38
Efficient global optimization of nonconvex and nondifferentiable climate control problems A. S. Lieber , C. M. Moles , J. R. Banga , and K. Keller Please fill in Please fill in Corresponding author: Princeton Environmental Institute, Princeton University, Princeton, N.J., 08544, [email protected], Fax: (609) 258-1274 WORK IN PROGRESS. PLEASE DO NOT CITE OR DISTRIBUTE 1

Efficient global optimization of nonconvex and nondifferentiable climate control problems

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Efficient global optimization

of nonconvexand nondifferentiableclimate control problems

A. S.Lieber�, C. M. Moles

�, J.R. Banga

�, andK. Keller

��� ��

Pleasefill in�Pleasefill in��� �Correspondingauthor:

PrincetonEnvironmentalInstitute,PrincetonUniversity,

Princeton,N.J.,08544,[email protected],Fax: (609)258-1274

WORK IN PROGRESS.

PLEASEDO NOT CITE OR DISTRIBUTE

1

Page 2: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Abstract

We explore numerical solution techniquesfor nonconvex andnondiffer-

entiable economic optimal growth models. As an illustrative example,we

consider the optimal control problem of choosing the optimal greenhouse

gasemissionsabatementto avoid or delaya abrupt andirreversibleclimate

damages. We analyze several stochasticglobal optimization methods such

as controlled random search, multi-level coordinatesearch or differential

evolution. The different evolution (DE) algorithm gave the bestresults in

termsof objective function andexecution speed.Othertechniquesarefaster

thanDE in obtaining a local optimum close to theglobal optimum but mis-

converge ultimately. The solution time for DE rises approximately expo-

nentially with increasing problem dimension. The nonconvex problem in

DE requiresup to 50toconverge thantheconvex problem. A simpleparal-

lelism scheme without sub-populations decreasesthe overall solution time

for low (around4) degree of parallelization.

2

Page 3: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Intr oduction

Choosinganintelligentpolicy towardspotential impactsof climatechangemight

beseenasanoptimal controlproblem.In otherwords,presentandfuturesocieties

might want to find someoptimal balancebetweenthe costsof reducinggreen-

housegasemissionsandthe benefitsof avoidedclimatedamages.This kind of

integratedeconomicandscientificassessmenthasbeenpioneeredby theground-

breakingstudiesof William Nordhaus(e.g.,Nordhaus [1992]) andhasspawned

thefield of integratedassessment(IA) of climatechange.

The responseof the climate-economysystemin the integratedassessment

modelsis typically describedassmooth, continuousandconvex (e.g.,Nordhaus

[1994],or Nordhaus and Boyer [2000]). Optimizing asmooth andconvex system

is relatively straightforward with the help local optimization packagessuchas

GAMS/MINOS.However, theclimate-economysystemis not smoothandshows

significanthysteresisresponses[Rahmstorf, 1997;Broecker, 2000;Keller et al.,

2001]which introducelocal optimal optima into theeconomicmodel. Thelocal

optima can renderthe analysisof climatepolicy a difficult global optimization

problemasthey precludetheuseof thestandardoptimizationmethods.Herewe

analyzetheperformanceof recentglobaloptimization algorithms with respectto

theirability to identify theglobaloptimumandthetimerequiredto obtainthebest

solution.

Integratedassessmentmodelsof climatechangefacethreemainoptimization

challenges.First, the time scaleof the problemis very long (several centuries)

relative to thetimescaleof economicchange.To solve this relatively stiff system

requiresa large number of time grid-pointsandresultsin a large numberof op-

timizationvariables.Second,thepossibility of abruptclimatechangeintroduces

jumpsin theobjective functionwhich choke optimizationalgorithms relying on

partial derivatives. Third, someclimatic changesshow hysteresiseffectswhich

renderthemodelsnonconvex (i.e., they introducelocalmaxima).

3

Page 4: Efficient global optimization of nonconvex and nondifferentiable climate control problems

The typically applied local optimization techniquesfind local maximaex-

tremely fast,but often misconverge in nonconvex functions. To avoid miscon-

vergencerequiresglobal optimization (GO) techniques— that is algorithms

that identify the best(global) optimum and without being trappedin local op-

tima. ComputationalGO techniquescanbe broadlybroken into two categories-

stochastic anddeterministic. Stochasticalgorithms cannotbeguaranteedto con-

vergeto absolutesupremaduringany particularrun,but seekto biasrandompro-

cessestowardsasymptotic convergence.Deterministic algorithmscanbeshown

to convergeto supremawith certainty, but their executions’ requiredtime scales,

computationalresources,andknowledgeof theobjective function’s form maybe

formidable. Therefore,optimizing detailed,numericallyintensive integratedas-

sessmentmodelsof climatesystemscreateschallengeseven for currentstateof

theart algorithms.

This paperpresentsboth an examination of the performanceof a variety of

GO techniquesanda computational “cookbook” methodfor optimizing a class

of suchproblems.Our investigationevaluateshow differentalgorithms confront

a globaloptimizationtask. We analyzethequality of foundsupremum(function

valueandvectorform), the time in arriving at thatanswer, theconvergencepath

(how soonthe foundanswergetscloseto thebest),therelationshipbetweenthe

dimensionalityof theproblemandsolutiontime,aswell asimplementation issues

onmultiprocessingworkstationsandsupercomputer clusters.

To introducetheclassof problemsexamined,sectiontwo containsa brief ex-

planationof thresholdmodifiedDICE andpresentsthe reasonsfor its behavior.

Sectionthreeis anexposition of thebehavior of severalGO algorithms with con-

siderationfor their strengthsandweaknesses.Finally, sectionfour exploresthe

performanceof Differential Evolution [Storn and Prince, 1997] in convex and

nonconvex settingsaswell asanextensionin theparallelexecution.

4

Page 5: Efficient global optimization of nonconvex and nondifferentiable climate control problems

The optimization problem

Theoptimizationproblempresentedin thispaperis basedontheDICE (Dynamic

Integratedmodelof Climateand the Economy)model,which is a widely used

dynamiceconomicmodelof theclimatechange.It integrateseconomics,carbon

cycles,climatescienceandimpactsallowing theweighingof thecostsandbenefits

of takingstepsto slow greenhousewarming.

Theoriginal formulationof themodelheldclimatedamagesto economiesto

beasmoothquadraticrelationto changein globalmeantemperature.Keller et al.

