228
EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON THE STRENGTH AND PERMEABILITY PROPERTIES OF ÇAYIRHAN SOIL A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MURAT ŞAHİN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING DECEMBER 2005

EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

  • Upload
    trinhtu

  • View
    232

  • Download
    4

Embed Size (px)

Citation preview

Page 1: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON THE STRENGTH AND PERMEABILITY PROPERTIES OF ÇAYIRHAN SOIL

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT ŞAHİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN

CIVIL ENGINEERING

DECEMBER 2005

Page 2: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof. Dr. Erdal Çokça

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Erdal Çokça

Supervisor

Examining Committee Members

Prof. Dr. Ufuk ERGUN (METU, CE)

Prof. Dr. Erdal ÇOKÇA (METU, CE)

Prof. Dr. M. Yener ÖZKAN (METU, CE)

Assoc. Prof. Dr. K. Önder ÇETİN (METU, CE)

Dr. Oğuz Çalışan (Çalışan Geo.Ltd.)

Page 3: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

iii

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are not

original to this work.

Name, Last name: Murat ŞAHİN

Signature:

Page 4: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

iv

ABSTRACT

EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON THE

STRENGTH AND PERMEABILITY PROPERTIES OF ÇAYIRHAN SOIL

Şahin, Murat

M.Sc., Department of Civil Engineering

Supervisor: Prof. Dr. Erdal Çokça

December 2005, 219 pages

Çayırhan soil is a collapsible soil. Collapsible soils are generally unsaturated,

low-density soils with high voids between grains where the binding agents are

sensitive to saturation. When exposed to water, binding agents break, soften or

dissolve such that the soil grains shear against each other and reorient in

denser configurations. This reconfiguration causes a net volume decrease in the

soil mass, resulting in large and often unexpected settlements, which can totally

destroy roads, underground utilities, and structures and alter surface drainage.

Uses of collapsible soils as a natural construction material in fills or

embankments also may cause serious stability problems.

In this study, an extensive laboratory research program was carried out to

investigate some geotechnical properties such as compaction, triaxial strength,

bearing ratio and permeability of collapsible soil, found in Çayırhan Thermal

Power Plant area, by treating with Class C fly ash and desulphogypsum (thermal

power plant by-products that are to be handled for environmental reasons) in

various proportions.

The study has revealed that 20% and 25% fly ash or 5% desulphogypsum

treatments (by dry weight of the mixture) improve the strength and bearing

characteristics of Çayırhan soil.

Keywords: Desulphogypsum, fly ash, collapsible soil

Page 5: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

v

ÖZ

UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE

GEÇİRİMLİLİK ÖZELLİKLERİNE ETKİSİ

Şahin, Murat

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Erdal Çokça

Aralık 2005, 219 sayfa

Çayırhan zemini çökebilen özelliktedir. Çökebilen zeminler genellikle doymamış,

düşük birim hacim ağırlığa sahip ve daneleri arasında büyük boşluklar ve suya

karşı duyarlı bağlayıcı maddeler içeren zeminlerdir. Bağlayıcı maddeler suyla

temas ettiklerinde kırılma, yumuşama veya çözünme suretiyle zemin danelerinin

birbirleri üzerine kaymalarına ve daha sıkı bir yapı kazanmalarına yol açarlar. Bu

yeni dane konfigürasyonu, zemin kütlesinde net hacim azalmasına dolayısıyla

büyük miktarda ve çoğunlukla beklenmeyen oturmalara neden olur. Neticede

çökebilen zeminlerdeki yollar, altyapı ve üstyapı tesisleri tamamen yıkılabilir ve

yüzey drenajı değişebilir. Ayrıca çökebilen zeminlerin doğal yapı malzemesi

olarak dolgu ve seddelerde kullanılması önemli duraylılık sorunları yaratabilir.

Bu çalışma kapsamında, Çayırhan Termik Santralı çevresinde yüzeylenen

çökebilen zeminlerin, C sınıfı uçucu kül ve desülfojips (termik santralların

çevresel açıdan değerlendirilmesi gereken yan ürünleri) ile belirli oranlarda

karıştırıldığında sıkıştırma, üç eksenli mukavemet, taşıma oranı ve geçirimlilik

gibi bazı geoteknik özelliklerinin nasıl değiştiğinin araştırılması amacıyla yoğun

bir laboratuvar deney programı yürütülmüştür.

Araştırma, Çayırhan zemininin %20 ve %25 oranında uçucu kül veya %5

oranında (kuru ağırlık olarak) desülfojips ile karıştırıldığında mukavemet ve

taşıma özelliklerinin iyileştiğini ortaya koymuştur.

Anahtar Kelimeler: Desülfojips, uçucu kül, çökebilen zemin

Page 6: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

vi

To My Wife

To My Newborn Daughter

Page 7: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

vii

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to Prof. Dr. Erdal Çokça for

his guidance, advice, criticism and insight throughout the research.

The author is a member of DOLSAR Engineering Limited family and would like to

thank his bosses and colleagues for their moral support and encouragements.

The technical assistance of METU Soil Mechanics Laboratory staff, especially Mr.

Ali Bal is gratefully acknowledged.

The author will never forget the gentle helps of his colleague, Ali Özgür Baytar,

for travels to Çayırhan, soil sampling and literature survey.

