47
Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW 2010, Kyoto, Japan 17 May 2010 Einstein Telescope: seismic and GGN studies [email protected] Tuesday, May 18, 2010

Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Mark Beker, Nikhef Amsterdamon behalf of the ET design study teamGWADW 2010, Kyoto, Japan17 May 2010

Einstein Telescope: seismic and GGN studies

[email protected]

Tuesday, May 18, 2010

Page 2: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Gravity gradient noise may limit Einstein Telescope sensitivity at low frequencies

2

Seismic noise spectrum - displacement

ASD

[m/rt

Hz]

Frequency [Hz]

GGN calculationsHigh/Low noise model

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.1 1 10

ET noise budget

10 0 10 1 10 210 26

10 25

10 24

10 23

10 22

10 21

10 20

10 19

Frequency [Hz]

Quantum noiseSeismic noiseNewtonian noiseCoating Brownian noiseCoating thermo-optic noiseSubstrate Brownian noiseExcess gasTotal noiseAdvanced VirgoET target

Strain

[1/

Hz]

Assumptions: - Surface detector - Isotropic body pressure waves - Seismic spectrum: (5 nm/ f2 )/√Hz

Saulson’s model prediction of GGNET-B requirement 0.1 nm/√HzET-C requirement (0.1 nm/ f2 )/√Hz

[S. Hild et. al. arXiv.org:0810.0604][P. R. Saulson, Phys. Rev. D, 30, 1984]

Tuesday, May 18, 2010

Page 3: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Gravity gradient noise may limit Einstein Telescope sensitivity at low frequencies

2

Seismic noise spectrum - displacement

ASD

[m/rt

Hz]

Frequency [Hz]

GGN calculationsHigh/Low noise model

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.1 1 10

ET noise budget

10 0 10 1 10 210 26

10 25

10 24

10 23

10 22

10 21

10 20

10 19

Frequency [Hz]

Quantum noiseSeismic noiseNewtonian noiseCoating Brownian noiseCoating thermo-optic noiseSubstrate Brownian noiseExcess gasTotal noiseAdvanced VirgoET target

Strain

[1/

Hz]

Assumptions: - Surface detector - Isotropic body pressure waves - Seismic spectrum: (5 nm/ f2 )/√Hz

Saulson’s model prediction of GGNET-B requirement 0.1 nm/√HzET-C requirement (0.1 nm/ f2 )/√Hz

[S. Hild et. al. arXiv.org:0810.0604][P. R. Saulson, Phys. Rev. D, 30, 1984]

Tuesday, May 18, 2010

Page 4: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Gravity gradient noise may limit Einstein Telescope sensitivity at low frequencies

2

Seismic noise spectrum - displacement

ASD

[m/rt

Hz]

Frequency [Hz]

GGN calculationsHigh/Low noise model

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.1 1 10

ET noise budget

10 0 10 1 10 210 26

10 25

10 24

10 23

10 22

10 21

10 20

10 19

Frequency [Hz]

Quantum noiseSeismic noiseNewtonian noiseCoating Brownian noiseCoating thermo-optic noiseSubstrate Brownian noiseExcess gasTotal noiseAdvanced VirgoET target

Strain

[1/

Hz]

Assumptions: - Surface detector - Isotropic body pressure waves - Seismic spectrum: (5 nm/ f2 )/√Hz

Saulson’s model prediction of GGNET-B requirement 0.1 nm/√HzET-C requirement (0.1 nm/ f2 )/√Hz

[S. Hild et. al. arXiv.org:0810.0604][P. R. Saulson, Phys. Rev. D, 30, 1984]

Tuesday, May 18, 2010

Page 5: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

ET sensitivity requirements corresponds to a seismic acceleration PSD of 3x10-17 (m2/s4) f4/Hz

3

PSD

[(m

2/s4

)/Hz]

Frequency [Hz]

ET-B requirementsHigh/Low noise model

1e-19 1e-18 1e-17 1e-16 1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-09

0.1 1 10

Seismic noise spectrum - acceleration

ASD

[m/H

z]

Frequency [Hz]

ET-B requirementsHigh/Low noise model

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.1 1 10

Seismic noise spectrum - displacement

Tuesday, May 18, 2010

Page 6: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Can a suitably seismically quiet location be found to satisfy this requirement?

