𝑠 + 12)

(13.47)

(13.48)

Page 34: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 34 Circuit Analysis in the s Domain

The Step Response of a Multiple Mesh Circuit

(13.50)

𝐼1 =40(𝑠 + 9)

𝑠(𝑠 + 2)(𝑠 + 12)

𝐼2 =168

𝑠(𝑠 + 2)(𝑠 + 12)

=15

𝑠−

14

𝑠 + 2−

1

𝑠 + 12

=7

𝑠−

8.4

𝑠 + 2+

1.4

𝑠 + 12

(13.49)

𝑖1 = 15 − 14𝑒−2𝑡 − 𝑒−12𝑡 𝑢 𝑡 A

𝑖2 = 7 − 8.4𝑒−2𝑡 + 1.4𝑒−12𝑡 𝑢 𝑡 A

• Expanding 𝐼1 and 𝐼2 into a sum of partial fraction gives

• By inverse-transforming Eqs. 13.49 and 13.50, respectively, we have

(13.52)

(13.51)

𝑖1 ∞ = 15 A

𝑖2 ∞ = 7 A

𝑖1 ∞ =336

42 × 4842 + 48

= 15 A

𝑖2 ∞ =42

42 + 4815 = 7 A

(13.53)

(13.54)

Page 35: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 35 Circuit Analysis in the s Domain

The Step Response of a Multiple Mesh Circuit

• Voltage across the 42 Ω

𝑣(𝑡) = 42 𝑖1 − 𝑖2 = 336 − 8.4𝑑𝑖1𝑑𝑡

= 48𝑖2 + 10𝑑𝑖2𝑑𝑡

𝑖1 = 15 − 14𝑒−2𝑡 − 𝑒−12𝑡 𝑢 𝑡 A

𝑖2 = 7 − 8.4𝑒−2𝑡 + 1.4𝑒−12𝑡 𝑢 𝑡 A

𝑣(𝑡) = 336 − 235.2𝑒−2𝑡 − 100.80𝑒−12𝑡 𝑢 𝑡 V

(13.55)

Page 36: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 36 Circuit Analysis in the s Domain

The Use of Thevenin’s Equivalent in the s Domain

• Thevenin’s Equivalent Circuit

𝑉60 = 0

𝑉𝑇ℎ = 𝑉60 + 𝑉0.002

𝑉0.002 =0.002𝑠

20 + 0.002𝑠

480

𝑠=

480

𝑠 + 104

𝑉𝑇ℎ =480

𝑠 + 104

Thévenin voltage : VTh Thévenin impedance : ZTh

𝑍𝑇ℎ =20 × 0.002𝑠

20 + 0.002𝑠+ 60

=80(𝑠 + 7500)

𝑠 + 104

(13.56)

(13.57)

Page 37: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 37 Circuit Analysis in the s Domain

The Use of Thevenin’s Equivalent in the s Domain

• Current IC

𝐼𝐶 =

480(𝑠 + 104)

80 𝑠 + 7500𝑠 + 104 +

2 × 105

𝑠

=6𝑠

𝑠2 + 10,000𝑠 + 25 × 106 =6𝑠

(𝑠 + 50002)

= −30,000

(𝑠 + 5000)2 +6

𝑠 + 5000

𝑖𝐶(𝑡) = −30,000𝑡𝑒−5000𝑡 + 6𝑒−5000𝑡 𝑢 𝑡 A

𝑖𝐶 0 = 6 A 𝑖𝐶 0 =480

20 + 60= 6 A

(13.60)

(13.61)

(13.59)

(13.62)

Page 38: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 38 Circuit Analysis in the s Domain

The Use of Thevenin’s Equivalent in the s Domain

• Voltage VC

𝑖𝐶(𝑡) = −30,000𝑡𝑒−5000𝑡 + 6𝑒−5000𝑡 𝑢 𝑡 A

𝑣𝑐 𝑡 =1

𝐶 𝑖 𝑡 𝑑𝑡

𝑡

0−

= 2 × 105 6 − 30,000𝑥 𝑒−5000𝑥𝑑𝑥𝑡

0−

Time domain :

s domain :

𝑉𝐶 =1

𝑠𝐶𝐼𝐶 =

2 × 105

𝑠×

6𝑠

(𝑠 + 5000)2

=12 × 105

(𝑠 + 5000)2

𝑣𝑐 = 12 × 105𝑡𝑒−5000𝑡𝑢 𝑡 V

(13.63)

(13.64)

(13.65)

Page 39: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 39 Circuit Analysis in the s Domain

The Use of Superposition

• Circuit with Vg acting alone.