The author is also grateful to Hakan Damar, Nilüfer Kara and Mert Gücükyılmaz

for their equipment support.

Finally, Park Holding - Çayırhan Thermal Power Plant Incorporation staff and the

author’s family are gratefully acknowledged.

This study was supported by Middle East Technical University (METU) Grant No:

BAP-2005-03-03-01.

Page 8: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

viii

TABLE OF CONTENTS

ABSTRACT....................................................................................... iv

ÖZ................................................................................................. v

DEDICATION................................................................................... vi

ACKNOWLEDGMENTS....................................................................... vii

TABLE OF CONTENTS........................................................................ viii

CHAPTERS

1. INTRODUCTION.................................................................... 1

1.1 General........................................................................ 1

1.2 Scope.......................................................................... 2

1.3 Çayırhan Thermal Power Plant......................................... 3

1.4 The Research................................................................ 4

2. BACKGROUND FOR COLLAPSIBLE SOILS.................................. 6

2.1 General........................................................................ 6

2.2 Collapse Mechanism....................................................... 6

2.3 Parameters Effecting Collapse Potential............................ 9

2.4 Geological Origin of Collapsible Soils................................ 11

2.4.1 Alluvial and Colluvial Soils................................ 11

2.4.2 Aeolian Soils................................................... 11

2.4.3 Residual Soils................................................. 12

2.5 Identification of Collapsible Soils...................................... 13

2.5.1 Laboratory Tests............................................. 14

2.5.2 Field Identification........................................... 17

2.6 Mitigation Methods......................................................... 18

2.7 Case Histories............................................................... 23

3. EXPERIMENTAL STUDY........................................................... 26

3.1 Scope.......................................................................... 26

3.2 Materials...................................................................... 26

3.2.1 Fly Ash.......................................................... 26

3.2.2 Desulphogypsum............................................. 30

3.2.3 Collapsible Soil............................................... 33

3.3 Sample Preparation....................................................... 36

Page 9: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

ix

3.4 Test Procedures and Results............................................ 37

3.4.1 Particle Size Analyses...................................... 37

3.4.2 Atterberg Limits and Soil Classification............... 41

3.4.3 Standard Compaction...................................... 41

3.4.4 Unconsolidated Undrained (UU) Triaxial

Compressive Strength..............................................

44

3.4.5 California Bearing Ratio.................................... 46

3.4.6 Triaxial Permeability........................................ 50

4. DISCUSSION OF RESULTS...................................................... 56

4.1 Particle Size Distribution................................................. 56

4.2 Consistency Limits and Soil Classification.......................... 56

4.3 Compaction Characteristics............................................. 56

4.4 Total Shear Strength Parameters..................................... 57

4.4.1 Undrained Cohesion (cu)................................... 57

4.4.2 Undrained Secant Modulus of Elasticity (Eu)........ 62

4.4.3 General Discussion for UU Test Results.............. 66

4.5 CBR............................................................................. 68

4.6 Permeability.................................................................. 70

4.7 Chemical, Mineralogical and Leachate Analyses.................. 72

5. CONCLUSIONS..................................................................... 78

REFERENCES................................................................................... 80

APPENDIX……................................................................................... 84

A - PARTICLE SIZE ANALYSES TEST FORMS......................................... 85

B - ATTERBERG LIMITS TEST FORMS.................................................. 96

C - STANDARD COMPACTION TEST FORMS.......................................... 107

D - TRIAXIAL COMPRESSIVE STRENGTH (UU) TEST FORMS................... 118

E - CALIFORNIA BEARING RATIO TEST FORMS..................................... 152

F - PERMEABILITY TEST FORMS......................................................... 186

Page 10: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

1

1 CHAPTER I

INTRODUCTION

1.1 General

Surveying the written works belonging to many researchers throughout the

world, geotechnical engineering community agrees on that a collapsible soil is

any unsaturated soil which exhibit considerable strength and stiffness in its

natural state but susceptible to great loss of volume upon saturation with or

without additional loading. The community also agrees on that collapsible soils

are generally encountered in arid or semi-arid climates, and consist of loosely

arranged grains in a cemented honeycomb structure, and create severe stability

and deformation problems for civil engineering structures, upon wetting from

artificial water sources, such as leakages from lined and unlined canals,

pipelines, storage tanks, swimming pools, reservoirs or infiltration from

irrigation or insufficient rainwater drainage.

The existence of collapsible soils throughout the world and difficulties with

building on them has long been recognized. The reason for the lack of

information on these soil deposits is that they are located in predominantly arid

regions with limited economic development. Recent advances in irrigation made

it possible to open up many of such regions to farming and industrial

development, including industrial and urban complexes, and provide

opportunities for the use of water in large quantities. The consequent problems

resulting from excessive settlements have given impetus to the study of

collapsible soils. Since 1970, the major research has been devoted to

determining the mechanism of collapse. Other studies have been devoted to

predictive methods, treatment methods and case histories (Clemence and

Finbarr, 1981).

Depending on the above-mentioned studies and developments in technology for

the last 20-25 years, various mitigation methods have been proposed by

geotechnical engineers. Among them, soil stabilization techniques, using

Page 11: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

2

industrial by-products as additive materials has become very popular due to

environmental and economical reasons, recently. As an example, coal-fired

thermal power plants produce large quantities of fly ash and desulphogypsum,

environmentally safe disposal of which is a problem. Beneficial utilization of such

by-products for ground improvement applications has become an appreciable

idea in geotechnical engineering.

1.2 Scope

This research aimed at investigating the geotechnical properties of collapsible

soils when treated with fly ash and desulphogypsum in various proportions.

Collapsible soil samples and above mentioned by-products were both obtained

from Çayırhan Thermal Power Plant area established in Çayırhan, a small town

approximately 120 km northwest of Ankara, capital city of Turkey. A location

map for Çayırhan is illustrated in Figure 1.1.

Figure 1.1 Location Map for Çayırhan

Çayırhan

Page 12: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

3

1.3 Çayırhan Thermal Power Plant

Baytar (2005), states that Çayırhan Thermal Power Plant covers a total area of

5 032 000 m2 and comprises four boiler units (Figure 1.2). He continues with

the introduction that Units I and II (150 MW installed capacity) and Units III and

IV (160 MW installed capacity) have been in operation since 1987 and 1998,

respectively. These four units, with a total installed capacity of 620 MW, use

5 000 000 tons of lignite coal and generate 4 200 GWh energy per year. The

lignite coal, extracted from the underground mines of Beypazarı Basin, is of low

calorific value (2 200 kcal/kg), and high dust (30%-45%) and high sulphur

(4%-5%) content. As a result, the plant produces 1 350 000 tons of fly ash and

680 000 tons of desulphogypsum annually. The four units are equipped with flue

gas desulphurization systems. Fly ash and desulphogypsum are collected by

means of electrostatic precipitators and are carried through 2.5 km transfer

bands into open stock field which now cover a total area of 1 137 000 m2. Less

than 1% of fly ash and none of the desulphogypsum are utilized by any

industries. The plant is estimated to be in operation for minimum another 20

years and this will duplicate the stocks of the by-products. These stocks pose a

serious problem in terms of both land use and potential environmental pollution.

An effective utilization of these industrial by-products must be regarded as

economically and environmentally beneficial.

Page 13: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

4

Figure 1.2 Çayırhan Thermal Power Plant

1.4 The Research

An extensive laboratory research program including index (sieve and

hydrometer analyses, Atterberg limits and standard compaction),

unconsolidated-undrained triaxial compression (UU), California Bearing Ratio

(CBR) and triaxial permeability tests were carried out on collapsible soil samples

mixed with fly ash and desulphogypsum separately at percentages of 0, 5, 10,

15, 20 and 25 by dry weight of sample and compacted to maximum dry density

at optimum moisture content. In order to determine the effect of curing, every

sample was tested at 0 day (i.e. 1 hour), 7 days and 28 days after preparation.

The above-mentioned physical tests were performed at Soil Mechanics

Laboratory of Civil Engineering Department of Middle East Technical University

(METU). In addition to the physical tests, the X-ray diffraction analyses of

collapsible soil, fly ash, desulphogypsum and 25% fly ash + 75% soil mixture,

which resulted in the best strength according to the physical tests, were carried

Page 14: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

5

out at Turkish Cement Producers Association laboratories. Leachate analyses of

25% fly ash + 75% soil mixture were carried out at the chemical laboratory of

Technical Research and Quality Control Department of General Directorate of

State Hydraulics Works.

Page 15: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

6

2 CHAPTER II

BACKGROUND FOR COLLAPSIBLE SOILS

2.1 General

Clemence and Finbarr (1981) define collapsible soils as any unsaturated soil that

goes through a radical rearrangement of particles and great loss of volume upon

wetting with or without additional loading. However, they exhibit considerable

strength and stiffness in their dry, natural state (Rollins and Rogers, 1994).

Since these soils are stable only as long as they remain dry, they are sometimes

called metastable soils, and the process of collapse is sometimes called

hydroconsolidation, hydrocompaction, or hydrocollapse (Coduto, 1994).

A literature review indicates that soil types that are susceptible to collapse are

generally composed of cohesionless, loose sand and silt size particles. However,

Lawton et al (1992) and Ordemir (1990) comment that even clean sands, pure

clays including pure montmorillonite, and soils containing substantial gravel

fractions can collapse. Typical collapsible soils are lightly colored, low in

plasticity with LL < 45, PI < 25 and with relatively low densities between 11-16

kN/m3.

2.2 Collapse Mechanism

Bulky-shaped grains arranged in a loose honeycomb structure, as shown in

Figure 2.1, characterize collapsible soils.

Page 16: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

7

Figure 2.1 Typical collapsible soil structures (after Clemence and Finbarr, 1981)

Figure 2.1 indicates the capillary stresses between soil grains and water-

softening cementing agents, such as iron oxide, clay or calcium carbonate, in

unsaturated state. The effect of capillary stresses is to provide a tension force

on soil grains, which provides considerable strength and stiffness for the soil

mass, and is known as soil suction (Vitton, 1997). However, if soil mass become

saturated, the soil suction is eliminated resulting in a serious decrease in

strength and stiffness, thus collapse of the soil structure is encountered.

Four factors are necessary for collapse to occur in soil:

- An open, partially unstable, unsaturated fabric,

- A high enough total stress that the structure is metastable,

- A bonding or cementing agent that stabilizes the soil in the unsaturated

state,

- The addition of water into the soil, which causes the bonding or cementing

agent to be reduced and the interaggregate or intergranular contacts to fail

in shear, resulting in a reduction in total volume of the soil mass (Lawton et

al, 1992).

Page 17: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

8

Lawton et al (1992) also indicate that the collapse in compacted cohesive soils

occurs in a different manner than cohesionless soils. In this model, the soil is

assumed to consist of an amalgamation of brittle coarse particles and

aggregations of fine particles that may be either brittle or plastic, depending on

their moisture condition.

Usually the water that triggers the collapse mechanism comes from artificial

sources, such as the following:

- Infiltration from irrigation of landscaping or crops,

- Leakage from lined or unlined canals, pipelines, storage tanks, swimming

pools, reservoirs,

- Seepage from septic tank leach fields,

- Infiltration of rainwater as a result of unfavourable changes in surface

drainage (Coduto, 1994).

Although the flow rate from most of these sources may be slow, the duration is

long. Therefore the water often infiltrates to a great depth and wets soils. As

water penetrates the soil, a wetting front forms, as shown in Figure 2.2.

Figure 2.2 Formation of a wetting front (after Coduto, 1994)

Page 18: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

9

This process is driven primarily by soil suction so the wetting front will be very

distinct. The distance it advances depends on the rate and duration of the water

inflow as well as the permeability of the soil. Large scale wetting tests in a 75 m

deep deposit of collapsible alluvial soil were conducted in San Joaquin Valley,

California. Applying water continuously for 484 days, the wetting front advanced

to a depth of at least 45 m. The resulting collapse caused a settlement of 4.1 m

at the ground surface (Coduto, 1994).

2.3 Parameters Effecting Collapse Potential

The parameters effecting collapse potential are presented briefly in this

subsection.

Clay Content

Although Ordemir (1990) comments that the clay content of soils does not have

a definite effect on the collapsibility; according to Lawton et al (1992) the

collapse potential reaches a maximum value at a clay fraction between 30% and

40% for sand-clay mixtures and between 10% and 20% for silt-clay mixtures.

On the other hand Clemence and Finbarr (1981) refer to Bull (1964) in that the

maximum subsidence occurs when the clay amounts to about 12% of the solids.

Below 5% there is little subsidence and above 30%, the clay swells. Clemence

and Finbarr also refer to Burland (1961) for soils with high clay content, that the

effect of stress history on soil structure will become significant.

Initial Dry Density

Many researchers agree on that in general, collapse potential decreases with

increasing initial dry density.

Initial Moisture Content or Degree of Saturation

Several researchers have suggested that soils, compacted at moisture content

wetter than Standard Proctor optimum, do not collapse i.e. collapse potential

decrease with increasing initial moisture content. This concept can not be strictly

Page 19: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

10

valid because it does not consider either the initial dry density (hence degree of

saturation) or the possibility of post compaction drying of the soil. The concept

of critical moisture condition is valid if expressed in terms of degree of

saturation, not moisture content (Lawton et al, 1992).

Ordemir (1990) defines critical degree of saturation below which different types

of soils may suffer collapse. It is 6%-10% for fine gravels, 50%-60% for fine

silty sands and 90%-95% for clayey silts.

Rollins and Rogers (1994) mention another fact that once the degree of

saturation reaches about 60%-70%, the collapse settlement is about the same

as if the soil was fully saturated.

Soil Gradation

It is widely accepted that well graded soils suffer less collapse than poorly

graded ones.

Normal Stress on Soil Layer

Collapse potential is a maximum at some critical value of vertical stress, beyond

which the collapse potential decreases with increasing vertical stress. The

reduction in collapse potential at high stresses is caused by the densification and

increased degree of saturation resulting from the applied stress (Lawton et al,

1992).

Very loose soils will collapse upon wetting even at low normal stresses, but

denser soils will be collapsible only at higher stresses (Coduto, 1994).

Method of Compaction

Lawton et al (1992) determined that method of compaction including impact,

kneading, static and vibratory had only a minor influence on the collapse

behaviour of the clayey sand they studied. However, Ordemir (1990) reported

that silty soil samples compacted at Standard Proctor energy collapsed more

than the samples compacted at Modified Proctor energy.

Page 20: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

11

2.4 Geological Origin of Collapsible Soils

Various geological processes can produce collapsible soils. By understanding

their geologic origins, the engineer is better prepared to anticipate where they

might be found (Coduto, 1994).

The most extensive deposits of collapsible soils are aeolian or wind-deposited

sands and silts (loess). In addition, alluvial flood plains, fans, mudflows, colluvial

deposits, residual soils, and volcanic tuffs may produce collapsible soils

(Clemence and Finbarr, 1981). These geological origins are summarized below.

2.4.1 Alluvial and Colluvial Soils

Some alluvial soils (i.e. soils transported by water) and some colluvial soils (i.e.

soils transported by gravity) can be highly collapsible. In arid or semi-arid

climates short bursts of intense precipitation often induces rapid downslope

movements of soil known as flows. While they are moving, these soils are nearly

saturated and have a high void ratio. Upon reaching their destination, they dry

quickly by evaporation, and capillary tension draws the pore water toward the

particle contact points, bringing clay and silt particles and soluble salts with it.

Once the soil becomes dry, these materials bond the soil particles together, thus

forming the honeycomb structure.

When the next flow occurs, more honeycomb structured soil forms. It, too, dries

rapidly by evaporation, so the previously deposited soil remains dry. Thus deep

deposits of collapsible soil can form (Coduto, 1994).

2.4.2 Aeolian Soils

Aeolian soils consist of material transported by wind, which form dunes, loess,

aeolic beaches and large volcanic dust deposits. They consist of cohesionless or

slightly cohesive soils of low relative density and often encountered in arid

regions where the water table is at great depth.

Page 21: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

12

Among aeolian soils collapsible loess that has a very high porosity (typically on

the order of 50%) and a correspondingly low unit weight (typically 11-14

kN/m3) is of main concern and found in the midwestern and western United

States, parts of Asia and southern Africa, central Europe, large areas of China,

Africa, Australia, the former Soviet Union, India, Argentina, New Zealand and

elsewhere (Coduto 1994, Clemence and Finbarr 1981).

2.4.3 Residual Soils

Residual soils are soils formed in-place by weathering, i.e., the disintegration

and mechanical alteration of the components of parent rocks. In the literature,

residual decomposed granites in South Africa and northern Rhodesia and

residual soils derived from sandstones and basalts in Brazil are reported as

collapsible. Another example reported by Coduto (1994) by referring to Dudley

(1970) is the residual soil from Lancaster, California, that showed nearly zero

consolidation when loaded dry to a stress of 670 kPa over the natural

overburden stress, yet collapsed by 10% of its volume when soaked.

Other soil types that exhibit collapse are those derived from volcanic tuff,

gypsum, loose sands cemented by soluble salts, dispersive clays, and sodium-

rich montmorillonite clays (Clemence and Finbarr, 1981).

Figure 2.3 illustrates various geological origins of collapsible soils.

Page 22: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

13

Figure 2.3 Geological origins of collapsible soils (after Colorado Geological Survey, 2001)

2.5 Identification of Collapsible Soils

Reviewing some rule of thumbs about the engineering index properties such as

natural moisture content, unit weight, Atterberg limits, degree of saturation,

specific gravity or void ratio, collapsible soils may be identified as a preliminary

approach. As mentioned before, collapsible soils have low moisture content

(<10%), low unit weight (<16 kN/m3), low plasticity index (<25%), and low

specific gravity (<2.6). On the other hand, identifying collapsible soils by such

correlations provide no quantitative estimates of the potential settlements. In

addition, most of them have been developed for certain types of soil, such as

loess, and can not necessarily be used for another type, such as alluvial soils.

As a result, engineers prefer to use laboratory or in-situ tests that involve

actually wetting the soil, and measuring the corresponding strain. The results of

these tests are extrapolated to the entire soil deposit and potential settlements

are predicted.

Page 23: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

14

2.5.1 Laboratory Tests

The two laboratory test methods widely used by geotechnical engineers are

presented below.

Single Oedometer Test

Developed by Knight in 1963, the test method consists of placing a soil sample

at natural water content in an oedometer (consolidometer), applying vertical

stresses progressively until a predetermined stress (usually 200 kPa) is reached

and inundating the sample with distilled water at this stress and leaving for a

day. The consolidation test is then carried on. The resulting curve is shown in

Figure 2.4.

0

5

10

15

20

25

30

35

1 10 100 1000 10000

APPLIED VERTICAL STRESS (kPa)

ST

RA

IN (

%)

Starting point

'A' at 5 kPa

A

Starting of inundation

'B' at 200 kPa

B

C

D

End of inundation

'C' at 200 kPa

Consolidation test

carried on

End of test

Figure 2.4 Typical single oedometer test graph

Page 24: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

15

The collapse potential (CP) is then defined as:

CP = 0

1 e

ec

+

∆ × 100 ………………………….. (1)

where;

∆ec : change in void ratio upon wetting

eo : natural void ratio.

The ratings for collapse potential suggested by Jennings and Knight (1975) are

tabulated in Table 2.1.

Table 2.1 Ratings for Collapse Potential

CP (%) Severity of problem

0-1 No problem

1-5 Moderate trouble

5-10 Trouble

10-20 Severe trouble

20 Very severe trouble

Double Oedometer Test

Jennings and Knight (1975) developed double oedometer method while

investigating collapsible soils in South Africa. This method uses two identical soil

samples. Both samples are carefully trimmed in separate consolidometers under

a light, 5 kPa seating load for 24 hours. At the end of the 24 hours, one sample

is inundated (wet sample), while the other sample is kept at its natural water

content (dry sample). Both samples are then left for a further 24 hours. The

tests results are plotted together, as shown in Figure 2.5.

Page 25: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

16

0

5

10

15

20

25

30

35

1 10 100 1000 10000

APPLIED VERTICAL STRESS (kPa)

ST

RA

IN (

%)

Collapse

Strain

Dry sample

Sample saturated

Wet sample

Figure 2.5 Typical double oedometer test graph

The vertical distance between the test results (∆es) represents the potential

hydrocollapse strain as a function of normal stress.

