Upload
luis-alejandro-macclesh
View
220
Download
0
Embed Size (px)
7/31/2019 Ejer Cici Os Control Digital
1/6
Exercises
24.3. Suppose that.
1 - 0.2Z-1F(z) -
- (1 + 0.6Z-1)(1 - 0.3Z-1)(1 - Z-1)
(a) Calculate the corresponding time-domain responsef*(t).
f*(t).
24.4. Determine
the inverse transform of
z(z + 1)
(z - 1)(z2 - z + 1)
by the following methods:
(a) Partial fraction expansion.
(b) Long division.24.5Calthe
I-trofth
repsit
dthat the s ampling period is t1t = 2 min. The pulse is f = 3 for 2 ::; t < 6.
6.-
f 31-
00 2
.14 6
.1
24.6. The pulse transfer function of a process is given by
Y(z) - 5(z + 0.6)
(a) Calculate the response y(nM) to a unit step change in x using the partial fraction
method.(b)Cheyouansinpa
(a)byuslo
di(c) What is the steady-state value of y?24.7Thedesite
trajT(foa
bareissit
d(a)Deran
expforth
Latro
thtetT(s).
(b) Determine the corresponding I-transform T(z) for s ampling periods of t1t = 4and 8 min.
0 20
J
40
24.8. The dynamic behavior of a temperature sensor and transmitter can be described by
the first-order transfer function,
T(s) 8s + 1
7/31/2019 Ejer Cici Os Control Digital
2/6
588 RESPONSE
If the actual temperature changes as follows (t in seconds):
{
a
s
mv
o(b) If samples of the measured temperature are automatically logged in a digital
coevtwm
at=
tthe logged temperature? .
24.9. The transfer function for a process model and a zero-order hold can be written as
(1 - e-SM
)3.8e-zs
H(s)Gp(s) = s (lOs + 1)(5s + 1)
Derive an expression for the pulse transfer function ofH(s)Gp(s) when ~t = 2.24.
Thpu
trafuoap
isgbY(z) - 2.7z-!(z + 3)
Ii
(a) Calculate the response y(n~t) to a unit step change in x using the partial fractionmethod.
(b) Check your answer in part (a) by using long division.
(c) What is the steady-state value of y?24.Agachis
ustop
c
feedbackcolo
Thoptrfi
gG(s)
and is
I
B(s)
(l
)(l-e-Sl!.t
)(10
)-21
G(s) = E(s) = 2 1 + 8s s 12s + 1 e
(a) Suppose that a sampling period of~t = 1 min is selected. Calculate HG(z), the
putrafu
ofGwZ(b) If a unit step change in the controller error signal e(t) is made, calculatethesa
opreb
u
24.Deth
putr
fu
z
tprocess Gp(s) = K/[(5s + 1)(3s + 1)] using partial fraction expansion in the
s-dC
yorew
thi
S2
there.
24.13. Find HG(z) if G(s) = (1 - 9s)/[(3s + 1)(15s + 1)] for ~t = 4 (use partial fractionex
Wisthcod
e
resinth
ouYnfoastcit
i
t24.14. Verify the z-transform in Table 24.1 for f(t) = t2. What is the z-transform
for
f(t) = 1 - e-at?
I
24.FintheresYnfoth
dieY-Y
+0.
=
LeXo=1,Xn=0fon2:1.U
lod
a
a
ithe results.
ill...
7/31/2019 Ejer Cici Os Control Digital
3/6
Exercises 589.0.8rl
F(z) = (1 - 0.8z-l)Z
. . oro
eaea
rau
+ 1)/('Tzs
the steady-state gain of the pulse transfer function.
.18. Determine the sampled function f(nf:..t) corresponding to the z-transform
0.5z-1( z )
-- 1 - 1.5z-1 + 0.5z-zUsepartfracex
(f:.=1)ancothrewt
ldmethod for the first six sampled values (n = 0, 1, . . . , 5)._..1For
G(s=1/[(+1)(+2)]obG(fo
M=1.Dt
rI
to a unit step change in the input. Repeat using Tustin's method (approximate
z-transform) and compare the step responses for the first five samples.~.20Todetetheeffof
polanzeloc
astI step responses of the pulse transfer functions shown below for the first six sampling
instants, n = 0 t o n = 5. What conclusions can you make concerning the effect of
pole and zero locations?
