40

Click here to load reader

Elastohydrodynamic Lubrication Fundamentals

  • Upload
    gwepark

  • View
    79

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Elastohydrodynamic Lubrication Fundamentals

Elastohydrodynamic Lubrication Fundamentals

Wind Turbine Tribology Seminar

November 15-17 2011

Vern Wedeven Wedeven Associates Inc

5072 West Chester Pike

Edgmont PA 19028-0646

610-356-7161

wwwwedevencom

National Renewable Energy Laboratory

Argonne National Laboratory

US Department of Energy

Renaissance Bolder Flatiron Hotel

Broomfield CO USA 1

Elastohydrodynamic Lubrication Fundamentals

Focus on Concentrated Contacts

Hertzian Contact Geometry

Hertzian region

Hertzian pressure

2

How Do GearBearing Surfaces Fail Mechanistic processes

Wear Scuffing Fatigue bull Micro-scuffing bull Polishing bull Micro-pitting

bull Macro-scuffing bull Adhesive bull Spalling

bull Abrasive

bull Oxidative

bull Corrosive

3

Contact Structural Elements

Elastohydrodynamic Film

Surface Film

NearshySurface

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Supports Hertzian stress

Functions and technologies to prevent wear scuffing and fatigue processes

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 4

EHD - The Miracle Mechanism

High stress rollingsliding motion

EHD film generation

h

NRSurface film

F

R Sliding velocity

5

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

6

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 2: Elastohydrodynamic Lubrication Fundamentals

Elastohydrodynamic Lubrication Fundamentals

Focus on Concentrated Contacts

Hertzian Contact Geometry

Hertzian region

Hertzian pressure

2

How Do GearBearing Surfaces Fail Mechanistic processes

Wear Scuffing Fatigue bull Micro-scuffing bull Polishing bull Micro-pitting

bull Macro-scuffing bull Adhesive bull Spalling

bull Abrasive

bull Oxidative

bull Corrosive

3

Contact Structural Elements

Elastohydrodynamic Film

Surface Film

NearshySurface

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Supports Hertzian stress

Functions and technologies to prevent wear scuffing and fatigue processes

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 4

EHD - The Miracle Mechanism

High stress rollingsliding motion

EHD film generation

h

NRSurface film

F

R Sliding velocity

5

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

6

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 3: Elastohydrodynamic Lubrication Fundamentals

How Do GearBearing Surfaces Fail Mechanistic processes

Wear Scuffing Fatigue bull Micro-scuffing bull Polishing bull Micro-pitting

bull Macro-scuffing bull Adhesive bull Spalling

bull Abrasive

bull Oxidative

bull Corrosive

3

Contact Structural Elements

Elastohydrodynamic Film

Surface Film

NearshySurface

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Supports Hertzian stress

Functions and technologies to prevent wear scuffing and fatigue processes

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 4

EHD - The Miracle Mechanism

High stress rollingsliding motion

EHD film generation

h

NRSurface film

F

R Sliding velocity

5

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

6

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 4: Elastohydrodynamic Lubrication Fundamentals

Contact Structural Elements

Elastohydrodynamic Film

Surface Film

NearshySurface

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Supports Hertzian stress

Functions and technologies to prevent wear scuffing and fatigue processes

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 4

EHD - The Miracle Mechanism

High stress rollingsliding motion

EHD film generation

h

NRSurface film

F

R Sliding velocity

5

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

6

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 5: Elastohydrodynamic Lubrication Fundamentals

EHD - The Miracle Mechanism

High stress rollingsliding motion

EHD film generation

h

NRSurface film

F

R Sliding velocity

5

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

6

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 6: Elastohydrodynamic Lubrication Fundamentals

EHD - The Miracle Mechanism

Elastohydrodynamic Lubrication

The physics behind the mechanism

6

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 7: Elastohydrodynamic Lubrication Fundamentals

The MIRACLE Mechanism

Seven features create the miracle of EHD Lubrication

M I R A C L E

7

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 8: Elastohydrodynamic Lubrication Fundamentals

(F)

Viscous Flow Between Parallel Surfaces

Viscosity (micromicromicromicro) = Shear stress Shear rate

FA uh

N sec m2

(poise)