Comparisons of Oedometer Tests

The single oedometer test is faster and easier and it more closely simulates the

actual loading and wetting sequence that occurs in the field. It also overcomes

the problem of obtaining two identical samples needed for double oedometer

test. However, this test provides less information because it only gives the

hydrocollapse strain at one normal stress. Furthermore it does not provide an

estimate of the potential settlement due to collapse. For example, a thick

stratum of moderate trouble soil that becomes wetted to a great depth may

cause more settlement than a severe trouble soil that is either thinner or does

not become wetted to a great depth (Coduto, 1994).

Page 26: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

17

On the other hand, the use of double oedometer test will give not only a

qualitative determination of the possibilities of collapse, but also quantitative

information to allow for settlement estimates.

Besides these facts, Lawton et al (1991) states that in both oedometer tests, a

confining ring prevents lateral movement of samples and produces one

dimensional volume changes. When wetted, many natural deposited and man-

made metastable soil strata – especially those with steeply sloping surfaces,

irregular or sloping bottom boundaries, non-uniform loads, or loads of small

areal extent – may undergo significant horizontal deformations in addition to

vertical deformation. The use of one-dimensional oedometer tests and analyses

for predicting collapse strain for these situations can lead to serious errors.

Another fact is that the laboratory collapse tests wet the soil to nearly 100%

saturation, which may be a worse situation than that in the field (Coduto,

1994).

As a last word, Lawton et al (1992) refer to Booth (1977) who reported that the

double oedometer technique overpredicted the amount of collapse by about

10%.

2.5.2 Field Identification

A very simple test that can be performed in the field is the sausage test. A hand

size sample of the soil to be tested is broken into two pieces, and each is

trimmed until they are approximately equal in volume. One of them is then

wetted and moulded in the hands to form a damp ball. The two volumes are

then compared again. If the wetted ball is obviously smaller, then collapse may

be suspected (Clemence and Finbarr, 1981).

Allowable bearing capacity of collapsible soils can be determined from field plate

load tests with which the soil is loaded progressively until the design load and

then flooded (Ordemir, 1990). Other tests that may be used in the field are

large-scale artificial wetting with associated monitoring of settlements and small

scale wetting in the bottom of borings (Coduto, 1994).

Page 27: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

18

2.6 Mitigation Methods

In general, collapsible soils are easier to deal with. Many mitigation measures

are available, several of which consist of densifying the soil, thus forming a

stable and strong material. Coduto (1994) refers to Houston and Houston

(1989) for the following mitigation methods:

Removal of Collapsible Soil Layer

If the depth of collapsible soil layer is shallow, it can simply be excavated and

the structure then may be supported directly on the exposed non-collapsible

soil. This could also be accomplished by lowering the grade of the building site

or by using a basement.

Avoidance or Minimization of Wetting

Since saturation is the main cause for collapse mechanism, taking extra

measures to minimize the infiltration of water into the ground will play a

preventive role. This should be accomplished by maintaining excellent surface

drainage, directing the outflow from roof drains and other sources of water away

from the building, avoiding excessive irrigation of landscaping, and taking extra

care to assure the water-tightness of underground pipelines.

Deep Foundations

It may be feasible to use spread footing foundations if the collapsible soil

deposit is thin. If the deposit is thick, using deep foundations such as

compaction piles to transfer the loads through collapsible soils to the stable

strata below is safer (Figure 2.6). However, the possibility of negative skin

friction acting on the upper part of the foundation should be considered.

Page 28: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

19

Figure 2.6 Transferring structural loads through collapsible soils to deeper, more stable

soils (after Coduto, 1994)

Injection of Chemical Stabilizers or Grout

Injecting special chemicals or grout (Figure 2.7) can stabilize many types of

soils, including collapsible soils. These techniques strengthen the soil structure,

so future wetting will not cause it to collapse. These methods are generally too

expensive to use over large volumes of soil but can be useful to stabilize small

areas or as a remedial measure beneath existing structures.

Page 29: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

20

Figure 2.7 Schematic representations of basic modes of grouting (after Hausmann, 1996)

Page 30: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

21

Prewetting

Coduto (1994) refer to Knodel (1981) in that, if collapsible soils are identified

before construction begins, they can often be remedied by artificially wetting.

This can be accomplished by sprinkling or ponding water at the ground surface,

or by using trenches or wells. This method is especially effective when

attempting to stabilize deep soils.

If the soil has strong horizontal stratification, as is the case with many alluvial

soils, then the injected water may flow horizontally more than it does vertically.

Therefore, the engineer should be cautious when using this method near

existing structures. It is important to monitor prewetting operations to confirm

that the water penetrates to the required depth and lateral extent.

Although prewetting is useful for canals and roadways where the induced loads

are small, prewetting without preloading is not sufficient to prevent future

foundation distress. Prewetting only causes the soil to settle under the existing

overburden pressure (Rollins and Roggers, 1994).

Rollins and Rogers (1994) refer to Sokolovski and Semkin (1984) in that, field

and laboratory testing conducted in the former Soviet Union indicates that

prewetting with a 2% sodium silicate solution significantly decrease the

compressibility and increase the strength of collapsible loessial soil deposits.

Compaction with Rollers or Vehicles

Collapsible soils can be converted into excellent bearing materials with little or

no collapse potential by simply compacting them by passing heavy vibratory

sheepsfoot rollers, preferably after first prewetting the soil (Basma and Tuncer,

1992).