[2001] modifiestheDICE model[Nordhaus, 1994]by consideringtheeconomic

damagescausedby an oceancirculationchange(technicallyknown asa North

Atlantic Thermohalinecirculation,THC, collapse).Oncecrossed,the threshold

is irreversible. The damageswroughtby crossingthe thresholdareabruptand

canbe severe. Thoseattributes join to give the systemmany local extremaand

discontinuities.Figure1 demonstratestheeffectsof thethreshold.

For thispaper, weanalyzetheeffectsof aclimatethreshold,thatis, apotential

oceanthermohaline circulationcollapse.Themainobjective is themaximization

of socialwell-beingwith a particularsetof decisionsaboutinvestmentandCO�abatementover time. Althoughresultsarereportedfor theperiodfrom year1995

until 2155,a longertime horizonof 470yearsis usedto avoid endeffects. This

resultsin 94 decisionvariables(47 for abatementand47 for investment). This

paperconsidersTHC specificdamagesof 0%and1.5%of GWP. For summaryof

themechanicsof theDICE model,seeAppendixA.

Methods

Global optimization methodscanbe roughly classifiedasdeterministic [Gross-

mann, 1996; Pinter, 1996; Horst and Tuy, 1996] andstochasticstrategies([Ali

et al., 1997; Torn et al., 1999]. It should be notedthat, althoughdeterministic

5

Page 6: Efficient global optimization of nonconvex and nondifferentiable climate control problems

methodscanguaranteeglobaloptimality for certainGO problems,no algorithm

cansolve generalGO problemswith certaintyin finite time [Guus et al., 1995].

In fact,althoughseveralclassesof deterministic methods(e.g.branchandbound)

have soundtheoreticalconvergenceproperties,the associatedcomputational ef-

fort increasesvery rapidly (oftenexponentially) with theproblemsize.

In contrast,many stochasticmethodscan locatethe vicinity of global solu-

tions with relative rapidity, but with the caveat that global optimality cannotbe

guaranteed.In practice,stochasticmethodsoften provide the userwith a very

good(often, the bestavailable) solution in modestcomputationtime. Creating

additional speed,many stochasticmethodslend themselves to easyparalleliza-

tion, which increasesthe sizeof the problemthat canbe handledin reasonable

wall clock time. Becausethe problemat handmay be treatedas a black box,

stochastic methodsareusuallyquitesimpleto implement. Thosecharacteristics

areespeciallyinterestingsincethe researcheroftenmustlink theoptimizer with

a third-partysoftwarepackagewheretheprocessdynamicmodelhasbeenimple-

mented.

Overview of Go methods

We considera setstochasticGO methodswhich canhandleblack box models.

The algorithms are includedbasedon their publishedperformanceand on our

own experiences.Althoughnoneof thesemethodscanguaranteeoptimality, the

researchermay solve a given problemwith a numberof differentmethodsand

makeadecisionbasedon thesetof solutionsfound.Usually, severalof themeth-

odswill converge to essentially the samesolution. Suchmultiple convergence

shouldnot be regardedas a confirmationof global optimality (it might be the

samelocal optimum), but it doesgive the usersomeconfidence.Furthermore,

it is usuallypossible to have estimates of lower boundsfor the black box cost

function andits differentterms,so the goodnessof the ’global’ solution canbe

evaluated.Sometimesa ’goodenough’solution is sufficient.

6

Page 7: Efficient global optimization of nonconvex and nondifferentiable climate control problems

TheconsideredGO methodsare:

ICRS: astochasticGOmethodpresentedby Banga and Casares [1987],im-

proving the ControlledRandomSearch(CRS) methodof Goulcher

and Casares [1978]. Basically, ICRSis a sequential(onetrial vector

ata time),adaptiverandomsearchmethodwhichcanhandleinequal-

ity constraintsvia penaltyfunctions.

LJ: anothersimple stochasticalgorithm,describedby Luus and Jaakola

[1973]. LJ considersa population of trial vectorsat eachiteration.

Constraintsarealsohandledvia penaltyfunctions.

DE: theDifferentialEvolution method,aspresentedby Storn and Prince

[1997]. DE is a heuristic,population-basedapproachto GO. The

original codeof theDE algorithm[Storn and Prince, 1997]doesnot

checkif thenew generatedvectorsarewithin theirboundconstraints,

sowe slightly modify thecodefor thatpurpose.A brief description

of DE is containedin AppendixB.

GCLSOLVE: a deterministic GO method,implementedin Matlabaspartof the

optimizationenvironmentTOMLAB [Holmstrom, 1999]. It is a ver-

sionof thedirectalgorithm[Holmstrom, 1999]thathandlesnonlinear

andintegerconstraints.GCLSOLVE runsfor apredefinednumberof

function evaluationsandconsidersthe bestfunction valuefound as

theglobaloptimum.

MCS: theMultilevel CoordinateSearch algorithmby Huyer and Neumaier

[1999],inspiredby theDIRECTmethod[Jones, 2001],is aninterme-

diatebetweenpurelyheuristicmethodsandthoseallowing anassess-

mentof thequality of theminimumobtained.It hasaninitial global

phaseafter which a local procedure,basedon a SQPalgorithm, is

launched.Theselocalenhancementsleadto quickconvergenceif the

7

Page 8: Efficient global optimization of nonconvex and nondifferentiable climate control problems

globalphasehasfoundapoint in thebasinof attractionof theglobal

minimizer.

GLOBAL: this is ahybridGOmethodby Csendes [1988],whichessentially is a

modificationof thealgorithmby Boender et al. [1982]. This method

usesa randomsearchfollowed by a local searchroutine. Initially,

it carriesout a clusteringphasewheretheSingleLinkagemethodis

used.Next, two differentlocal searchprocedurescanbeselectedfor

a secondstep. Thefirst (LOCAL) is analgorithmof Quasi-Newton

type that usesthe DFP (Davison-Fletcher-Powell) updateformula.

The second,moreappropriatefor problemswith discontinuousob-

jective functionsor derivatives, is a robust randomsearchmethod

(UNIRANDI) by Jarvi [1973].

Adopted Methods

To attacktheintegratedclimatecontrolproblemof interest,we presentandcom-

parethesolutionsobtainedto theproblemusingseveralglobaloptimization(GO)

methods. Eachof the GO methodsconsideredhasseveral adjustable searchpa-

rameterswhich can greatly influencetheir performance,both in termsof effi-

ciency and robustness. We have followed the publishedrecommendations for

eachmethod(seereferencescitedabove) togetherwith thefeedbackobtainedaf-

tera few preliminaryruns.All thecomputationtimesreportedherewereobtained

usinga low costplatform,PCPentiumIII/866 MHz. For thesake of a fair com-

parison,weconsiderMatlabimplementationsof all thesemethods,exceptfor the

caseof GLOBAL, whereonly a FORTRAN implementation, difficult to translate

to Matlab,wasavailable.

We conductedtestsfor the caseof THC specificdamagesof 1.5%of GWP

(GrossWorld Product)(casenamedtheta15). In order to illustrate the com-

parative performanceof multi-start local methods for this type of problem, a

8

Page 9: Efficient global optimization of nonconvex and nondifferentiable climate control problems

multi-startcode(namedms-FMINU) is alsoimplementedin Matlabmakinguse

of the FMINU code, which is a part of the MATLAB Optimization Toolbox

(1994)[Grace, 1994]. FMINU is meantfor unconstrainedfunctions. Its default

algorithmis aquasi-NewtonmethodthatusestheBFGSformulafor updatingthe

approximation for theHessianmatrix. Its default line searchalgorithmis a safe-

guardedmixed quadraticand cubic polynomial interpolationand extrapolation

method.

RESULTS AND DISCUSSION

Whensolvinga globaloptimizationproblem,it is usuallyinterestingto estimate

how multi-modal it is. In order to illustrate its non-convexity, the problemis

solvedusingthemulti-start (ms-FMINU) approach,considering100randomini-

tial vectorsgeneratedsatisfying theboundsof thedecisionvariables.Thisstrategy

convergesto alargenumberof localsolutions,asdepictedin thehistogramshown

in figure2. It is very significantthatdespitethehugecomputational effort asso-

ciatedwith the100runs,thebestvaluefound(C*=23584.71)is still far from the

solutionsthe GO methodsobtainwith muchsmallercomputation times. These

resultsillustratethe inability of the multi-startapproachto handlehighly multi-

modalproblemslike thisone.

For the theta15problemconsideredhere,the bestvalueof C* = 26398.8is

obtainedby DE (in the C implementation) after several restartsand very long

iterations[Keller et al., 2001]. In this study, the Matlab implementationof DE

findsagainthebestresult(seeTable1). It convergesto essentiallythesameresult

asin Keller et al. [2001], C*=26398.71,althoughthe associatedcomputational

effort is relatively large. TheMCS methodalsoconvergesto a quitegoodresult

(C*=26397.00)but in lessthan250 seconds,i.e. 1.5 ordersof magnitudefaster

thanDE. TheICRSmethodis ableto arriveat a reasonablygoodvaluein just 10

minutesof computation. Table1 presentsthe bestobjective valueeachmethod

obtains,plus thecorrespondingCPU timesandthe requirednumberof function

9

Page 10: Efficient global optimization of nonconvex and nondifferentiable climate control problems

evaluations. No resultsarepresentedregardingthe GLOBAL algorithm, which

doesnotconvergesuccessfully, probablydueto therelatively largedimensionality

of theproblem.

Comparingmethodsbasedonly final objective functionvaluesandtheassoci-

atedcomputationtimesneglectstheir intermediatebehavior. In orderto provide

a morecompletecomparisonof thedifferentmethods,a plot of theconvergence

curves(objective functionvaluesrepresentedasrelativeerrorversuscomputation

time) is presentedin figure3, wherecurvesfor eachmethodareplotted.It canbe

seenthat theICRS methodpresentedthemostrapidconvergenceinitially, but is

ultimatelysurpassedby DE. It shouldbenotedthat,althoughmostof thecompu-

tationtimeis employedin functionevaluations,themethodsdifferedregardingthe

computationaloverheadneededfor thegenerationof new trial vectors.Stochastic

methodsgeneratenew searchdirectionsusingsimpleoperations,sothey have the

minimumassociatedoverhead.Thereversehappenswith deterministic methods.

Additionally, thesolutions from ICRSandLJ, DE from randomstartvectors

are comparedin figure 4. Dependingon the startingconditions, ICRS and LJ

can get trappedin local optima. DE, for the generatedvectors,always arrives

at very closeto the bestfound solution. To extendthe comparisonof solutions,

thesolution vectorformsfor thevariousGO methodsarecomparedwith thatof

Keller by inspecting the decisionvariablesvaluesat the differentoptima. Plots

of the decisionvariablesfor the differentsolutionsarepresentedin figure 5. It

shouldbe notedthat thereare significantdifferencesin the optimal abatement

policies,althoughthe objective function valuesarequite similar. This indicates

a very low sensitivity of thecostfunctionwith respectto thatcontrolvariable,a

ratherfrequentresultin dynamic optimizationproblem.

10

Page 11: Efficient global optimization of nonconvex and nondifferentiable climate control problems

DE Performance

Having establishedthatDE outperformsall otherconsideredalgorithms,we now

explore the performancecharacteristicsof an implementation of DE. First, we

explore the convergenceof DE on oneCPU underdifferentdimensionalities of

problems. The theta15caseis usedas in the preceedingGO survey. But, the

numberof optimizationvariablesis variedfrom tento eightyin incrementsof ten.

It is observedhow many functionevaluationsandhow muchwall-clock timewas

necessaryto convergecloseto thefinal value. Valuesarerecordedfor achieving

99.9%,99.99%,and99.999%of eventually convergedsolution. Themodelwas

executedwith THC specificdamagesof 1.5%GWPandwith 0%GWP. Thewall

clock resultsarecapturedin thefigurebelow.

Performancetestsin this sectionareall performedon a Beowulf cluster. It

consistsof 67 networked workstations. Eachworkstationhas128megabytesof

RAM andtwo 350MHz Intel PentiumII processors.They areconnectedusing

highspeednon-blockingswitchessuchthatcommunications latency is a fraction

of amill isecond.

Figure6 presentsthe resultsfor differentnumbersof dimensions. Time re-

quirementsriseexponentially asthenumberof dimensionsto optimizeincreases.

To arrive at the time requiredfor partial convergence,threeruns startingfrom

high, medium,andlow initial conditions (all 0.99,0.50,and0.01decisionvari-

ablesrespectively) areusedandtheir timesareaveraged.Time requiredfor the

presenceandabsenceof THC whenonly 99.9%convergenceis requiredlie nearly

colinear. In all othercases,the presenceof positive THC specificdamagesin-

creasesthe time requiredfor a specificlevel of convergence. The differencein

convergencetimesfor differentmodelsincreasesastherequiredlevel of accuracy

increases.Thatis, for positive levelsof THC specificdamages,it is moredifficult

to increaseaccuracy thanfor runswith zeroTHC specificdamages.

To examineanotheraspectof DE’sbehavior, anexperimentalimplementation

11

Page 12: Efficient global optimization of nonconvex and nondifferentiable climate control problems

of parallelexecuting DE wastested.Trial vectorsaregeneratedona masternode

just asin the original DE code,but theninsteadof locally evaluating the objec-

tive function, the trial vectorsarepassedto slave nodeson the network. Those

slave nodesreceived the trial vectorsandthe resultingvaluesarereturned.The

performancegainsfrom sucharegimerely critically ontheratioof theamountof

work involvedin anobjective functionevaluationandthecommunication delays

involved in parsingout thework to slave nodes.Figure7 capturestheresultsfor

this test.

The needfor fast communicationsis especiallytrue in clusterimplementa-

tions.Runswith learningandparameteruncertaintyrequirefarmorecomputation

per candidatevectorthanrunswithout. Moving from oneto two CPUsyieldsa

roughly35%performanceboost. This is becausebothCPUsresidein the same

computerandcommunicationsareperformedentirelyin memory. Whenmoving

from two to four processors,network communication is involved andtheperfor-

manceboostis only a further 10%. This is becausethe samepopulationsize

is usedas in earlier runs. Bandwidthis high, but latency is significant. With

successively larger numbersof CPUsworking on the samenumberof function

evaluations,eachonehaslesswork to do, but nearly the sameamountof com-

municationsoverhead.Therefore,underthis scheme,addinglarger numbersof

CPUshasdiminishingproductivity. Perhapsin thefuturea researcherwill imple-

menta fully distributedDE algorithmwherecandidatevectorsaregeneratedand

evaluatedon slave nodes.Considerableexperimentationwill be requiredto find

goodheuristiccrossover ratesbetweennodes.

Conclusion

Weanalyzeavarietyof optimizationtechniquesfor anonconvex andnondifferen-

tiableoptimalcontrolproblemarisingfrom theanalysisof climatechangepolicy.

TheDifferentialEvolution algorithmachievesthebestsolutionasmeasuredboth

12

Page 13: Efficient global optimization of nonconvex and nondifferentiable climate control problems

by thevalueof theobjective functionandthesmoothnessof policy recommenda-

tion.

Furthermore,we evaluate the performanceparametersof the DE algorithm.

Underconditionsof convexity andnonconvexity, differentmagnitudesof dimen-

sionality areexploredfor their impacton computationtime. As thedimensional-

ity of theproblemincreases,thetime requiredfor DE convergencerisesroughly

exponentially. Convex problemsrequirelesssolutiontime thannonconvex prob-

lems.A simpleparallelizationschemeimproves thesolution time for smallnum-

bersof CPUs.

13

Page 14: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Appendix A: DICE Model

The DICE model is a long term dynamicmodelof optimal economicalgrowth

that links economicactivities andclimatechange. The modelusesan increas-

ing transformof thediscountedflow of utili ty acrosstime to measurewell-being

andrank economicactivities andpossibilities andclimateoutcomesandconse-

quences.Well-beingis representedin themodelby a flow of utility�

to society,

definedastheproductof thelogarithm of percapitaconsumption peryear � , and

theexogenouslygivenpopulation � :

���� �� � ��� ���� � ��� �� (1)

Nordhausdefinedutility as income,and we departfrom that in order to place

valueonequityandreducedvariability.

To differentiatebetweenpresentandfutureutili ty, a “pure rateof socialtime

preference,”� , is appliedto discountthefuture.Recognizingthatabatementcosts

applyto thepresentaswell asfuture,but benefitslie only in thefuture,thechoice

modelseeksto maximizethediscountedsumof well-beingexpressedas(� �

):

� � � ���������!

�"��� #%$�& � (' �*) (2)

which is calculatedby discounting theflow of utility, not income,at time�

from

somestartingpoint�(+

to anappropriatetimehorizon� �

.

The grossworld product(GWP, , ) is to be determinedby a Cobb-Douglas

productionfunction of capital - and population with the parameters:level of

technology. , outputscalingfactor / , andelasticityof output 0 with respectto

capital:

, ��� 1� / ��� . ��� - ��� 32 � ��� � '425� (3)

GWP takes into accountabatementcostsandclimate damages,but not capital

depreciation.Theeffectof abatementcostsandclimaterelateddamagesonoutput

is incorporatedinto the model via the output scalingfactor (seeequation16).

14

Page 15: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Feasibleconsumption pathsdependon theeconomy’soutput.Total consumption6is thedifferencebetweengrossworld productandgrossinvestment7 :

6 ��� 1� , ��� 98 7 ��� :� (4)

To link economicactivity to causesof environmental effects,theDICE model

assumedthatcarbonemissions, ; , duringoneyearinto theatmospherearepro-

portionalto the grossworld product,with the proportionality determinedby the

exogenouscarbonintensityof production< andthepolicy choiceof the level of

carbonemissionsabatement= :

; ��� >�@?!$A8 = ��� *B < ��� , ��� �� (5)

A constantfraction C of carbonemissions is addedto the atmospheric carbon

stock D (the restis assumedto be absorbedby carbonsinks). A portion EGF of

theatmospheric carbonin excessof thepreindustrialstockof 590Gt is diffused

during eachtime stepto the deepoceanso that the atmospheric stockevolves

accordingto:

D ��� H�590

& CI; ��J8K$L M&N*$A8 EOF P? D ��Q8R$L 98590

BS�(6)

Atmosphericcarbondioxide actsasa greenhousegas,causinga changeT in the

radiative forcing from thepreindustriallevel accordingto:

T ��� >� 4.1���U D ��� �V

590

���MSWX &ZY[��� ) (7)

whereY

representsthe(exogenously determined)changein forcing dueto other

greenhousegaseslike methaneor CFCs.An increasein radiative forcing causes

anincreasein globalmeanatmospherictemperature\ from its preindustriallevel,

which is modeledusingasimpleatmosphere-oceanclimatemodelaccordingto:

\ ��� 1� \ ��98K$L M&]%$LV_^ � `? T ��� 98Za \ ��98R$L 8�b^ � Vdc �e� ` \ ��J8K$L J8 \ � ��98f$L � *Bb�

(8)

15

Page 16: Efficient global optimization of nonconvex and nondifferentiable climate control problems

In this equation^ � and

^ � denotethe thermalcapacityof the oceanicmixed

layer andthe deepocean,respectively,a

is the climatefeedbackparameter,c �e�

is thetransferratefrom theoceanicmixed layer to thedeepocean,and \ � is the

deviationof thedeep-oceantemperaturefromthepreindustrial levelapproximated

by:

\ � ��� 1� \ � ��Q8R$L M&N*$LVX^ � P?�e^ � Vdc �e� ` \ ��98R$L 98 \ � ��J8K$L � gBS�(9)

A key propertyof theclimatesystemis the"climatesensitivity," which is thehy-

potheticalincreasein equilibriumtemperaturefor adoublingof atmosphericCO� ,placedby theIPCCbetween1.5and4.5degreesCelsiusperdoublingof CO� . In

the DICE model, the climatesensitivity is inverselyrelatedto the parametera.

Specifically, themodeledclimatesensitivity is givenby the ratio of the increase

in radiative forcing for adoublingof atmosphericCO� (equalto 4.1,equation21)

toa.

Thedamagesrelativeto grossworld product( h ) areassumedto bea function

of thedeviationof theglobalaveragetemperaturefrom it’spreindustrialvalue:

h ��� >�Ni � \ ��� *j3k ) (10)

wherei � and

i � aremodelparameters.Thecostof CO� emissionsabatement\ 6 ,

measuredasa fractionof grossworld product,is givenby:

\ 6 ��� >�]l � = ��� %m�k ) (11)

wherel � and

l � aremodelparameters.Giventhecalculatedabatementcostsand

climatedamages,globaloutputis re-scaledwith thescalingfactor / :

/ ��� 1�@?!$A8 \ 6 ��� gB�V�%$�& h ��� � �� (12)

This scalingfactorapproximatesthe effectsof small damagesreasonablywell,

comparedto theexplicit accounting,whichwouldimply / ��� 1�n$o8 \ 6 ��� `8 h ��� .

16

Page 17: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Model parametervaluesare usedfrom the original DICE model, with one

exception.We adopta climatesensitivity of 3.6 degreesCelsiusperdoublingof

CO� insteadof thepreviously used2.9 degreesasour standardvalue. Basedon

the analysisof climatedataandthe expert opinion of the IPCC, Tol98 estimate

the valuesof the medianandthe standarddeviation of the climatesensitivity as

3.6and1.1+C.

We departfrom theoriginal DICE modelstructurein two ways: (i) We con-

sider damagescausedby an uncertainenvironmentalthresholdimposedby an

oceancirculationchange(known asa North Atlantic Thermohalinecirculation

(THC) collapse);(ii) we examineuncertaintiesby posing the modelasa proba-

bilistic optimizationproblem.

OceanmodelingstudiessuggestthattheTHC maycollapsewhentheequiva-

lentCO� concentrationp9qsr kbt u , theconcentrationof CO� andall othergreenhouse

gasesexpressedastheconcentrationof CO� thatleadsto thesameradiative forc-

ing) risesaboveacritical value( pQqsr kbt ubt vxw�y{z ) (e.g.,[Stocker and Schmittner, 1997]).

We representthis phenomenonin themodelby imposing a thresholdspecificcli-

matedamage(i � ) for all times after the THC hascollapsed. We approximate

pJqsr kbt u by an exponential fit to previously calculatedstabilization levels in the

DICE model[Keller et al., 2000]. It is importantto notethatsomeof our calcu-

lationsextrapolatebeyondthe2 to 4+C rangeof climatesensitivity exploredby

StockerandSchmittner(1997).

Second,we explore theeffectsof parameteruncertaintyonapolicy thatmax-

imizes the expectedvalueof the objective function. To this end,we formulate

the modelas a probabilistic optimization problem. Becausewe usea numeri-

cal solution method(discussion follows), we consideronly a discretesubsample

(“statesof theworld” [SOW]) from thecontinuousprobabilitydensityfunctions.

We maximizetheexpectedvalueof thetotal discountedutility� �

over all states

of theworld, weightedby theirprobability. Expectedutility maximization is used

asa decisioncriterion to be consistentwith previous studies[Nordhaus, 1994;

17

Page 18: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Nordhaus and Popp, 1997].

18

Page 19: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Appendix B: DE Algorithm

DifferentialEvolution [DE] is analgorithmfirst describedby StornandPricein

1995. It is an approachto global optimizationsuitedto nonlinearandnon dif-

ferentiablespaceswheredirect searchapproachesare bestsuited. A relatively

new algorithm, DE is not ascommonlyusedasSimulatedAnnealing(SAs) and

GeneticAlgorithms (GAs). Unlike GAs, but like SAs,DEsperformmathemati-

cally meaningfuloperationson its vectors,not their binarystoredvalues.At its

heart,DE is asuiteof methodsfor combining andevaluatingcandidatevectorsin

a feasiblespace.Thissectiondescribesits operation.

First, NP parametervectorsarechosenat randomfor form the initial popu-

lation. Generationsize doesnot vary acrosstime. If nothing is known of the

objective functionsbehavior, the initial population membersmay be distributed

uniformly. Otherwise,they might be distributed normally arounda trial solu-

tion. Trial parametervectorsfor thenext generationaregeneratedby addingthe

weighteddifferencevectorbetweentwo populationmembersto a third member.

If theresultingvectoryieldsalowerobjectivefunctionvaluethanapredetermined

population member, thenewly generatedvectorreplacesthevectorwith which it

wascompared.Thebestparametervector | m�}S~ � � � is evaluatedfor everygeneration�in orderto trackminimizationprogress.Themethod(DE2) usedin this paper

for generatingtrial vectorsis describedbelow.

For eachvector |�� � � )(� � � ) $ ) W ) ����� )(� p 8�$, a trial vector � is generated

accordingto thefollowing rule.

� � |s� � � &�a��� | m�}3~ � � �8 |s� � � M& T �� |s� k � � 8 |s�b� � � (13)

Thecontrolvariablea

controlsthegreedinessof theschemeby determininghow

heavily to weight thecurrentbestvector | m�}3~ � � � . To increasevariation of thepa-

rametervectors,thevector � �@ � � ) � � ) ����� ) ��� g� with

� � �P�����d�H� ��R��� � ) �������f��& � 8f$�� ��� �� s¡ �_¢ �g£ ¡¤�@ |s� � � � (14)

19

Page 20: Efficient global optimization of nonconvex and nondifferentiable climate control problems

where��� � denotethemodulo functionwith modulus h . In otherwords,some

dimensionsof thevector � acquirethevaluesof � , while othersequaltheoriginal

valuesof |¥� � � . This is similar to crossover in GeneticAlgorithms.Theinteger �is thecrossover probabilityand,alongwith

�, is a randomdecisionfor eachtrial

vector � . If theobjective functionat � is animprovedstatecomparedto |U� � � , � is

retained.Thereverseis alsotrue.

20

Page 21: Efficient global optimization of nonconvex and nondifferentiable climate control problems

References

Ali, M., C. Storey, andA. Torn, Applicationof stochasticglobalalgorithmsto

practicalproblems,Journal of Optimal Theory Applications, 95, 545,1997.

Banga,J.R., andJ.J.Casares,Integratedcontrolledrandomsearch:application

to awastewatertreatmentplantmodel,IchemE Symp. Series, 100, 183,1987.

Boender, C., A. H. G. Rinnooy Kan, andG. T. Timmer, Stochasticmethodfor

globaloptimization, Math Programming, 22, 125,1982.

Broecker, W. S., Abrupt climate change:causalconstraintsprovided by the

paleoclimaterecord,Earth-Science Reviews, 51(1-4),137–154,2000.

Csendes,T., Nonlinearparameterestimationby globaloptimization- efficiency

andreliability, Acta Cybernetica, 8, 361,1988.

Goulcher, R., andJ.J.Casares,Thesolution of steady-statechemicalengineer-

ing optimizationproblemsusingrandomsearchtechnique,Computer Chemical

Eng., 2, 33,1978.

Grace,A., Optimizationtoolbox user’sguide,The Math Works Inc., 1994.

Grossmann,I. E., Globaloptimizationin engineeringdesign,Kluwer Academic

Publishers, 1996.

Guus,C., C. Boender, andE. RineuhbmG, Stochasticmethods, Handbook of

Global Optimization, 1995.

Holmstrom, J., The tomlab optimization environment in matlab, Advanced

Model. Optimization, 1(1), 47,1999.

Horst,R.,andH. Tuy, Globaloptimization- determinizticapproaches,Springer

-Verlag, 1996.

21

Page 22: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Huyer, W., and A. Neumaier, Global optimization by multilevel coordinate

search,Journal of Global Optimization, 14, 331–335, 1999.

Jarvi,T., A randomsearchoptimiserwith anapplication to a maxminproblem,

Publications of the Institue of Applied Mathematics, 3, 1973.

Jones,D. R., Direct, In encyclopedia of Optimization, 2001.

Keller, K., B. M. Bolker, andD. F. Bradford, Uncertainclimatethresholds and

economicoptimalgrowth, Workshop on Potential Catastrophic Impacts of Cli-

mate Change, 2001.

Keller, K., K. Tan,F. M. M. Morel, andD. F. Bradford, Preservingthe ocean

circulation:Implicationsfor climatepolicy, Climatic Change, 47, 17–43,2000.

Luus, R., andT. H. I. Jaakola, Optimization by direct searchandsystematic

reducationof thesizeof searchregion, AIChE, 19, 760,1973.

Nordhaus,W. D., An optimal transition pathfor controlling greenhousegases,

Science, 258, 1315–1319, 1992.

Nordhaus,W. D., Managing the global commons: The economics of climate

change, TheMIT press,Cambridge,Massachusetts,1994.

Nordhaus,W. D., andJ.Boyer, Warming the World: Economic Models of Global

Warming, MIT Press,2000.

Nordhaus,W. D., andD. Popp, What is thevalueof scientificknowledge?an

application to globalwarmingusingthepricemodel,The Energy Journal, 18(1),

1997.

Pinter, J.D., Globaloptimizationin action,Kluwer Academic Publishers, 1996.

Rahmstorf,S., Risk of sea-changein theAtlantic, Nature, 388, 825–826,1997.

22

Page 23: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Stocker, T. F., andA. Schmittner, Influenceof co2emission ratesof thestability

of thethermohalinecirculation,Nature, 388, 862–865, 1997.

Storn,R., andK. Prince, Differentialevolution - a simple andefficient adap-

tive schemefor globaloptimizationover continuousspaces,Journal of Global

Optimization, 11, 341,1997.

Torn, A., M. Ali, and S. Viitanen, Stochasticglobal optimization: problem

classesandsolution techniques,Journal of Global Optimization, 14, 437,1999.

23

Page 24: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Appendix A: DICE Model

The DICE model is a long term dynamicmodelof optimal economicalgrowth

that links economicactivities andclimatechange. The modelusesan increas-

ing transformof thediscountedflow of utili ty acrosstime to measurewell-being

andrank economicactivities andpossibilities andclimateoutcomesandconse-

quences.Well-beingis representedin themodelby a flow of utility�

to society,

definedastheproductof thelogarithm of percapitaconsumption peryear � , and

theexogenouslygivenpopulation � :

���� �� � ��� ���� � ��� �� (15)

Nordhausdefinedutility as income,and we departfrom that in order to place

valueonequityandreducedvariability.

To differentiatebetweenpresentandfutureutili ty, a “pure rateof socialtime

preference,”� , is appliedto discountthefuture.Recognizingthatabatementcosts

applyto thepresentaswell asfuture,but benefitslie only in thefuture,thechoice

modelseeksto maximizethediscountedsumof well-beingexpressedas(� �

):

� � � ���������!

�"��� #%$�& � (' �*) (16)

which is calculatedby discounting theflow of utility, not income,at time�

from

somestartingpoint�(+

to anappropriatetimehorizon� �

.

The grossworld product(GWP, , ) is to be determinedby a Cobb-Douglas

productionfunction of capital - and population with the parameters:level of

technology. , outputscalingfactor / , andelasticityof output 0 with respectto

capital:

, ��� 1� / ��� . ��� - ��� 32 � ��� � '425� (17)

GWP takes into accountabatementcostsandclimate damages,but not capital

depreciation.Theeffectof abatementcostsandclimaterelateddamagesonoutput

is incorporatedinto the model via the output scalingfactor (seeequation16).

24

Page 25: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Feasibleconsumption pathsdependon theeconomy’soutput.Total consumption6is thedifferencebetweengrossworld productandgrossinvestment7 :

6 ��� 1� , ��� 98 7 ��� :� (18)

To link economicactivity to causesof environmental effects,theDICE model

assumedthatcarbonemissions, ; , duringoneyearinto theatmospherearepro-

portionalto the grossworld product,with the proportionality determinedby the

exogenouscarbonintensityof production< andthepolicy choiceof the level of

carbonemissionsabatement= :

; ��� >�@?!$A8 = ��� *B < ��� , ��� �� (19)

A constantfraction C of carbonemissions is addedto the atmospheric carbon

stock D (the restis assumedto be absorbedby carbonsinks). A portion EGF of

theatmospheric carbonin excessof thepreindustrialstockof 590Gt is diffused

during eachtime stepto the deepoceanso that the atmospheric stockevolves

accordingto:

D ��� H�590

& CI; ��J8K$L M&N*$A8 EOF P? D ��Q8R$L 98590

BS�(20)

Atmosphericcarbondioxide actsasa greenhousegas,causinga changeT in the

radiative forcing from thepreindustriallevel accordingto:

T ��� >� 4.1���U D ��� �V

590

���MSWX &ZY[��� ) (21)

whereY

representsthe(exogenously determined)changein forcing dueto other

greenhousegaseslike methaneor CFCs.An increasein radiative forcing causes

anincreasein globalmeanatmospherictemperature\ from its preindustriallevel,

which is modeledusingasimpleatmosphere-oceanclimatemodelaccordingto:

\ ��� 1� \ ��98K$L M&]%$LV_^ � `? T ��� 98Za \ ��98R$L 8�b^ � Vdc �e� ` \ ��J8K$L J8 \ � ��98f$L � *Bb�

(22)

25

Page 26: Efficient global optimization of nonconvex and nondifferentiable climate control problems

In this equation^ � and

^ � denotethe thermalcapacityof the oceanicmixed

layer andthe deepocean,respectively,a

is the climatefeedbackparameter,c �e�

is thetransferratefrom theoceanicmixed layer to thedeepocean,and \ � is the

deviationof thedeep-oceantemperaturefromthepreindustrial levelapproximated

by:

\ � ��� 1� \ � ��Q8R$L M&N*$LVX^ � P?�e^ � Vdc �e� ` \ ��98R$L 98 \ � ��J8K$L � gBS�(23)

A key propertyof theclimatesystemis the"climatesensitivity," which is thehy-

potheticalincreasein equilibriumtemperaturefor adoublingof atmosphericCO� ,placedby theIPCCbetween1.5and4.5degreesCelsiusperdoublingof CO� . In

the DICE model, the climatesensitivity is inverselyrelatedto the parametera.

Specifically, themodeledclimatesensitivity is givenby the ratio of the increase

in radiative forcing for adoublingof atmosphericCO� (equalto 4.1,equation21)

toa.

Thedamagesrelativeto grossworld product( h ) areassumedto bea function

of thedeviationof theglobalaveragetemperaturefrom it’spreindustrialvalue:

h ��� >�Ni � \ ��� *j3k ) (24)

wherei � and

i � aremodelparameters.Thecostof CO� emissionsabatement\ 6 ,

measuredasa fractionof grossworld product,is givenby:

\ 6 ��� >�]l � = ��� %m�k ) (25)

wherel � and

l � aremodelparameters.Giventhecalculatedabatementcostsand

climatedamages,globaloutputis re-scaledwith thescalingfactor / :

/ ��� 1�@?!$A8 \ 6 ��� gB�V�%$�& h ��� � �� (26)

This scalingfactorapproximatesthe effectsof small damagesreasonablywell,

comparedto theexplicit accounting,whichwouldimply / ��� 1�n$o8 \ 6 ��� `8 h ��� .

26

Page 27: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Model parametervaluesare usedfrom the original DICE model, with one

exception.We adopta climatesensitivity of 3.6 degreesCelsiusperdoublingof

CO� insteadof thepreviously used2.9 degreesasour standardvalue. Basedon

the analysisof climatedataandthe expert opinion of the IPCC, Tol98 estimate

the valuesof the medianandthe standarddeviation of the climatesensitivity as

3.6and1.1+C.

We departfrom theoriginal DICE modelstructurein two ways: (i) We con-

sider damagescausedby an uncertainenvironmentalthresholdimposedby an

oceancirculationchange(known asa North Atlantic Thermohalinecirculation

(THC) collapse);(ii) we examineuncertaintiesby posing the modelasa proba-

bilistic optimizationproblem.

OceanmodelingstudiessuggestthattheTHC maycollapsewhentheequiva-

lentCO� concentrationp9qsr kbt u , theconcentrationof CO� andall othergreenhouse

gasesexpressedastheconcentrationof CO� thatleadsto thesameradiative forc-

ing) risesaboveacritical value( pQqsr kbt ubt vxw�y{z ) (e.g.,[Stocker and Schmittner, 1997]).

We representthis phenomenonin themodelby imposing a thresholdspecificcli-

matedamage(i � ) for all times after the THC hascollapsed. We approximate

pJqsr kbt u by an exponential fit to previously calculatedstabilization levels in the

DICE model[Keller et al., 2000]. It is importantto notethatsomeof our calcu-

lationsextrapolatebeyondthe2 to 4+C rangeof climatesensitivity exploredby

StockerandSchmittner(1997).

Second,we explore theeffectsof parameteruncertaintyonapolicy thatmax-

imizes the expectedvalueof the objective function. To this end,we formulate

the modelas a probabilistic optimization problem. Becausewe usea numeri-

cal solution method(discussion follows), we consideronly a discretesubsample

(“statesof theworld” [SOW]) from thecontinuousprobabilitydensityfunctions.

We maximizetheexpectedvalueof thetotal discountedutility� �

over all states

of theworld, weightedby theirprobability. Expectedutility maximization is used

asa decisioncriterion to be consistentwith previous studies[Nordhaus, 1994;

27

Page 28: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Nordhaus and Popp, 1997].

28

Page 29: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Appendix B: DE Algorithm

DifferentialEvolution [DE] is analgorithmfirst describedby StornandPricein

1995. It is an approachto global optimizationsuitedto nonlinearandnon dif-

ferentiablespaceswheredirect searchapproachesare bestsuited. A relatively

new algorithm, DE is not ascommonlyusedasSimulatedAnnealing(SAs) and

GeneticAlgorithms (GAs). Unlike GAs, but like SAs,DEsperformmathemati-

cally meaningfuloperationson its vectors,not their binarystoredvalues.At its

heart,DE is asuiteof methodsfor combining andevaluatingcandidatevectorsin

a feasiblespace.Thissectiondescribesits operation.