Fluid molecules

Force (F)

h

U

Viscous flow between parallel surfaces

Flow between parallel surfaces

8

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 9: Elastohydrodynamic Lubrication Fundamentals

Adsorbed Films

Original surface features Metal

Adsorbed film

Oxide

σσσσ

Judith A Harrison United States Naval Academy

M = Molecular attraction 9

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 10: Elastohydrodynamic Lubrication Fundamentals

U

Viscous Flow Between Non-Parallel Surfaces

Flow in cannot be greater than flow out

Viscous flow between nonparallel surfaces

U U

Force

10

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 11: Elastohydrodynamic Lubrication Fundamentals

Hydrodynamic Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

U U

Force

Fluid velocity

Pressure

11

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 12: Elastohydrodynamic Lubrication Fundamentals

Requirements for Pressure Generation

Hydrodynamic pressure generation

Viscous flow between parallel surfaces

Force

Fluid velocity

Pressure

1 Converging geometry

2 Viscous fluid media

3 Surface motion

12

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 13: Elastohydrodynamic Lubrication Fundamentals

Pressure Generation in a Journal Bearing

Bearing

Journal Fluid

Oil film pressure

Load

Journal bearing

13

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 14: Elastohydrodynamic Lubrication Fundamentals

o e

Film Thickness Equation (general form)

micro0 = viscosity W = load

U = surf vel 12 (u1+u2)e R = radius of curvature

Load W

ho

u1

R1

hR

= 4896 U micromicromicromicro0000 W

u2

14

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 15: Elastohydrodynamic Lubrication Fundamentals

Conformal and Non-conformal Contacts

Outer ring

Rollers

Inner ring

Roller Bearing Components

15

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 16: Elastohydrodynamic Lubrication Fundamentals

____ ____

Hertzian Contact

1- σσσσ12 1- σσσσ2

2

a = + E1

E2

2 WP = max ππππ L a

E = elastic modulus

σσσσ = Poissonrsquos ratio

L = length of roller

4 W R

ππππ L _____

12

R

Pmax

Hertzian condition for dry contact

Hertzian pressure

Load (W)

Hertzian region (2 a)

16

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 17: Elastohydrodynamic Lubrication Fundamentals

Inlet region

Fluid flow in Convergent Inlet Region

I = In-flight refueling

Hertzian region

Flow distribution within the convergent inlet region

U1

U2

INLET REGION

h

17

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 18: Elastohydrodynamic Lubrication Fundamentals

Effect of Pressure on Viscosity

micromicromicromicro = viscosity micromicromicromicroo = viscosity at p = 0 p = pressure

αααα = pressure-viscosity coef

Pressure p

Psi

Nm2

Vis

cosi

ty c

p

micromicromicromicro = micromicromicromicro0 e ααααp

Effect of pressure on viscosity (synthetic oil at 38 oC)

micromicromicromicro0

R = Radical increase of viscosity with pressure 18

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 19: Elastohydrodynamic Lubrication Fundamentals

Fluid Flow and Pressure in Inlet Region

19

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 20: Elastohydrodynamic Lubrication Fundamentals

Perspective of Lubricated Contact

Hertzian pressure

Hertzian region

u1

u2

20

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 21: Elastohydrodynamic Lubrication Fundamentals

Three Functional Regions of an EHD Contact

Elastohydrodynamic pressure and shape

Hertzian pressure

Pressure

Hertzian region RIDES IT

Outlet region DISCHARGES IT

Inlet region PUMPS FILM UP

hm

21

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 22: Elastohydrodynamic Lubrication Fundamentals

-----------------------------------------

EHD pressure and film generation

Inlet Hertz region Exit

Pressure

EHD Film Thickness Equation

hm =

)071 αααα057 R040(micromicromicromicrooUe

307 Ersquo003 w011

hm = min film thickness micromicromicromicroo = viscosity at atm press Ue = entraining velocity frac12(u1 + u2 ) αααα = pressure-viscosity coef R = combined radius of curvature Ersquo = combined elastic modulus w = applied load

A = Accommodation of stress 22

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 23: Elastohydrodynamic Lubrication Fundamentals

Contact with Optical Configuration

23

Air bearing

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 24: Elastohydrodynamic Lubrication Fundamentals

