# Ejer Cici Os Control Digital

Embed Size (px)

### Text of Ejer Cici Os Control Digital

• 7/31/2019 Ejer Cici Os Control Digital

1/6

Exercises

24.3. Suppose that.

1 - 0.2Z-1F(z) -

- (1 + 0.6Z-1)(1 - 0.3Z-1)(1 - Z-1)

(a) Calculate the corresponding time-domain responsef*(t).

f*(t).

24.4. Determine

the inverse transform of

z(z + 1)

(z - 1)(z2 - z + 1)

by the following methods:

(a) Partial fraction expansion.

(b) Long division.24.5Calthe

I-trofth

repsit

dthat the s ampling period is t1t = 2 min. The pulse is f = 3 for 2 ::; t < 6.

6.-

f 31-

00 2

.14 6

.1

24.6. The pulse transfer function of a process is given by

Y(z) - 5(z + 0.6)

(a) Calculate the response y(nM) to a unit step change in x using the partial fraction

method.(b)Cheyouansinpa

(a)byuslo

di(c) What is the steady-state value of y?24.7Thedesite

trajT(foa

bareissit

d(a)Deran

expforth

Latro

thtetT(s).

(b) Determine the corresponding I-transform T(z) for s ampling periods of t1t = 4and 8 min.

0 20

J

40

24.8. The dynamic behavior of a temperature sensor and transmitter can be described by

the first-order transfer function,

T(s) 8s + 1

• 7/31/2019 Ejer Cici Os Control Digital

2/6

588 RESPONSE

If the actual temperature changes as follows (t in seconds):

{

a

s

mv

o(b) If samples of the measured temperature are automatically logged in a digital

coevtwm

at=

tthe logged temperature? .

24.9. The transfer function for a process model and a zero-order hold can be written as

(1 - e-SM

)3.8e-zs

H(s)Gp(s) = s (lOs + 1)(5s + 1)

Derive an expression for the pulse transfer function ofH(s)Gp(s) when ~t = 2.24.

Thpu

trafuoap

isgbY(z) - 2.7z-!(z + 3)

Ii

(a) Calculate the response y(n~t) to a unit step change in x using the partial fractionmethod.

(b) Check your answer in part (a) by using long division.

(c) What is the steady-state value of y?24.Agachis

ustop

c

feedbackcolo

Thoptrfi

gG(s)

and is

I

B(s)

(l

)(l-e-Sl!.t

)(10

)-21

G(s) = E(s) = 2 1 + 8s s 12s + 1 e

(a) Suppose that a sampling period of~t = 1 min is selected. Calculate HG(z), the

putrafu

ofGwZ(b) If a unit step change in the controller error signal e(t) is made, calculatethesa

opreb

u

24.Deth

putr

fu

z

tprocess Gp(s) = K/[(5s + 1)(3s + 1)] using partial fraction expansion in the

s-dC

yorew

thi

S2

there.

24.13. Find HG(z) if G(s) = (1 - 9s)/[(3s + 1)(15s + 1)] for ~t = 4 (use partial fractionex

Wisthcod

e

resinth

ouYnfoastcit

i

t24.14. Verify the z-transform in Table 24.1 for f(t) = t2. What is the z-transform

for

f(t) = 1 - e-at?

I

24.FintheresYnfoth

dieY-Y

+0.

=

LeXo=1,Xn=0fon2:1.U

lod

a

a

ithe results.

ill...

• 7/31/2019 Ejer Cici Os Control Digital

3/6

Exercises 589.0.8rl

F(z) = (1 - 0.8z-l)Z

. . oro

eaea

rau

+ 1)/('Tzs

the steady-state gain of the pulse transfer function.

.18. Determine the sampled function f(nf:..t) corresponding to the z-transform

0.5z-1( z )

-- 1 - 1.5z-1 + 0.5z-zUsepartfracex

(f:.=1)ancothrewt

ldmethod for the first six sampled values (n = 0, 1, . . . , 5)._..1For

G(s=1/[(+1)(+2)]obG(fo

M=1.Dt

rI

to a unit step change in the input. Repeat using Tustin's method (approximate

z-transform) and compare the step responses for the first five samples.~.20Todetetheeffof

polanzeloc

astI step responses of the pulse transfer functions shown below for the first six sampling

instants, n = 0 t o n = 5. What conclusions can you make concerning the effect of

pole and zero locations?