4

PSD

[(m

2/s4

)/Hz]

Frequency [Hz]

ET-B requirementsHigh/Low noise model

1e-19 1e-18 1e-17 1e-16 1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-09

0.1 1 10

Tuesday, May 18, 2010

Page 7: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Seismic measurements have been done throughout Europe to classify underground locations

• 2 Trillium 240 seismometers• Broadband mHz - 30 Hz

• Hard-rock tile

• Insulation cover

• Data acquisition systems• LabView readout through 18 bit DAQ card

• Low noise amplifier

5Tuesday, May 18, 2010

Page 8: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Seismic measurements have been done throughout Europe to classify underground locations

• 2 Trillium 240 seismometers• Broadband mHz - 30 Hz

• Hard-rock tile

• Insulation cover

• Data acquisition systems• LabView readout through 18 bit DAQ card

• Low noise amplifier

5Tuesday, May 18, 2010

Page 9: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Seismic measurements have been done throughout Europe to classify underground locations

• 2 Trillium 240 seismometers• Broadband mHz - 30 Hz

• Hard-rock tile

• Insulation cover

• Data acquisition systems• LabView readout through 18 bit DAQ card

• Low noise amplifier

5Tuesday, May 18, 2010

Page 10: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Seismic measurements have been done throughout Europe to classify underground locations

• 2 Trillium 240 seismometers• Broadband mHz - 30 Hz

• Hard-rock tile

• Insulation cover

• Data acquisition systems• LabView readout through 18 bit DAQ card

• Low noise amplifier

5Tuesday, May 18, 2010

Page 11: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Seismic measurements have been done throughout Europe to classify underground locations

• 2 Trillium 240 seismometers• Broadband mHz - 30 Hz

• Hard-rock tile

• Insulation cover

• Data acquisition systems• LabView readout through 18 bit DAQ card

• Low noise amplifier

5Tuesday, May 18, 2010

Page 12: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

6

5/14/10 6:30 AMEinstein Telescope project - Google Maps

Page 1 of 5http://maps.google.com/maps/ms?f=q&source=s_q&hl=en&geocode=…5ff&ll=52.643063,18.017578&spn=29.791782,68.466797&z=4&pw=1

ETseismic locations0 views - PublicCreated on May 13 - Updated < 1 minute agoBy mbekerRate this map - Write a comment

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)

GYÖNGYÖSOROSZI MINE

Data collected from these sites

Measurements still to be carried out at these sites

Tuesday, May 18, 2010

Page 13: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

6

5/14/10 6:30 AMEinstein Telescope project - Google Maps

Page 1 of 5http://maps.google.com/maps/ms?f=q&source=s_q&hl=en&geocode=…5ff&ll=52.643063,18.017578&spn=29.791782,68.466797&z=4&pw=1

ETseismic locations0 views - PublicCreated on May 13 - Updated < 1 minute agoBy mbekerRate this map - Write a comment

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)

GYÖNGYÖSOROSZI MINE

Data collected from these sites

Measurements still to be carried out at these sites

Underground data available from these sites

Tuesday, May 18, 2010

Page 14: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

6

5/14/10 6:30 AMEinstein Telescope project - Google Maps

Page 1 of 5http://maps.google.com/maps/ms?f=q&source=s_q&hl=en&geocode=…5ff&ll=52.643063,18.017578&spn=29.791782,68.466797&z=4&pw=1

ETseismic locations0 views - PublicCreated on May 13 - Updated < 1 minute agoBy mbekerRate this map - Write a comment

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)

GYÖNGYÖSOROSZI MINE

Data collected from these sites

Measurements still to be carried out at these sites

5/16/10 10:52 AMInotani Station, Japan - Google Maps

Page 1 of 2http://maps.google.com/

Address

AND, Basarsoft, Geocentre Consulting, Mapabc, PPWK, Tele Atlas, Transnavicom, Europa Technologies, Google, INEGI, LeadDog Consulting, MapLink -

ETseismic locations

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)- Longest mine drift is approximately 3km.- Mine is at 330m depth.- Current seismic station is at approx 50m.- Local population density 75/km2 (Gyongyosoroszi 21.39km2)- Distance to sea or ocean is approximately 500km.SITE MEASUREMENTS:01/04/2010 UNTIL 07/04/2010Seismic info:https://workarea.et-gw.eu/et/general/public-slides/sites/Hungary.pdf

GYÖNGYÖSOROSZI MINE

View in Google Earth Print Send Link Get Directions My Maps

To see all the details that are visible on thescreen,use the "Print" link next to the map.

2 Seismometers in Homestake mine, SD

Underground data available from these sites

Tuesday, May 18, 2010

Page 15: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

6

5/14/10 6:30 AMEinstein Telescope project - Google Maps

Page 1 of 5http://maps.google.com/maps/ms?f=q&source=s_q&hl=en&geocode=…5ff&ll=52.643063,18.017578&spn=29.791782,68.466797&z=4&pw=1

ETseismic locations0 views - PublicCreated on May 13 - Updated < 1 minute agoBy mbekerRate this map - Write a comment

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)

GYÖNGYÖSOROSZI MINE

Data collected from these sites

Measurements still to be carried out at these sites

5/16/10 10:52 AMInotani Station, Japan - Google Maps

Page 1 of 2http://maps.google.com/

Address

AND, Basarsoft, Geocentre Consulting, Mapabc, PPWK, Tele Atlas, Transnavicom, Europa Technologies, Google, INEGI, LeadDog Consulting, MapLink -

ETseismic locations

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)- Longest mine drift is approximately 3km.- Mine is at 330m depth.- Current seismic station is at approx 50m.- Local population density 75/km2 (Gyongyosoroszi 21.39km2)- Distance to sea or ocean is approximately 500km.SITE MEASUREMENTS:01/04/2010 UNTIL 07/04/2010Seismic info:https://workarea.et-gw.eu/et/general/public-slides/sites/Hungary.pdf

GYÖNGYÖSOROSZI MINE

View in Google Earth Print Send Link Get Directions My Maps

To see all the details that are visible on thescreen,use the "Print" link next to the map.

2 Seismometers in Homestake mine, SD

5/16/10 10:57 AMInotani Station, Japan - Google Maps

Page 1 of 2http://maps.google.com/

Address

©2010 Google - Map data ©2010 AND, Europa Technologies, Geocentre Consulting, Mapabc, ZENRIN, SK M&C -

SITE CHARACTERISTICS:- Decommissioned salt mine (largest salt mine in Europe)- Local geology is andesite.- Already contains some large caverns.- Current depth of seismic station is unknown.- Depth of mine is at a few hundreds of metres.- Local population density is 180/km2 (Slanic 40km2).- Distance to sea or ocean is 300km.SITE MEASUREMENTS:08/04/2010 UNTIL 14/04/2010 Seismic info:https://workarea.et-gw.eu/et/general/public-slides/sites/Romania-SLANIC-PRAHOVA.pdf

Sl!nic

Baksan Neutrino Observatory

View in Google Earth Print Send Link Get Directions My Maps

To see all the details that are visible on thescreen,use the "Print" link next to the map.

Underground data available from these sites

Thanks to:Dr. Kazuaki KurodaDr. Uchiyama TakashiDr. Osamu MiyakawaDr. Shinji Miyoki

Tuesday, May 18, 2010

Page 16: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

6

5/14/10 6:30 AMEinstein Telescope project - Google Maps

Page 1 of 5http://maps.google.com/maps/ms?f=q&source=s_q&hl=en&geocode=…5ff&ll=52.643063,18.017578&spn=29.791782,68.466797&z=4&pw=1

ETseismic locations0 views - PublicCreated on May 13 - Updated < 1 minute agoBy mbekerRate this map - Write a comment

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)

GYÖNGYÖSOROSZI MINE

Data collected from these sites

Measurements still to be carried out at these sites

5/16/10 10:52 AMInotani Station, Japan - Google Maps

Page 1 of 2http://maps.google.com/

Address

AND, Basarsoft, Geocentre Consulting, Mapabc, PPWK, Tele Atlas, Transnavicom, Europa Technologies, Google, INEGI, LeadDog Consulting, MapLink -

ETseismic locations

SITE CHARACTERISTICS:- Decommissioned lead mine.- Local geology is andesite (wave speed equal to granite)- Longest mine drift is approximately 3km.- Mine is at 330m depth.- Current seismic station is at approx 50m.- Local population density 75/km2 (Gyongyosoroszi 21.39km2)- Distance to sea or ocean is approximately 500km.SITE MEASUREMENTS:01/04/2010 UNTIL 07/04/2010Seismic info:https://workarea.et-gw.eu/et/general/public-slides/sites/Hungary.pdf

GYÖNGYÖSOROSZI MINE

View in Google Earth Print Send Link Get Directions My Maps

To see all the details that are visible on thescreen,use the "Print" link next to the map.

2 Seismometers in Homestake mine, SD

5/16/10 10:57 AMInotani Station, Japan - Google Maps

Page 1 of 2http://maps.google.com/

Address

©2010 Google - Map data ©2010 AND, Europa Technologies, Geocentre Consulting, Mapabc, ZENRIN, SK M&C -

SITE CHARACTERISTICS:- Decommissioned salt mine (largest salt mine in Europe)- Local geology is andesite.- Already contains some large caverns.- Current depth of seismic station is unknown.- Depth of mine is at a few hundreds of metres.- Local population density is 180/km2 (Slanic 40km2).- Distance to sea or ocean is 300km.SITE MEASUREMENTS:08/04/2010 UNTIL 14/04/2010 Seismic info:https://workarea.et-gw.eu/et/general/public-slides/sites/Romania-SLANIC-PRAHOVA.pdf

Sl!nic

Baksan Neutrino Observatory

View in Google Earth Print Send Link Get Directions My Maps

To see all the details that are visible on thescreen,use the "Print" link next to the map.

Underground data available from these sites

Thanks to:Dr. Kazuaki KurodaDr. Uchiyama TakashiDr. Osamu MiyakawaDr. Shinji Miyoki

Surface seismic data from > 200 sites (Orfeus network)

Tuesday, May 18, 2010

Page 17: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

7

Characterization of sites is done using spectral variation plots of half hour averages

The Netherlands

Tuesday, May 18, 2010

Page 18: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

7

Characterization of sites is done using spectral variation plots of half hour averages

The NetherlandsSpain - Lab. Sub. Canfranc

Tuesday, May 18, 2010

Page 19: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Locations in Hungary, France and Spain have shown to be within ET-B requirements > 2 Hz

8

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

0.1 1 10Frequency [Hz]

Mode from half hour PSDs N

PSD

[m /s

/Hz

]2

4

RomaniaHolland

HungarySpain - LSC

France - LSMHigh/Low noise model

ET-B req.

Tuesday, May 18, 2010

Page 20: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Locations in Hungary, France and Spain have shown to be within ET-B requirements > 2 Hz

8

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

0.1 1 10Frequency [Hz]

Mode from half hour PSDs N

PSD

[m /s

/Hz]

24

RomaniaHolland

HungarySpain - LSC

France - LSMHigh/Low noise model

ET-B req.