Interference Colors from EHD Oil Film

Optical interference colors showing thickness of EHD oil film

Rolling motion

Inlet Hertzian region Exit region

Center film thickness 04 micromicromicromicrom (16x10-6 inch) 24

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 25: Elastohydrodynamic Lubrication Fundamentals

25

Micro-EHD Lubrication

C = Cushioning of asperities

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 26: Elastohydrodynamic Lubrication Fundamentals

Hertzian region

Traction (Friction) ndash Tangential Shear of Pseudo-Solid Film

Outlet region

Inlet region

Traction

EHD pressureHertzian pressure

hU1

U2

ΤΤΤΤ

ΤΤΤΤ

γγγγ

HERTZIAN REGION

26

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 27: Elastohydrodynamic Lubrication Fundamentals

27

30

000

40 C

100 C

150 C

200 C

Traction Coefficient Measurement Entraining Velocity = 30 ms

005 005

004

003

Lube EE Oil 1 Ball M50 Ralt1 microminusinch 1125 inch dia Disc M50 Polished Ralt1 microminusinches Stress 2 GPa (702 N) Data collected from -30-gt+30 slip and averaged

EE Oil 1

40 C

200 C

150 C

100 C

L = Limiting shear strength 003

004

002 002

001 001

000

0 5 10 15 20 25

Slip Typical thrust

bearing slip range

Tra

ctio

n C

oef

fici

ent

Tra

ctio

n C

oef

fici

ent

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 28: Elastohydrodynamic Lubrication Fundamentals

OilAir Separation at Divergent Exit Region

28

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 29: Elastohydrodynamic Lubrication Fundamentals

OilAir Separation at Divergent Exit Region

E = Exit without trauma

Schematic representation of cavitated region

Cavitation fingers

Ribs of oil Steel ball

Transparent disc

Transparent disc Ball track

Ribs of oil ldquoWavesrdquo of oil

29

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 30: Elastohydrodynamic Lubrication Fundamentals

EHD pressure and film generation

Exit Hertz region

Inlet

Pressure

hm U1

U2

EHD - the MIRACLE Mechanism

Mndash Molecular attachment I ndash Inlet refueling R ndash Radical viscosity increase with pressure A ndash Accommodation of stress C ndash Cushioning of asperities L ndash Limiting shear stress (traction) E ndash Exit without trauma 30

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 31: Elastohydrodynamic Lubrication Fundamentals

Contact Structural Elements Functions and technologies to prevent failures

bull Wear

bull Scuffing

bull Fatigue Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms

Supports Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

31

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 32: Elastohydrodynamic Lubrication Fundamentals

Contact Structural Elements Functions and technologies to prevent wear scuffing and fatigue processes

Elastohydrodynamic Film

Surface Film

NearshySurface

Subsurface Supports

Hertzian stress

Separates surfaces

Prevents adhesion (boundary lubr)

Supports asperity stress

Boundary lubrication creates amp maintains integrity of surfaces to promote EHD mechanisms 32

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 33: Elastohydrodynamic Lubrication Fundamentals

Five Parameters Control Wear Scuffing and Fatigue

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

Entraining velocity Ue = frac12 (U1 + U2)

Degree of asperity penetration (hσσσσ)

Sliding velocity Us = (U1 - U2)

Contact temp (Tc = Tbulk + Tflash)

Contact Stress (asperity stress)

33

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 34: Elastohydrodynamic Lubrication Fundamentals

Wedeven Assoc Machine (WAM)

34

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 35: Elastohydrodynamic Lubrication Fundamentals

Wear and Scuffing Tests ndash Gear Simulation

UeUs

Test Protocol Test method simulates gear tooth mesh

Angle Z = 75deg where scuffing is initiated AISI 9310 ball roughness = 11 micromicromicromicroin (028 micromicromicromicrom) RaUe = 572 msec AISI 9310 disc roughness = 6 micromicromicromicroin (015 micromicromicromicrom) Ra

Us = 88 msec

Ue = Entraining vel vector Us = Sliding vel vector 35

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 36: Elastohydrodynamic Lubrication Fundamentals

s

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

A1370

Ref OilTEL-0004

MIL-PRF-7808 Grade 4

Wear and Micro-Scuffing T

ract

ion

Co

effi

cien

t

014

012

010

008

006

004

002

000

-002

Lo

ad (

lb

0

20

40

60

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1368NA1369NA1370NA1371 Lube TEL-0004 MIL-PRF 7808 Grade 4 Ball 9310 Ra=10 microin Disc 9-24b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1368

NA1369

N

NA1371

Micro-scuff failure

4 cSt Oil A

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Run Time (seconds) 36

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 37: Elastohydrodynamic Lubrication Fundamentals

1350 1500 1650 1800

0

20

40

60

TEL-0003MIL-PRF-7808

Wear and Scuffing Average TC for each load stage

Tra

ctio

n C

oef

fici

ent

014

012

010

008

006

004

002

000

-002

0 150 300 450 600 750 900 1050 1200

Lo

ad (

lbs

) T

emp

erat

ure

(degC

)

80

100

120

140

160

180

200

220

Vertical Load

Ball Temperature

Disc Temperature

Traction Coefficient

Test NA1323NA1324NA1325NA1326 Lube MIL-PRF-7808 Grade 4 (TEL-00013) Ball 9310 Ra=10 microin Disc 9-26b 9310 Ra=6 microin Entraining Velocity 225 insec Sliding Velocity 346 insec Temperature Ambient Velocity Vector Angle (Z) 75deg

NA1325

NA1326 NA1324

NA1323

Grade 4 4 cSt Oil B

Macro-scuff failure

Run Time (seconds) ltconsultingsaeTel-0001jnbgt 37

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 38: Elastohydrodynamic Lubrication Fundamentals

Wear and Scuffing Tests ndash Gear Simulation

WAM High Speed Load Capacity Test Method

Tra

ctio

n C

oeff

icie

nt

000

001

002

003

004

005

006

007

008

009

010

Lower bound reference polished surfaces STD oil

Failure criteria (avg of all tests)

Test suspended

σσσσ = combined roughness

h

Base stock

Good AW additive

Good EP Poor AW

Good EP Good AW

Good AW Mild EP

EP behavior

Anti-wear behavior

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Load Stage

38

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 39: Elastohydrodynamic Lubrication Fundamentals

Dither Motion and Fretting

h

NR

F

Surface film

RSliding velocity

h

NR

F

Surface film

R Sliding velocity

σ1

σ2

u1

u2

Us

39

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions
Page 40: Elastohydrodynamic Lubrication Fundamentals

40

Thank you Questions

  • Elastohydrodynamic Lubrication Fundamentals
  • Elastohydrodynamic Lubrication Fundamentals
  • How Do GearBearing Surfaces Fail
  • Contact Structural Elements
  • EHD - The Miracle Mechanism
  • EHD - The Miracle Mechanism
  • The MIRACLE Mechanism
  • Viscous Flow Between Parallel Surfaces
  • Adsorbed Films
  • Viscous Flow Between Non-Parallel Surfaces
  • Hydrodynamic Pressure Generation
  • Requirements for Pressure Generation
  • Pressure Generation in a Journal Bearing
  • Film Thickness Equation (general form)
  • Conformal and Non-conformal Contacts
  • Hertzian Contact
  • Fluid flow in Convergent Inlet Region
  • Effect of Pressure on Viscosity
  • Fluid Flow and Pressure in Inlet Region
  • Perspective of Lubricated Contact
  • Three Functional Regions of an EHD Contact
  • EHD Film Thickness Equation
  • Contact with Optical Configuration
  • Interference Colors from EHD Oil Film
  • Micro-EHD Lubrication
  • Traction (Friction) ndashTangential Shear of Pseudo-Solid Film
  • Traction Coefficient Measurement
  • OilAir Separation at Divergent Exit Region
  • OilAir Separation at Divergent Exit Region
  • EHD - the MIRACLE Mechanism
  • Contact Structural Elements
  • Contact Structural Elements
  • Five Parameters Control Wear Scuffing and Fatigue
  • Wedeven Assoc Machine (WAM)
  • Wear and Scuffing Tests ndash Gear Simulation
  • Wear and Micro-Scuffing
  • Wear and Scuffing
  • Wear and Scuffing Tests ndash Gear Simulation
  • Dither Motion and Fretting
  • 40Thank you Questions