1

(a) i"""-=- Z-I

1

(b) 1 + 0.7z-1

1(c) 1 - 0.7z-1

1

(d) (1 + 0.7z-I)(1 - O.3z-l)

1 - 0.5rl

(e) (1 + 0.7rl)(1 - 0.3z-l)

f 1 - 0.2rl( ) (1 + 0.6rl)(1 - 0.3z-l)

:4.21. For the transfer functions shown below, determine the corresponding pulse transfer

function HGp(z) for the system and a zero-order hold.

1

(a) Gp(s) = (s + 1)36(1 - s)

(b) Gp(s) = (s + 2)(s + 3)ForsamperofM=1an

f:..=2,dewa

pozof HGp(z) lie outside the unit circle for either process. Discuss the significance ofthese results.

• 7/31/2019 Ejer Cici Os Control Digital

4/6

it has been determined that the closed-loop system is stable when '1"/

-10

.following instrumentation changes? Justify your answers using qualitative arguments.

11.2. The block

diagram of a feedback control system is shown in the drawing. Determine

11.Anop

unprht

trfvp

m('+1-

1Can this process be made closed-loop stable by using a proportional feedback con-

troller, Gc(s) = Kc? Can closed-loop stability be achieved using an ideal proportional-

derivative controller, Gc(s) = Kc(1 + TDS)? Justify your answers.

11.4. For the liquid-level control system in Figure 10.22, determine the numencal valuesofKcan'1"thre

inastcls

lne

dyw

thc

vhaticnumerical values are available:

A=3ft2

ih = 10 gal/min

• 7/31/2019 Ejer Cici Os Control Digital

5/6

Exercises 269.and the following transfer functions:

Se -2s

Gp(s)G,(s) = 0.8

4e-s

!GL(s) = 15s + 1

o e

oc

wa

ms

eo

smore

c osysu

yoana e

prot me

srer

to.e

met

cos

rer

to.

11.Itisdestocontheexite

Tzofthhe

thestefloratwsU

dioiitemperature Tt. The dynamic behavior of the heat exchanger can be approximated

by the transfer functions:If!

n(s) 2.Se -s of

T2(s) O.ge-ZS

[ ]. .

---;--( )

=5 1

= dimensIOnless

whethetim

conanti

dehauos

Tchas the following steady-state characteristics:

whepistheconoutexinm

At

noconp=12m

Afasuchinthc

o

rane

steavalin20s

(astotafitic

tature transmitter has negligible dynamics and is designed so that its output signalvarilinefro4to20m

asTzvafr1

to1oI p

Liquidout

Liquidin

[2] = Steam trap

y

(a) If a proportional feedback controller is used, what is Kern?What is the frequencyoftheres

oscw

Ke=K(

Ut

dsmetandEulide(b) Estimate Kern using the Routh criterion and a 1/1 P ade approximation for the

time-delay term. Does this analysis provide a satisfactory approximation?

• 7/31/2019 Ejer Cici Os Control Digital

6/6

lIIil:"'I'

270 STABILITY OF CLOSED-LOOP

I

II

".

.p (2s + 1)(lOs + 1) L 5s + 1

1

Does the presence of a "right half plane zero" (i.e., a > 0) in the procefunction affect the stability of the closed-loop system? (Hint: Consider th

uations where a = 0 and a > 0.) .

seprp

e

troasshinthd!ilIII1illI,II1/i~ .I!1111",I',I:Ililll!I, I -P 4.5

2

(10s + 1)2

c

(a)Fow

ras)o

T

wt

rs(b) What practical arguments might be used to restrict the range(s) of acT

evfu(c)Ifaprcanswers to (a) and (b) be affected?

11.A

opu

pisd

tt, B(s) e-2sCaapr

fec

ssof

Kcre

inastcls11.Aprinc

vat

witi

coo

1,2,2,a5

sra

ofcog

thri

ascisus

wiT=2

m11.Abldi

ofafecsofco

gaKa

Kist

csL

1

s + 1II

s-2

(8 + 10)(s + 5)

1

s + 1

II

Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Self Improvement
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents