1
Efficacy testing of a glucomannan mycotoxin binder towards the effects of feed-borne Fusarium mycotoxins in turkey poults based on specific and unspecific parameters Mathias Devreese 1,2 *, George Girgis 1 , Si-Trung Tran 2 , Siegrid De Baere 2 , Patrick De Backer 2 , Siska Croubels 2 , Trevor K. Smith 1 1 Department of Animal and Poultry Science, Ontario Agricultural College, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada 2 Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium e-mail: [email protected] Introduction and Aims Mycotoxin binders are commonly added in animal feed to counteract the negative effects of mycotoxins on production animals. It is obvious that these products should be tested for their mycotoxin adsorbing ability in the gut. Discussion is ongoing, however, by which method these products should be evaluated in vivo. Mycotoxin binders are generally evaluated based on unspecific parameters such as performance data, histological changes and/or alterations in immune responses. These criteria are unspecific and do not show a direct correlation with the adsorption capacity in the intestinal tract. Other, direct end-points have recently been proposed by the European Food Safety Authority (EFSA) (EFSA, 2010). These are based on specific toxicokinetic parameters. The most relevant end-point for deoxynivalenol (DON), for example, is DON and the main metabolite de-epoxydeoxynivalenol (DOM-1) in plasma. The goal of this study was to evaluate the efficacy a glucomannan (GMA) mycotoxin binder on both sets of parameters in turkey poults. Materials and Methods Two hundred forty one-day-old turkeys were randomly allocated to one of four diets: (1) control (minimally contaminated) (2) control + 0.2 % GMA (3) naturally contaminated (4-6 mg DON/kg feed) (4) naturally contaminated + 0.2 % GMA. At the end of starter (3 w), grower (6 w), developer (9 w) and finisher (12 w) phases, plasma concentrations of DON and DOM-1, body weight gain, feed intake, feed conversion rate and plasma biochemistry were evaluated. Plasma biochemistry profile included evaluation of following components: Ca, P, total protein, albumin, globulin, albumin:globulin ratio, glucose, cholesterol, total bilirubin, γ-glutamyltransferase (GGT), aspartate aminotransferase (AST), creatine kinase (CK), amylase, lipase, uric acid, lactate dehydrogenase (LDH), bile acid and glutamate dehydrogenase (GLDH). At the end of the starter phase, duodenal sections were excised from 4 birds/pen (12/diet) for histological (morphometry) and immunohistochemistry analysis (CD8 + T-lymphocyte counts). Results and Discussion Acknowledgments The authors would like to thank the Agency for Innovation by Science and Technology (IWT,, the FWO-Vlaanderen, Alltech Inc. (Lexington, KY, USA) and the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA, Canada) for their financial support. Experimental diets : The major contaminant was DON (4.0-6.5 mg/kg). Diets also included lesser amounts of 15-aDON (0.45- 0.57 µg/kg), OTA, ZON, aflatoxins and fumonisins. Bird performance : Except for the starter phase, no significant differences in body weight, weight gain, feed intake or feed conversion rate (FCR) were observed. Remarkably, birds receiving the contaminated diet showed a significantly higher body weight and body weight gain in the starter phase. Plasma biochemistry : Differences were observed amongst the different dietary groups. However, no parameter was consistently altered in any rearing phase (Table 1). Duodenal morphometry : Birds fed the contaminated diet showed a significantly lower villus height (VH) and apparent villus surface area (AVSA). This negative effect was prevented by addition of GMA into the contaminated diet (Table 2). Duodenal immunohistochemistry : Higher CD8 + T-lymphocytes count was observed turkeys fed either the contaminated or the contaminated + GMA diet (Table 2). DON and DOM-1 plasma concentrations : No DON or DOM-1 was detected in the control groups. DON and DOM-1 plasma concentrations were detectable in all analyzed samples of birds fed the contaminated or the contaminated + GMA diet. No significant differences, however, were observed (Table 3). Control Control + GMA Contaminated Contaminated + GMA Starter CK (U/L) 2584.00 ± 160.407 a 3681.17 ± 232.031 b 4229.08 ± 337.814 b 4136.33 ± 62.322 b Amylase (U/L) 654.33 ± 33.422 a 663.75 ± 5.774 a,b 757.17 ± 52.218 b 705.67 ± 50.069 b Grower P (mmol/L) 2.53 ± 0.053 a 2.60 ± 0.063 a,b 2.43 ± 0.061 a 2.93 ± 0.055 b Developer LDH (U/L) 488.33 ± 21.586 a 597.33 ± 16.807 b 576.33 ± 5.132 a,b 510.33 ± 7.441 a,b Finisher Cholesterol (mmol/L) 3.52 ± 0.073 a,b 3.23 ± 0.032 a 3.28 ± 0.058 a 3.74 ± 0.042 b A different superscript letter indicates a significant difference (P < 0.05) Values represent the overall mean of the replicate means (n=3) ± SEM Control Control + GMA Contaminated Contaminated + GMA Morphometry Villus height (µm) 2205.12 ± 35.481 2222.45 ± 30.209 1952.25 ± 23.974 *** 2253.29 ± 21.949 Crypt depth (µm) 239.59 ± 17.750 250.96 ± 6.346 243.60 ± 9.846 252.37 ± 7.486 Submucosa thickness (µm) 29.61 ± 0.336 28.41 ± 0.659 27.58 ± 0.501 27.68 ± 0.385 Villus width down (µm) 134.87 ± 2.452 137.75 ± 1.704 140.35 ± 2.148 132.60 ± 1.175 Villus width up (µm) 134.79 ± 1.208 139.47 ± 1.456 136.63 ± 1.221 133.79 ± 1.012 Mean villus width (µm) 134.83 ± 1.568 138.61 ± 1.446 138.49 ± 1.499 133.19 ± 1.015 Apparent villus surface area (cm²) 2977.03 ± 689.76 3077.88 ± 516.97 2701.71 ± 51.642 * 3004.66 ± 450.27 CD8 + T- lymphocytes Positivity (%) 2.53 ± 0.293 2.77 ± 0.384 4.89 ± 0.391 * 6.04 ± 0.512 *** * and *** indicate a significant difference compared to the control at 0.05 < P < 0.01 and P <0.001 respectively Values represent the overall mean of the replicate means (n=12) ± SEM Control Control + GMA Contaminated Contaminated + GMA Week 1 DON ND ND 1.14 ± 0.334 1.27 ± 0.337 DOM-1 ND ND 2.45 ± 0.198 2.82 ± 0.178 Starter Diet DON ND ND 2.09 ± 0.490 2.28 ± 0.415 DOM-1 ND ND 2.28 ± 0.043 2.40 ± 0.048 Grower Diet DON ND ND 3.21 ± 0.337 3.06 ± 0.409 DOM-1 ND ND 9.51 ± 0.638 9.12 ± 1.230 Developer Diet DON ND ND 1.71 ± 0.212 1.38 ± 0.267 DOM-1 ND ND 4.00 ± 0.210 3.73 ± 0.419 Finisher Diet DON ND ND 1.00 ± 0.036 1.11 ± 0.133 DOM-1 ND ND 2.11 ± 0.217 2.20 ± 0.352 ND = Not Detected (<LOD) Values represent the overall mean of the replicate means (n=3) ± SEM Table 1. Altered plasma biochemistry parameters in turkey poults fed the experimental diets Table 2. Morphometrical and immunohistochemical analysis of the duodenum at the end of the starter phase (3 weeks) Table 3. Plasma concentrations (ng/mL) of deoxynivalenol (DON) and de- epoxydeoxynivalenol (DOM-1) after feeding different experimental diets Feeding naturally DON contaminated diets to turkey poults altered some unspecific parameters such as growth rate, plasma biochemistry profile, duodenal villus height and apparent villus surface area and CD8 + T- lymphocyte count in the duodenum. A yeast derived mycotoxin binder, GMA, was partially effective in preventing those effects. Performance parameters and plasma biochemistry profiles were not found suitable to evaluate the efficacy of mycotoxin binders on DON absorption in turkey poults as they were not consistent. GMA was able to counteract the negative effects of DON on duodenal morphometry but did not alter the increased influx of CD8 + T-lymphocytes. Plasma concentrations of DON and DOM-1 were not altered by the addition of GMA to the diet, suggesting that GMA was ineffective in decreasing DON absorption. These data suggest that the beneficial effects of GMA are due to another mechanism than DON adsorption in the gut. www.mytox.be

Efficacy testing of a glucomannan mycotoxin binder towards the effects of feed-borne Fusarium mycotoxins in turkey poults based on specific and unspecific

Embed Size (px)

Citation preview

Page 1: Efficacy testing of a glucomannan mycotoxin binder towards the effects of feed-borne Fusarium mycotoxins in turkey poults based on specific and unspecific

Efficacy testing of a glucomannan mycotoxin binder towards the effects of feed-borne Fusarium mycotoxins in turkey poults based on specific and unspecific parameters

 

Mathias Devreese1,2*, George Girgis1, Si-Trung Tran2, Siegrid De Baere2, Patrick De Backer2, Siska Croubels2, Trevor K. Smith1

 1 Department of Animal and Poultry Science, Ontario Agricultural College, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada

2 Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgiume-mail: [email protected]

Introduction and Aims

Mycotoxin binders are commonly added in animal feed to counteract the negative effects of mycotoxins on production animals. It is obvious that these products should be tested for  their mycotoxin adsorbing ability  in  the gut. Discussion  is ongoing, however, by which method these products should be evaluated  in vivo. Mycotoxin binders are generally evaluated based on unspecific parameters such as performance data, histological changes and/or alterations in immune responses. These criteria are unspecific and do not show a direct correlation with the adsorption capacity in the intestinal tract. Other, direct end-points have recently been proposed by the European Food Safety Authority (EFSA) (EFSA, 2010).  These  are  based  on  specific  toxicokinetic  parameters.  The  most  relevant  end-point  for  deoxynivalenol  (DON),  for  example,  is  DON  and  the  main  metabolite  de-epoxydeoxynivalenol (DOM-1) in plasma. The goal of this study was to evaluate the efficacy a glucomannan (GMA) mycotoxin binder on both sets of parameters in turkey poults.

Materials and Methods

Two hundred forty one-day-old turkeys were randomly allocated to one of four diets:  (1) control (minimally contaminated) (2) control + 0.2 % GMA (3) naturally contaminated (4-6 mg DON/kg feed) (4) naturally contaminated + 0.2 % GMA.  At the end of starter (3 w), grower (6 w), developer (9 w) and finisher (12 w) phases, plasma concentrations of DON and DOM-1, body weight gain, feed intake, feed conversion rate and plasma biochemistry were evaluated. Plasma biochemistry profile included evaluation of following components: Ca, P, total protein, albumin, globulin, albumin:globulin ratio, glucose, cholesterol, total bilirubin, γ-glutamyltransferase (GGT), aspartate aminotransferase (AST), creatine kinase (CK), amylase, lipase, uric acid, lactate dehydrogenase (LDH), bile acid and glutamate dehydrogenase (GLDH). At the end of the starter phase, duodenal sections were excised from 4 birds/pen (12/diet) for histological (morphometry) and immunohistochemistry analysis (CD8+ T-lymphocyte counts).

Results and Discussion

Acknowledgments

The authors would like to thank the Agency for Innovation by Science and Technology (IWT,, the FWO-Vlaanderen, Alltech Inc. (Lexington, KY, USA) and the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA, Canada) for their 

financial support.

Experimental diets: The major contaminant was DON (4.0-6.5 mg/kg). Diets also included lesser amounts of 15-aDON (0.45-0.57 µg/kg), OTA, ZON, aflatoxins and fumonisins.Bird performance: Except for the starter phase, no significant differences in body weight, weight gain, feed intake or feed conversion rate (FCR) were observed. Remarkably, birds receiving the contaminated diet showed a significantly higher body weight and body weight gain in the starter phase.Plasma biochemistry: Differences were observed amongst the different dietary groups. However, no parameter was consistently altered in any rearing phase (Table 1).Duodenal morphometry: Birds fed the contaminated diet showed a significantly lower villus height (VH) and apparent villus surface area (AVSA). This negative effect was prevented by addition of GMA into the contaminated diet (Table 2).Duodenal immunohistochemistry: Higher CD8+ T-lymphocytes count was observed turkeys fed either the contaminated or the contaminated + GMA diet (Table 2).DON and DOM-1 plasma concentrations: No DON or DOM-1 was detected in the control groups. DON and DOM-1 plasma concentrations were detectable in all analyzed samples of birds fed the contaminated or the contaminated + GMA diet. No significant differences, however, were observed (Table 3). 

Control Control + GMA Contaminated Contaminated + GMA

Starter

CK (U/L) 2584.00 ± 160.407 a 3681.17 ± 232.031 b 4229.08 ± 337.814 b 4136.33 ± 62.322 b

Amylase (U/L) 654.33 ± 33.422 a 663.75 ± 5.774 a,b 757.17 ± 52.218 b 705.67 ± 50.069 b

Grower

P (mmol/L) 2.53 ± 0.053 a 2.60 ± 0.063 a,b 2.43 ± 0.061 a 2.93 ± 0.055 b

Developer

LDH (U/L) 488.33 ± 21.586 a 597.33 ± 16.807 b 576.33 ± 5.132 a,b 510.33 ± 7.441 a,b

Finisher

Cholesterol (mmol/L) 3.52 ± 0.073 a,b 3.23 ± 0.032 a 3.28 ± 0.058 a 3.74 ± 0.042 b

A different superscript letter indicates a significant difference (P < 0.05) Values represent the overall mean of the replicate means (n=3) ± SEM

Control Control + GMA Contaminated Contaminated + GMA

Morphometry

Villus height (µm) 2205.12 ± 35.481 2222.45 ± 30.209 1952.25 ± 23.974 *** 2253.29 ± 21.949

Crypt depth (µm) 239.59 ± 17.750 250.96 ± 6.346 243.60 ± 9.846 252.37 ± 7.486

Submucosa thickness (µm)

29.61 ± 0.336 28.41 ± 0.659 27.58 ± 0.501 27.68 ± 0.385

Villus width down (µm)

134.87 ± 2.452 137.75 ± 1.704 140.35 ± 2.148 132.60 ± 1.175

Villus width up (µm) 134.79 ± 1.208 139.47 ± 1.456 136.63 ± 1.221 133.79 ± 1.012

Mean villus width (µm)

134.83 ± 1.568 138.61 ± 1.446 138.49 ± 1.499 133.19 ± 1.015

Apparent villus surface area (cm²)

2977.03 ±  689.76 3077.88 ± 516.97 2701.71 ± 51.642 * 3004.66 ± 450.27

CD8+ T-lymphocytes

Positivity (%) 2.53 ± 0.293 2.77 ± 0.384 4.89 ± 0.391 * 6.04 ± 0.512 **** and *** indicate a significant difference compared to the control at 0.05 < P < 0.01 and P <0.001 respectivelyValues represent the overall mean of the replicate means (n=12) ± SEM

Control Control + GMA Contaminated Contaminated + GMA

Week 1

DON ND ND 1.14 ± 0.334 1.27 ± 0.337

DOM-1  ND ND 2.45 ± 0.198 2.82 ± 0.178

Starter Diet

DON  ND ND 2.09 ± 0.490 2.28 ± 0.415

DOM-1  ND ND 2.28 ± 0.043 2.40 ± 0.048

Grower Diet

DON  ND ND 3.21 ± 0.337 3.06 ± 0.409

DOM-1 ND ND 9.51 ± 0.638 9.12 ± 1.230

Developer Diet

DON  ND ND 1.71 ± 0.212 1.38 ± 0.267

DOM-1 ND ND 4.00 ± 0.210 3.73 ± 0.419

Finisher Diet

DON ND ND 1.00 ± 0.036 1.11 ± 0.133

DOM-1 ND ND 2.11 ±  0.217 2.20 ± 0.352ND = Not Detected (<LOD)Values represent the overall mean of the replicate means (n=3) ± SEM

Table 1. Altered plasma biochemistry parameters in turkey poults fed the experimental diets Table 2. Morphometrical and immunohistochemical analysis of the duodenum at the end of the starter phase (3 weeks)

Table 3.  Plasma  concentrations  (ng/mL)  of  deoxynivalenol  (DON)  and  de-epoxydeoxynivalenol  (DOM-1)  after  feeding different experimental diets

Feeding naturally DON contaminated diets to turkey poults altered some unspecific parameters  such  as  growth  rate,  plasma  biochemistry  profile,  duodenal  villus height  and  apparent  villus  surface  area  and  CD8+  T-lymphocyte  count  in  the duodenum.  A  yeast  derived  mycotoxin  binder,  GMA,  was  partially  effective  in preventing  those  effects.  Performance  parameters  and  plasma  biochemistry profiles were not  found suitable  to evaluate the efficacy of mycotoxin binders on DON  absorption  in  turkey  poults  as  they were  not  consistent.  GMA was  able  to counteract  the  negative  effects  of  DON  on  duodenal  morphometry  but  did  not alter  the  increased  influx  of  CD8+  T-lymphocytes.  Plasma  concentrations  of  DON and DOM-1 were not altered by the addition of GMA to the diet, suggesting that GMA was  ineffective  in  decreasing DON absorption.  These data  suggest  that  the beneficial effects of GMA are due to another mechanism than DON adsorption in the gut.

www.mytox.be