1
(a) i"""-=- Z-I
1
(b) 1 + 0.7z-1
1(c) 1 - 0.7z-1
1
(d) (1 + 0.7z-I)(1 - O.3z-l)
1 - 0.5rl
(e) (1 + 0.7rl)(1 - 0.3z-l)
f 1 - 0.2rl( ) (1 + 0.6rl)(1 - 0.3z-l)
:4.21. For the transfer functions shown below, determine the corresponding pulse transfer
function HGp(z) for the system and a zero-order hold.
1
(a) Gp(s) = (s + 1)36(1 - s)
(b) Gp(s) = (s + 2)(s + 3)ForsamperofM=1an
f:..=2,dewa
pozof HGp(z) lie outside the unit circle for either process. Discuss the significance ofthese results.
7/31/2019 Ejer Cici Os Control Digital
4/6
it has been determined that the closed-loop system is stable when '1"/
-10
.following instrumentation changes? Justify your answers using qualitative arguments.
11.2. The block
diagram of a feedback control system is shown in the drawing. Determine
11.Anop
unprht
trfvp
m('+1-
1Can this process be made closed-loop stable by using a proportional feedback con-
troller, Gc(s) = Kc? Can closed-loop stability be achieved using an ideal proportional-
derivative controller, Gc(s) = Kc(1 + TDS)? Justify your answers.
11.4. For the liquid-level control system in Figure 10.22, determine the numencal valuesofKcan'1"thre
inastcls
lne
dyw
thc
vhaticnumerical values are available:
A=3ft2
ih = 10 gal/min
7/31/2019 Ejer Cici Os Control Digital
5/6
Exercises 269.and the following transfer functions:
Se -2s
Gp(s)G,(s) = 0.8
4e-s
!GL(s) = 15s + 1
o e
oc
wa
ms
eo
smore
c osysu
yoana e
prot me
srer
to.e
met
cos
rer
to.
11.Itisdestocontheexite
Tzofthhe
sitdrabyadj
thestefloratwsU
dioiitemperature Tt. The dynamic behavior of the heat exchanger can be approximated
by the transfer functions:If!
n(s) 2.Se -s of
T2(s) O.ge-ZS
[ ]. .
---;--( )
=5 1
= dimensIOnless
whethetim
conanti
dehauos
Tchas the following steady-state characteristics:
whepistheconoutexinm
At
noconp=12m
Afasuchinthc
o
rane
steavalin20s
(astotafitic
tature transmitter has negligible dynamics and is designed so that its output signalvarilinefro4to20m
asTzvafr1
to1oI p
Liquidout
Liquidin
[2] = Steam trap
y
(a) If a proportional feedback controller is used, what is Kern?What is the frequencyoftheres
oscw
Ke=K(
Ut
dsmetandEulide(b) Estimate Kern using the Routh criterion and a 1/1 P ade approximation for the
time-delay term. Does this analysis provide a satisfactory approximation?
7/31/2019 Ejer Cici Os Control Digital
6/6
lIIil:"'I'
270 STABILITY OF CLOSED-LOOP
I
II
".
.p (2s + 1)(lOs + 1) L 5s + 1
1
Does the presence of a "right half plane zero" (i.e., a > 0) in the procefunction affect the stability of the closed-loop system? (Hint: Consider th
uations where a = 0 and a > 0.) .
seprp
e
troasshinthd!ilIII1illI,II1/i~ .I!1111",I',I:Ililll!I, I -P 4.5
2
(10s + 1)2
c
(a)Fow
ras)o
T
wt
rs(b) What practical arguments might be used to restrict the range(s) of acT
evfu(c)Ifaprcanswers to (a) and (b) be affected?
11.A
opu
pisd
tt, B(s) e-2sCaapr
fec
ssof
Kcre
inastcls11.Aprinc
vat
witi
coo
1,2,2,a5
sra
ofcog
thri
ascisus
wiT=2
m11.Abldi
ofafecsofco
gaKa
Kist
csL
1
s + 1II
s-2
(8 + 10)(s + 5)
1
s + 1
II