First, NP parametervectorsarechosenat randomfor form the initial popu-

lation. Generationsize doesnot vary acrosstime. If nothing is known of the

objective functionsbehavior, the initial population membersmay be distributed

uniformly. Otherwise,they might be distributed normally arounda trial solu-

tion. Trial parametervectorsfor thenext generationaregeneratedby addingthe

weighteddifferencevectorbetweentwo populationmembersto a third member.

If theresultingvectoryieldsalowerobjectivefunctionvaluethanapredetermined

population member, thenewly generatedvectorreplacesthevectorwith which it

wascompared.Thebestparametervector | m�}S~ � � � is evaluatedfor everygeneration�in orderto trackminimizationprogress.Themethod(DE2) usedin this paper

for generatingtrial vectorsis describedbelow.

For eachvector |�� � � )(� � � ) $ ) W ) ����� )(� p 8�$, a trial vector � is generated

accordingto thefollowing rule.

� � |s� � � &�a��� | m�}3~ � � �8 |s� � � M& T �� |s� k � � 8 |s�b� � � (27)

Thecontrolvariablea

controlsthegreedinessof theschemeby determininghow

heavily to weight thecurrentbestvector | m�}3~ � � � . To increasevariation of thepa-

rametervectors,thevector � �@ � � ) � � ) ����� ) ��� g� with

� � �P�����d�H� ��R��� � ) �������f��& � 8f$�� ��� �� s¡ �_¢ �g£ ¡¤�@ |s� � � � (28)

29

Page 30: Efficient global optimization of nonconvex and nondifferentiable climate control problems

where��� � denotethemodulo functionwith modulus h . In otherwords,some

dimensionsof thevector � acquirethevaluesof � , while othersequaltheoriginal

valuesof |¥� � � . This is similar to crossover in GeneticAlgorithms.Theinteger �is thecrossover probabilityand,alongwith

�, is a randomdecisionfor eachtrial

vector � . If theobjective functionat � is animprovedstatecomparedto |U� � � , � is

retained.Thereverseis alsotrue.

30

Page 31: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Results DE ICRS LJ MCS GCLSOLVE

Neval 3.5* 10¦ 386860 20701 71934 65000

CPUtime,s 6652.76 600.54 57.32 246.29 62272.64

C* 26398.7133 26383.7162 26375.8383 26397.0090 26377.0649

Table1: Convergenceperformancefor variousGOalgorithms. DE takesthemost

functionevaluationsto converge,but findsthebestsolution. Otherwise,MCSgets

theclosest.

31

Page 32: Efficient global optimization of nonconvex and nondifferentiable climate control problems

Figure1: Illustrationof how asabatementlevels increasefor agivenperiod,there

canbediscontinuities andmultiple extremain utility. From0% to 45%,theTHC

is allowed to collapse,andabatementsimply altersotherclimatedamages.At

45%,theTHC doesnotcollapseandthereis anabruptincreasein utility. Beyond

45%,furtherabatementis yieldsno furtherincreasesin utili ty in thismodel.

32

Page 33: Efficient global optimization of nonconvex and nondifferentiable climate control problems

0.5 1 1.5 2 2.5

x 104

0

2

4

6

8

10

12

14

16

18

Objective function

frequ

ency

Figure2: Histogramof resultsfoundusingmulti-startstrategy. Thisdemonstrates

that local searchmethodsareproneto fail in nonconvex problems.In this multi-

modal model, thereare many widely scatteredlocal optima, and the searchis

trappedin localbasinsof attraction.

33

Page 34: Efficient global optimization of nonconvex and nondifferentiable climate control problems

10−2

100

102

104

10−6

10−5

10−4

10−3

10−2

10−1

CPU time [s]

Rela

tive

erro

r

ICRSDELJGCLSOLVE

Figure3: Representationof algorithmconvergencepaths.DE achievesthe best

solution,but takesthelongesttime to getthere.ICRSachievesa ’good’ solution

rapidly, but never improvesasfar asDE.

34

Page 35: Efficient global optimization of nonconvex and nondifferentiable climate control problems

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64

x 104

0

50

100

freq

uenc

y

ICRS

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64

x 104

0

50

100

freq

uenc

y

LJ

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64

x 104

0

50

100

Objective function

freq

uenc

y

DE

Figure4: EvenGOalgorithmscanbeproneto misconvergence.HereDE,LJ,and

ICRS algorithms arerestartedfrom randomstartingpoints. DE convergesmost

nearlyto thesameanswereachtime,while theothersarenotasrobust.

35

Page 36: Efficient global optimization of nonconvex and nondifferentiable climate control problems

2000 2050 2100 21500

10

20

30

40

50

60

70

80

90

year

Aba

tem

ent (

%)

Best solution (f=26398.83)ICRS (f=26383.71)DE (f=26398.71)LJ (f=26375.83)MCS (f=26397.00)GCLSOLVE (f=26377.06)

Figure5: Vectorformsof bestfoundsolution for variousGO algorithms.Many

algorithms converge to nearlythe samevaluefor the objective function,but the

form of thesolution widely differs. For somepolicy implementations,suchlack

of smoothnesscanbeacritical defect.

36

Page 37: Efficient global optimization of nonconvex and nondifferentiable climate control problems

10 20 30 40 50 60 70 800

2

4

6

8

10

12

14

16

18

20

Number of dimensions

Tim

e re

quire

d (m

ins)

0.0% THC conv. to 99.9%0.0% THC conv. to 99.99%0.0% THC conv. to 99.999%1.5% THC conv. to 99.9%1.5% THC conv. to 99.99%1.5% THC conv. to 99.999%

Figure6: As the numberof dimensions in the optimization increases,the time

requiredfor convergenceby DE increasesapproximatelyexponentially. It takes

longerto achieveprecisionin nonconvex problems(wheretherearepositiveTHC

damages),thanunderconvex regimes(noTHC damages).

37

Page 38: Efficient global optimization of nonconvex and nondifferentiable climate control problems

1 2 3 4 5 6300

350

400

450

500

550

600

650

Number of CPUs

Tim

e re

quire

d (m

ins)

Time for 50,000 DE Generations

Figure7: Addingasecondprocessorimprovesthespeedof vectorevaluationsince

in theBeowulf hardware,two CPUsresidein thesamemachinesharingmemory.

This providesfor rapidcommunication. OnceadditionalCPUsareaddedacross

networksto sharethesameworkload,latency factorsin communication diminish

additional gainsfrom parallelism.

38