Error bars indicate 90 and 10%

occurrence levels

Tuesday, May 18, 2010

Page 21: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Locations in Hungary, France and Spain have shown to be within ET-B requirements > 2 Hz

8

10 m2000 m200 m400 m800 m

Depth

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

0.1 1 10Frequency [Hz]

Mode from half hour PSDs N

PSD

[m /s

/Hz]

24

RomaniaHolland

HungarySpain - LSC

France - LSMHigh/Low noise model

ET-B req.

Error bars indicate 90 and 10%

occurrence levels

Tuesday, May 18, 2010

Page 22: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Locations in Hungary, France and Spain have shown to be within ET-B requirements > 2 Hz

8

10 m2000 m200 m400 m800 m

Depth

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

0.1 1 10Frequency [Hz]

Mode from half hour PSDs N

PSD

[m /s

/Hz]

24

RomaniaHolland

HungarySpain - LSC

France - LSMHigh/Low noise model

ET-B req.

Error bars indicate 90 and 10%

occurrence levels

Romania was a working salt mine

Tuesday, May 18, 2010

Page 23: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

SuSa Mo

9

Seismic noise at 1 - 20 Hz is dominated by anthropogenic activity

Earthquake, Solomon Islands, Magnitude 6.8 Mining blast

Tuesday, May 18, 2010

Page 24: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

SuSa Mo

9

Seismic noise at 1 - 20 Hz is dominated by anthropogenic activity

Earthquake, Solomon Islands, Magnitude 6.8 Mining blast

Spectrogram Slanic salt mine Romania

Tuesday, May 18, 2010

Page 25: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

10

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 26: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

10

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 27: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

10

Surface

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 28: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

10

Surface-10 m

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 29: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

10

Surface-10 m-50 m

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 30: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

10

Surface-10 m-50 m-100 m

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 31: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

10

Surface-10 m-50 m-100 m-150 m

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 32: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Given that underground seismicity is achievable, what about the contribution of surface waves to GGN?

• G. Cella (ET workshop 2009)• Propagating surface wave modes only (distant sources)

• Significant reductions with depth

• Smaller wavelength = higher reductions

• Still left with self-generated local noise sources

• Local impulse excitations don’t profit from a reduction in depth

• Prediction and subtraction methods

10

Surface-10 m-50 m-100 m-150 m

ET-B

ET-C

[G. Cella et. al. Class.Quan.Grav 2010]

Frequency [Hz]

Strain / √H

z

Tuesday, May 18, 2010

Page 33: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Finite element models can be used to get a better understanding of local source effects

• FE models have been shown to accurately reproduce seismic surface and body waves from an excitation

• Investigate surface / body wave effects• FE models can be developed to include inhomogeneities and complex geologies

• Used to test GGN subtraction algorithms

11Tuesday, May 18, 2010

Page 34: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

GGN simulations done on homogeneous media show strong contributions from local sources

12

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 0.5 1 1.5 2

Max

imum

acc

eler

atio

n [m

/s2 ]

Depth, z/cP

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

0.1 1 10

Ampl

itude

Spe

ctru

m [m

/s2 ]

Frequency [Hz]

z/cP = 0z/cP = 0.5

z/cP = 1z/cP = 1.5

-1e-13

-5e-14

0

5e-14

1e-13

0 1 2 3 4 5 6

Time [s]

z/cP=1.5

TotalSurface

Bulk

-1e-13

-5e-14

0

5e-14

1e-13

1.5e-13

2e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

Time [s]

z/cP=1 m

-4e-13

-3e-13

-2e-13

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

z/cP=0.5 m

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

QS2Clay3 z/cP=0 m

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 0.5 1 1.5 2

Max

imum

acc

eler

atio

n [m

/s2 ]

Depth, z/cP

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

0.1 1 10

Ampl

itude

Spe

ctru

m [m

/s2 ]