𝑉𝑔 − 𝑉1′

𝑅1=

𝑉1′

𝑠𝐿+

𝑉1′ − 𝑉2

1𝑠𝐶

𝑉𝑔

𝑅1=

1

𝑅1+

1

𝑠𝐿+ 𝑠𝐶 𝑉1

′ − 𝑠𝐶𝑉2′ (13.73)

Node 1:

Node 2:

𝑉1′ − 𝑉2

1𝑠𝐶

=𝑉2

𝑅2

−𝑠𝐶𝑉1′ +

1

𝑅2+ 𝑠𝐶 𝑉2

′ = 0 (13.74)

Page 40: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 40 Circuit Analysis in the s Domain

The Use of Superposition

• Circuit with Vg acting alone.

𝑉𝑔

𝑅1=

1

𝑅1+

1

𝑠𝐿+ 𝑠𝐶 𝑉1

′ − 𝑠𝐶𝑉2′ (13.73)

−𝑠𝐶𝑉1′ +

1

𝑅2+ 𝑠𝐶 𝑉2

′ = 0 (13.74)

𝑌11 =1

𝑅1+

1

𝑠𝐿+ 𝑠𝐶;

𝑌12 = −𝑠𝐶;

𝑌22 =1

𝑅2+ 𝑠𝐶

𝑌11𝑉1′ + 𝑌12𝑉2

′ =𝑉𝑔

𝑅1

𝑌12𝑉1′ + 𝑌22𝑉2

′ = 0

(13.78)

(13.79)

𝑉2′ =

−𝑌12𝑅1

𝑌11𝑌22 − 𝑌122 𝑉𝑔 (13.80)

Page 41: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 41 Circuit Analysis in the s Domain

The Use of Superposition

• Circuit with Ig acting alone.

Node 1:

Node 2:

1

𝑅1+

1

𝑠𝐿+ 𝑠𝐶 𝑉1

′′ + 𝑠𝐶𝑉2′ = 0

(13.81)

𝑉′2′ − 𝑉1

′′

1𝑠𝐶

=𝑉′1

𝑅1+

𝑉′1′

𝑠𝐿

𝑌11𝑉1′′ + 𝑌12𝑉2

′′ = 0

𝐼𝑔 =𝑉′2

𝑅2+

𝑉′2′ − 𝑉1

′′

1𝑠𝐶

(13.82)

−𝑠𝐶𝑉1′′ +

1

𝑅2+ 𝑠𝐶 𝑉2

′′ = 𝐼𝑔

𝑌12𝑉1′′ + 𝑌22𝑉2

′′ = 𝐼𝑔

Page 42: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 42 Circuit Analysis in the s Domain

The Use of Superposition

• Circuit with Ig acting alone.

(13.81) 𝑌11𝑉1′′ + 𝑌12𝑉2

′′ = 0

(13.82) 𝑌12𝑉1′′ + 𝑌22𝑉2

′′ = 𝐼𝑔

𝑉2′′ =

𝑌11

𝑌11𝑌22 − 𝑌122 𝐼𝑔 (13.83)

Page 43: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 43 Circuit Analysis in the s Domain

The Use of Superposition

• Circuit with 𝜌/𝑠 acting alone.

(13.84)

(13.85)

(13.86)

𝑌11𝑉1′′′ + 𝑌12𝑉2

′′′ =−𝜌

𝑠

𝑌12𝑉1′′′ + 𝑌22𝑉2

′′′ = 0

𝑉2′′′ =

𝑌12𝑠

𝑌11𝑌22 − 𝑌122 𝜌

Page 44: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 44 Circuit Analysis in the s Domain

The Use of Superposition

(13.87)

(13.88)

(13.89)

• Circuit with γ𝐶 acting alone.

𝑌11𝑉1′′′′ + 𝑌12𝑉2

′′′′ = 𝛾𝐶

𝑌12𝑉1′′′′ + 𝑌22𝑉2

′′′′ = −𝛾𝐶

𝑉2′′′′ =

− 𝑌11 + 𝑌12 𝐶

𝑌11𝑌22 − 𝑌122 𝛾

Page 45: Electric Circuit Theoryelearning.kocw.net/KOCW/document/2015/korea_sejong/minnamki1/… · CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 nkmin@korea.ac.kr Chapter 13 The

CIEN 202 Electric Circuits II Nam Ki Min 010-9419-2320 [email protected]

Chapter 13 The Laplace Transform in Circuit Analysis 45 Circuit Analysis in the s Domain

The Use of Superposition

• The expression for V2 :

𝑉2 = 𝑉2′ + 𝑉2

′′ + 𝑉2′′′ + 𝑉2

′′′′

=−

𝑌12𝑅1

𝑌11𝑌22 − 𝑌122 𝑉𝑔 +

𝑌11

𝑌11𝑌22 − 𝑌122 𝐼𝑔 +

𝑌12𝑠

𝑌11𝑌22 − 𝑌122 𝜌 +

−𝐶(𝑌11 + 𝑌12)

𝑌11𝑌22 − 𝑌122 𝛾