More frequently, this procedure includes excavating and stockpiling the soil, and

then placing it back in layers. If the collapsible stratum is thin, say, less than 3

m, this method can be used to completely eradicate the problem. Rollins and

Rogers (1994) indicate that partial excavation and replacement with compacted

Page 31: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

22

granular fill is also commonly specified in dealing with collapsible soils. They list

the advantages of these methods as follows:

- It decreases the amount of collapsible material in the zone of significant

stress,

- It increases the depth to which water must percolate before it reaches

collapsible materials,

- It decreases the induced stress to which the collapsible soil is subjected.

Reductions in the induced stress may keep the stress below the critical

value necessary to induce significant collapse settlement.

Deep Blasting

Collapsible soils can also be densified by detonating buried explosives (Jeffiies,

1991). The exploding action breaks down the honeycomb structure and

densifies the soil layer. Care should be taken in the application of this method in

order not to damage the properties around.

Dynamic Compaction (Heavy Tamping) + Prewetting

This technique consists of dropping several tonnes of heavy weights from

heights of several meters to compact the collapsible soil (Rollins and Kim, 1994)

after prewetting the soil. This method can not be used in urbanized areas

because tamping action may damage the buildings or other structures around.

Deep Mixing

Deep mixing is used to improve problem soils by mixing stabilizers such as dry

lime, cement and fly ash etc. with a rotary tool to form treated columns. The

method involves advancing a mixing tool by drilling to a depth equal to the

bottom of the treated column. Stabilizer is then delivered by compressed air

down the drill string to just above the mixing tool. The tool is slowly withdrawn

while rotating to mix the soil and stabilizer.

Page 32: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

23

2.7 Case Histories

Irrigation of lawns and landscaping and poor surface drainage around a building

in New Mexico caused the wetting front to extend more than 30 m into the

ground, which resulted in 2.5-5.0 cm of settlement (Houston, 1991).

Some deep fills can collapse even when they have been compacted to traditional

standards. For example, settlements of as much as 45 cm occurred in 30 m

deep compacted fills near San Diego that became wet sometime after

construction (Lawton et al 1989, 1991).

Lawton et al (1992) states that collapse has also played a significant role in the

failure of several earth dams in Brazil (Miranda, 1988) and Canada (Peterson

and Iverson, 1953) as well as the Teton Dam in the United States (Leonards and

Davidson, 1984).

Another series of examples were given by Rollins and Rogers (1994), that the

cost of remedial measures required to repair structures at a cement plant in

central Utah located on collapsible soils was more than 20 000 000 US Dollars.

They also refer to Shaw and Johnpeer (1985) in that, collapse-related damage

to homes in a small community north of Santa Fe, N.M was so extensive that

the governor declared it a disaster area.

Ordemir (1990) gives examples from Turkey. The foundation soil under the

piers of the railway bridge crossing Karakaya Dam reservoir was collapsible. He

also showed the collapse potential of soils around Çayırhan Thermal Power Plant

and fill materials used in the embankments of Gümüşova-Gerede motorway.

Some hazards due to collapsible soils are illustrated in Figures 2.8, 2.9 and

2.10.

Page 33: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

24

Figure 2.8 A sinkhole near Carbondale initiated by hydrocompaction of surficial deposits

(after Colorado Geological Survey, 2001)

Figure 2.9 Continued settlement in collapsible soil dropped new town home driveway to a

level where vehicles are unable to enter garage. Note levelling slab of concrete on garage

(after Colorado Geological Survey, 2001).

Page 34: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

25

Figure 2.10 Damage to foundation and mortared brick-walls from settlement of

collapsible soils. Building in Montrose was demolished shortly after photo was taken

(after Colorado Geological Survey, 2001).

Page 35: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

26

3 CHAPTER III

EXPERIMENTAL STUDY

3.1 Scope

Various mitigation methods developed for collapsible soils were presented in

Chapter II. Other than these techniques, treating problem soils, such as

collapsible, dispersive or expansive etc. soils, with industrial products like

chemicals, fly ash, cement, lime or desulphogypsum etc. has become an

appreciable idea due to environmental and economical reasons, as mentioned in

Chapter I.

Depending on this idea, some of the geotechnical properties of a silty clay type

collapsible soil treated by fly ash and desulphogypsum were investigated in this

study.

3.2 Materials

3.2.1 Fly Ash (FA)

Fly ash is a fine-grained, powdery particulate material produced from the

burning of pulverized coal and collected by means of electrostatic precipitators

mostly at thermal power plants. It is a pozzolanic material (siliceous or

aluminous-siliceous material) which possesses little or no cementitious value

alone, but in the presence of moisture; chemically react with calcium hydroxide

at ordinary temperatures to form cementitious compounds (ASTM, 1993).

Different fly ashes are available in the industry as a result of the variations in

coal quality and the differences in the design of coal-fired boilers. Factors

affecting the physical, chemical, and engineering properties of fly ash include:

Page 36: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

27

- Coal type and purity,

- Degree of pulverization,

- Boiler type and operation,

- Collection and stockpiling methods.

ASTM C 618 defines two types of fly ashes, one of which is Class F fly ash

normally produced by burning anthracite or bituminous coal and has pozzolanic

properties. The other one, Class C fly ash is normally produced by burning

lignite or sub-bituminous coal and has some self-cementing properties that it

has ability to harden and gain strength in the presence of water alone, in

addition to pozzolanic properties.