Frequency [Hz]

z/cP = 0z/cP = 0.5

z/cP = 1z/cP = 1.5

-1e-13

-5e-14

0

5e-14

1e-13

0 1 2 3 4 5 6

Time [s]

z/cP=1.5

TotalSurface

Bulk

-1e-13

-5e-14

0

5e-14

1e-13

1.5e-13

2e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

Time [s]

z/cP=1 m

-4e-13

-3e-13

-2e-13

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

z/cP=0.5 m

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

QS2Clay3 z/cP=0 m

z = 0 m

z = 800 m = λP

Tuesday, May 18, 2010

Page 35: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

GGN simulations done on homogeneous media show strong contributions from local sources

12

Rayleigh wave arrives at surface detector

S-wave arrives at sub-ter. detector

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 0.5 1 1.5 2

Max

imum

acc

eler

atio

n [m

/s2 ]

Depth, z/cP

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

0.1 1 10

Ampl

itude

Spe

ctru

m [m

/s2 ]

Frequency [Hz]

z/cP = 0z/cP = 0.5

z/cP = 1z/cP = 1.5

-1e-13

-5e-14

0

5e-14

1e-13

0 1 2 3 4 5 6

Time [s]

z/cP=1.5

TotalSurface

Bulk

-1e-13

-5e-14

0

5e-14

1e-13

1.5e-13

2e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

Time [s]

z/cP=1 m

-4e-13

-3e-13

-2e-13

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

z/cP=0.5 m

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

QS2Clay3 z/cP=0 m

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 0.5 1 1.5 2

Max

imum

acc

eler

atio

n [m

/s2 ]

Depth, z/cP

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

0.1 1 10

Ampl

itude

Spe

ctru

m [m

/s2 ]

Frequency [Hz]

z/cP = 0z/cP = 0.5

z/cP = 1z/cP = 1.5

-1e-13

-5e-14

0

5e-14

1e-13

0 1 2 3 4 5 6

Time [s]

z/cP=1.5

TotalSurface

Bulk

-1e-13

-5e-14

0

5e-14

1e-13

1.5e-13

2e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

Time [s]

z/cP=1 m

-4e-13

-3e-13

-2e-13

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

z/cP=0.5 m

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

QS2Clay3 z/cP=0 m

z = 0 m

z = 800 m = λP

Tuesday, May 18, 2010

Page 36: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

GGN simulations done on homogeneous media show strong contributions from local sources

12

Rayleigh wave arrives at surface detector

S-wave arrives at sub-ter. detector

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 0.5 1 1.5 2

Max

imum

acc

eler

atio

n [m

/s2 ]

Depth, z/cP

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

0.1 1 10

Ampl

itude

Spe

ctru

m [m

/s2 ]

Frequency [Hz]

z/cP = 0z/cP = 0.5

z/cP = 1z/cP = 1.5

-1e-13

-5e-14

0

5e-14

1e-13

0 1 2 3 4 5 6

Time [s]

z/cP=1.5

TotalSurface

Bulk

-1e-13

-5e-14

0

5e-14

1e-13

1.5e-13

2e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

Time [s]

z/cP=1 m

-4e-13

-3e-13

-2e-13

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

z/cP=0.5 m

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

QS2Clay3 z/cP=0 m

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 0.5 1 1.5 2

Max

imum

acc

eler

atio

n [m

/s2 ]

Depth, z/cP

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

0.1 1 10

Ampl

itude

Spe

ctru

m [m

/s2 ]

Frequency [Hz]

z/cP = 0z/cP = 0.5

z/cP = 1z/cP = 1.5

-1e-13

-5e-14

0

5e-14

1e-13

0 1 2 3 4 5 6

Time [s]

z/cP=1.5

TotalSurface

Bulk

-1e-13

-5e-14

0

5e-14

1e-13

1.5e-13

2e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

Time [s]

z/cP=1 m

-4e-13

-3e-13

-2e-13

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

z/cP=0.5 m

-1e-13

0

1e-13

2e-13

3e-13

4e-13

0 1 2 3 4 5 6

Acce

lera

tion

[m/s

2 ]

QS2Clay3 z/cP=0 m

z = 0 m

z = 800 m = λP

Tuesday, May 18, 2010

Page 37: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

13

Clay:λP = 800 mλS = 462 mρ = 2000 kg/m3ν = 0.25

Limestone:λP = 2200 mλS = 1270 mρ = 2500 kg/m3ν = 0.25

Harmonic excitations only benefit from small reduction factors

Tuesday, May 18, 2010

Page 38: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

13

Clay:λP = 800 mλS = 462 mρ = 2000 kg/m3ν = 0.25

Limestone:λP = 2200 mλS = 1270 mρ = 2500 kg/m3ν = 0.25

Harmonic excitations only benefit from small reduction factors

Tuesday, May 18, 2010

Page 39: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

13

Clay:λP = 800 mλS = 462 mρ = 2000 kg/m3ν = 0.25

Limestone:λP = 2200 mλS = 1270 mρ = 2500 kg/m3ν = 0.25

0.1

1

100 1000

Redu

ction

facto

r

Depth [m]

Clay 1Hz FEA/FitClay 4Hz FEA/Fit

Granite 1Hz FEA/FitGranite 4Hz FEA/Fit

GGN re

duction factor

Depth [m]

GGNmax(z)/GGNmax(0)GGN at depth / GGN at surface

λP=800 m λP=2200 m

Harmonic excitations only benefit from small reduction factors

100 1000

1

0.1

LimestoneClay

Tuesday, May 18, 2010

Page 40: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Adaptive filter algorithms can be used to predict and subtract GGN

• Use secondary sensors to measure the density perturbations around the detector.

• Create models that estimatethe sensor to test mass impulse responses.

• Use adaptive filter techniques to estimate and reduce GGN

14

NewtonianNoise TFhnn

x(n) d(n) e(n)

e(n) = d(n) -

!+

-

Update algorithm

Digital filtersystemw

d(n)^

d(n)^"w

Seismic signalNewtonian

noise

Estimated Newtonian

noise

GW signal

Tuesday, May 18, 2010

Page 41: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

GGN due to harmonic local source is used to test filter effectiveness

15

0

0

1 2 3 4 5 6Time [s]

Finite Element Analysis GGN - Harmonic excitation

GGNxExcitation

Loca

l acc

elerat

ion am

plitud

e [Ar

b. Un

its]

Tuesday, May 18, 2010

Page 42: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

GGN due to harmonic local source is used to test filter effectiveness

15

0

0

1 2 3 4 5 6Time [s]

Finite Element Analysis GGN - Harmonic excitation

GGNxExcitation

Loca

l acc

elerat

ion am

plitud

e [Ar

b. Un

its]

Tuesday, May 18, 2010

Page 43: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Results of simple filtering algorithm show a reduction of 1.5 orders of magnitude

16

Time domain performance of the Wiener filter

GGN !xfiltered estimateSubracted channel

Loca

l acc

elerat

ion am

plitud

e [Ar

b. Un

its]

0 1 2 3 4 5 6Time [s]

Tuesday, May 18, 2010

Page 44: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Future work

• Seismic measurements

• Finish preliminary characterization of sites in Europe

• Data analysis

• FE GGN models

• Multiple uncorrelated sources

• Various geologies

• Cavity size and shape

• GGN filtering

• Optimizing filter coefficients

• Determine requirements for seismic array (seismometer density and positions)

17Tuesday, May 18, 2010

Page 45: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

Conclusions

• The ET-B seismic noise requirement can be obtained at various locations in Europe.

• ET-C requirement will be more challenging

• Surface wave effects reduce with depth• Local excitations will still be a source of GGN• Finite element models used to better understand these effects

• Can be reduced using adaptive filtering techniques

• Care must be taken when considering placement of infrastructure (advice committee)

18Tuesday, May 18, 2010

Page 46: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

19Tuesday, May 18, 2010

Page 47: Einstein Telescope: seismic and GGN studiesgw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf · Mark Beker, Nikhef Amsterdam on behalf of the ET design study team GWADW

20Tuesday, May 18, 2010