51
Eigenvalues of the sum of matrices from unitary similarity orbits Chi-Kwong Li Department of Mathematics The College of William and Mary Based on some joint work with: Yiu-Tung Poon (Iowa State University), Nung-Sing Sze (University of Connecticut), Chi-Kwong Li Eigenvalues of the sum of matrices.

Eigenvalues of the sum of matrices from unitary similarity

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Eigenvalues of the sum of matrices from unitary similarity

Eigenvalues of the sum of matrices

from unitary similarity orbits

Chi-Kwong LiDepartment of Mathematics

The College of William and Mary

Based on some joint work with:Yiu-Tung Poon (Iowa State University),

Nung-Sing Sze (University of Connecticut),

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 2: Eigenvalues of the sum of matrices from unitary similarity

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 3: Eigenvalues of the sum of matrices from unitary similarity

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 4: Eigenvalues of the sum of matrices from unitary similarity

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 5: Eigenvalues of the sum of matrices from unitary similarity

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

It is natural to make predictions about U∗AU + V ∗BV based oninformation of A and B.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 6: Eigenvalues of the sum of matrices from unitary similarity

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

It is natural to make predictions about U∗AU + V ∗BV based oninformation of A and B.

Knowing E(A,B) is helpful in the study of perturbations,approximations, stability, convergence, spectral variations, ....

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 7: Eigenvalues of the sum of matrices from unitary similarity

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

It is natural to make predictions about U∗AU + V ∗BV based oninformation of A and B.

Knowing E(A,B) is helpful in the study of perturbations,approximations, stability, convergence, spectral variations, ....

Especially, in the study of quantum computing and quantuminformation theory, all measurements, control, perturbations, etc.are related to unitary similarity transforms.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 8: Eigenvalues of the sum of matrices from unitary similarity

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 9: Eigenvalues of the sum of matrices from unitary similarity

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 10: Eigenvalues of the sum of matrices from unitary similarity

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 11: Eigenvalues of the sum of matrices from unitary similarity

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Example Let A =

(

10 00 20

)

and B =

(

3 00 4

)

.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 12: Eigenvalues of the sum of matrices from unitary similarity

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Example Let A =

(

10 00 20

)

and B =

(

3 00 4

)

.

If A + V ∗BV has eigenvalues c1 ≥ c2, then c1 ∈ [23, 24], c2 ∈ [13, 14],

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 13: Eigenvalues of the sum of matrices from unitary similarity

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Example Let A =

(

10 00 20

)

and B =

(

3 00 4

)

.

If A + V ∗BV has eigenvalues c1 ≥ c2, then c1 ∈ [23, 24], c2 ∈ [13, 14],

and E(A,B) = [13, 14] ∪ [23, 24].

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 14: Eigenvalues of the sum of matrices from unitary similarity

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 15: Eigenvalues of the sum of matrices from unitary similarity

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

If V is unitary and A + V ∗BV has eigenvalues c1 ≥ · · · ≥ cn, then

cj = [bj + an, bj + a1] ∩ [aj + bn, aj + b1] for j = 1, . . . , n.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 16: Eigenvalues of the sum of matrices from unitary similarity

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

If V is unitary and A + V ∗BV has eigenvalues c1 ≥ · · · ≥ cn, then

cj = [bj + an, bj + a1] ∩ [aj + bn, aj + b1] for j = 1, . . . , n.

It follows that E(A,B) equals

[an + bn, a1 + b1] \n−1⋃

j=1

((aj+1 + b1, aj + bn) ∪ (bj+1 + a1, bj + an)) .

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 17: Eigenvalues of the sum of matrices from unitary similarity

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

If V is unitary and A + V ∗BV has eigenvalues c1 ≥ · · · ≥ cn, then

cj = [bj + an, bj + a1] ∩ [aj + bn, aj + b1] for j = 1, . . . , n.

It follows that E(A,B) equals

[an + bn, a1 + b1] \n−1⋃

j=1

((aj+1 + b1, aj + bn) ∪ (bj+1 + a1, bj + an)) .

Consequently, E(A,B) = [an + bn, a1 + b1] if

b1 − bn ≥ max1≤j≤n−1

(aj − aj+1) and a1 − an ≥ max1≤j≤n−1

(bj − bj+1).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 18: Eigenvalues of the sum of matrices from unitary similarity

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 19: Eigenvalues of the sum of matrices from unitary similarity

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

There exist Hermitian matrices A, B and C = A + B with eigenvaluesa1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn if and only if

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 20: Eigenvalues of the sum of matrices from unitary similarity

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

There exist Hermitian matrices A, B and C = A + B with eigenvaluesa1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn if and only if

n∑

j=1

(aj + bj) =

n∑

j=1

cj ,

and

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 21: Eigenvalues of the sum of matrices from unitary similarity

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

There exist Hermitian matrices A, B and C = A + B with eigenvaluesa1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn if and only if

n∑

j=1

(aj + bj) =

n∑

j=1

cj ,

and∑

r∈R

ar +∑

s∈S

bs ≥∑

t∈T

ct

for all subsequences R,S, T of (1, . . . , n) determined by theLittlewood-Richardson rules.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 22: Eigenvalues of the sum of matrices from unitary similarity

Normal matrices

Example 1 Suppose σ(A) = {1,−1} and σ(B) = {i,−i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 23: Eigenvalues of the sum of matrices from unitary similarity

Normal matrices

Example 1 Suppose σ(A) = {1,−1} and σ(B) = {i,−i}.

Then E(A,B) equals

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 24: Eigenvalues of the sum of matrices from unitary similarity

Example 2 Suppose σ(A) = {1,−1} and σ(B) = {0.8i,−0.8i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 25: Eigenvalues of the sum of matrices from unitary similarity

Example 2 Suppose σ(A) = {1,−1} and σ(B) = {0.8i,−0.8i}.

Then E(A,B) equals

−1 −0.5 0 0.5 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 26: Eigenvalues of the sum of matrices from unitary similarity

Proposition [LPS,2008]

Suppose A,B ∈ Mn are normal with

σ(A) = {a1, a2} and σ(B) = {b1, b2}.

Then E(A,B) are two (finite) segments of the hyperbola with end pointsin {a1 + b1, a1 + b2, a2 + b1, a2 + b2}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 27: Eigenvalues of the sum of matrices from unitary similarity

Example 3 Suppose w = ei2π/3,σ(A) = {−iw,−iw2} and σ(B) = {−i,−wi,−w2i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 28: Eigenvalues of the sum of matrices from unitary similarity

Example 3 Suppose w = ei2π/3,σ(A) = {−iw,−iw2} and σ(B) = {−i,−wi,−w2i}.

Then E(A,B) equals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 29: Eigenvalues of the sum of matrices from unitary similarity

Example 4 Suppose w = ei2π/3,σ(A) = {−0.95wi,−0.95w2i) and σ(B) = {−i,−wi,−w2i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 30: Eigenvalues of the sum of matrices from unitary similarity

Example 4 Suppose w = ei2π/3,σ(A) = {−0.95wi,−0.95w2i) and σ(B) = {−i,−wi,−w2i}.

Then E(A,B) equals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 31: Eigenvalues of the sum of matrices from unitary similarity

Example 5 Suppose σ(A) = {0, 1 + i} and σ(B) = {0, 1, 4}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 32: Eigenvalues of the sum of matrices from unitary similarity

Example 5 Suppose σ(A) = {0, 1 + i} and σ(B) = {0, 1, 4}.

Then E(A,B) equals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 33: Eigenvalues of the sum of matrices from unitary similarity

Proposition [LPS,2008]

Suppose σ(A) = {a1, a2} and σ(B) = {b1, b2, b3}. ThenE(A,B) = E(a1, a2; b1, b2, b3) consists of connected components enclosedby the three pairs of hyperbola segments

E(a1, a2; b1, b2), E(a1, a2; b1, b3), E(a1, a2; b2, b3).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 34: Eigenvalues of the sum of matrices from unitary similarity

One more example on normal matrices

Example 6 Suppose σ(A) = {0, 1, 4, 6} and σ(B) = {0, i, 2i).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 35: Eigenvalues of the sum of matrices from unitary similarity

One more example on normal matrices

Example 6 Suppose σ(A) = {0, 1, 4, 6} and σ(B) = {0, i, 2i).

Then E(A,B) equals

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 36: Eigenvalues of the sum of matrices from unitary similarity

Results on normal matrices

Theorem [LPS,2008]

Suppose A,B ∈ Mn are normal with σ(A) = {a1, . . . , ap} andσ(B) = {b1, . . . , bq}. Then

E(A,B) = (∪E(ai1, ai2

, ai3; bj1

, bj2)) ∪ (∪E(ai1

, ai2; bj1

, bj2, bj3

)) .

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 37: Eigenvalues of the sum of matrices from unitary similarity

Results on normal matrices

Theorem [LPS,2008]

Suppose A,B ∈ Mn are normal with σ(A) = {a1, . . . , ap} andσ(B) = {b1, . . . , bq}. Then

E(A,B) = (∪E(ai1, ai2

, ai3; bj1

, bj2)) ∪ (∪E(ai1

, ai2; bj1

, bj2, bj3

)) .

Theorem [Wielandt,1955], [LPS,2008]

Suppose A,B ∈ Mn are normal. Then µ /∈ E(A,B) if and only if there isa circular disk containing the eigenvalues of A or µI − B, and excludingthe eigenvalues of the other matrices.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 38: Eigenvalues of the sum of matrices from unitary similarity

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 39: Eigenvalues of the sum of matrices from unitary similarity

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Proposition

Let A ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 40: Eigenvalues of the sum of matrices from unitary similarity

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Proposition

Let A ∈ Mn.

Then µ ∈ σ(A) if and only if (µ, |µ|2) ∈ DW (A).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 41: Eigenvalues of the sum of matrices from unitary similarity

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Proposition

Let A ∈ Mn.

Then µ ∈ σ(A) if and only if (µ, |µ|2) ∈ DW (A).

Then A is normal if and only if DW (A) is a polyhedron.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 42: Eigenvalues of the sum of matrices from unitary similarity

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 43: Eigenvalues of the sum of matrices from unitary similarity

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

DW (A) ∩ DW (µI − B) 6= ∅.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 44: Eigenvalues of the sum of matrices from unitary similarity

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

DW (A) ∩ DW (µI − B) 6= ∅.

For any ξ ∈ C,

conv σ(|A + ξI|) ∩ conv σ(|B − ξI − µI|) 6= ∅.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 45: Eigenvalues of the sum of matrices from unitary similarity

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

DW (A) ∩ DW (µI − B) 6= ∅.

For any ξ ∈ C,

conv σ(|A + ξI|) ∩ conv σ(|B − ξI − µI|) 6= ∅.

Equivalently, singular values of A + ξI and the singular values ofB − ξI − µI do not lie in two separate closed intervals.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 46: Eigenvalues of the sum of matrices from unitary similarity

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 47: Eigenvalues of the sum of matrices from unitary similarity

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 48: Eigenvalues of the sum of matrices from unitary similarity

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Determine all possible eigenvalues for∑k

j=1U∗

j AjUj for givenA1, . . . , Ak ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 49: Eigenvalues of the sum of matrices from unitary similarity

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Determine all possible eigenvalues for∑k

j=1U∗

j AjUj for givenA1, . . . , Ak ∈ Mn.

Study the spectrum of A + V ∗BV for infinite dimensional boundedlinear operators A,B.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 50: Eigenvalues of the sum of matrices from unitary similarity

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Determine all possible eigenvalues for∑k

j=1U∗

j AjUj for givenA1, . . . , Ak ∈ Mn.

Study the spectrum of A + V ∗BV for infinite dimensional boundedlinear operators A,B.

Study the above problems for unitary matrices chosen from acertain subgroups such as SU(2) ⊗ · · · ⊗ SU(2) (m copies).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Page 51: Eigenvalues of the sum of matrices from unitary similarity

Thank you for your attention!

Chi-Kwong Li Eigenvalues of the sum of matrices.