On the other hand, ASTM D 5239 classifies fly ashes into three categories

according to their soil stabilization performances:

Non Self-Cementing (Class F) Fly Ash Stabilization

Non self-cementing fly ash, by itself, has little effect on soil stabilization. It is a

poor source of calcium and magnesium ions. The particle size of fly ash may

exceed that of the voids in fine-grained soils, precluding its use as a filler

material. However, in poorly graded sandy soils it may be a suitable filler

material aiding in compaction, increasing density and decreasing permeability.

Non Self-Cementing (Class F) Fly Ash Mixed With Cement or Lime

Some fine-grained soils are pozzolanic in nature and only require lime or cement

to initiate the pozzolanic reaction. The use of Class F fly ash mixed with cement

or lime in some clay improves pozzolanic properties and soil texture.

Self-Cementing (Class C) Fly Ash Stabilization

Class C fly ash is a better source of calcium and magnesium ions. Self-

cementing property comes from varying amounts of free (unbound) lime (0 to

7% CaO by weight) that can provide cation exchange and ion crowding to fine-

grained soils when used in significant amounts. This type of fly ash has been

Page 37: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

28

used successfully to control swell potential of expansive soils as well as to

stabilize coarse-grained soils.

The fly ash used in this study was of Class C and obtained from Çayırhan

Thermal Power Plant. Chemical and mineralogical analyses of the fly ash were

carried out at Turkish Cement Producers Association laboratories and the results

are listed in Table 3.1 and 3.2, respectively. The specific gravity was found as

2.13 and the X-Ray Diffractogram of the material is illustrated in Figure 3.1.

Table 3.1 Chemical Composition of Çayırhan Fly Ash

Component Weight (%)

SiO2 50.38

Al2O3 14.06

Fe2O3 9.90

CaO 13.25

MgO 1.20

SO3 3.16

Na2O 3.18

K2O 1.97

TiO2 0.90

P2O5 0.58

Loss on Ignition 0.86

Table 3.2 Mineralogical Composition of Çayırhan Fly Ash

Mineral Weight (%)

Quartz (SiO2) 25.4

Feldspar [(K,Na)AlSi3O8] 40.4

Hematite (Fe2O3) 9.9

Anhydrite (CaSO4) 5.4

Page 38: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

29

Figure 3.1 X-Ray Diffractogram of Çayırhan Fly Ash

Page 39: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

30

3.2.2 Desulphogypsum (DSG)

In the last three decades, there has been a continuous effort to reduce sulphur

dioxide (SO2) emissions from coal burning power plants. In order to achieve the

desired concentration of SO2 within the exhaust gases, it is processed in

desulphurization plants. The most widely used method of removal of SO2 is the

treatment of the flue gas with calcium oxide (CaO). In this process, known as

flue gas desulphurization (FGD), calcium reacts with sulphur dioxide to produce

hannebachite (CaSO3.1/2H2O) and/or gypsum (CaSO4.2H2O). The resulting

gypsum is named as desulphogypsum. The following can represent the overall

FGD reaction:

CaO + H2O Ca(OH)2

SO2 + H2O H2SO3

H2SO3 + Ca(OH)2 CaSO3.2H2O

CaSO3.2H2O + 1/2O2 CaSO4.2H2O

FGD process generates voluminous desulphogypsum solid wastes that are

usually landfilled, occupying thousands of acres of land and creating serious

land pollution problems. The American Coal Ash Association reported for United

States that less than 10% of desulphogypsum is currently used beneficially for

gypsum binders, plasters and plasterboards manufacture, as well as an additive

in Portland cement production.

It is thought that utilization of desulphogypsum in geotechnical applications will

be useful in decreasing the excessive stocks, besides it will also provide a new

and economical way to improve the engineering properties of soils.

Having the same chemical composition with natural gypsum, desulphogypsum

contains impurities such as the finer fractions of fly ash. The impurities may be

located in the crystal structure of desulphogypsum or may be sticked to the

surface of the crystal structure (Özkul, 2000).

The desulphogypsum used in this study was obtained from Çayırhan Thermal

Power Plant. Chemical and mineralogical analyses of desulphogypsum were

carried out at Turkish Cement Producers Association laboratories and the results

Page 40: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

31

are listed in Table 3.3 and 3.4, respectively. The specific gravity was found as

3.24, and the X-Ray Diffractogram of the material is illustrated in Figure 3.2.

Table 3.3 Chemical Composition of Çayırhan Desulphogypsum

Component Weight (%)

SiO2 2.03

Al2O3 0.52

Fe2O3 0.21

CaO 31.91

MgO 0.42

SO3 43.13

Loss on Ignition 20.88

Table 3.4 Mineralogical Composition of Çayırhan Desulphogypsum

Mineral Weight (%)

Gypsum (CaSO4.2H2O) 96.89

Quartz (SiO2) 2.03

Page 41: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

32

Figure 3.2 X-Ray Diffractogram of Çayırhan Desulphogypsum

Page 42: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

33

3.2.3 Collapsible Soil

Collapsible soil was also obtained from Çayırhan Thermal Power Plant area.

Sampling was carried out according to the TS 1901 (Methods of Boring and

Obtaining of Disturbed and Undisturbed Samples for Civil Engineering

Purposes). Chemical and mineralogical analyses of the soil were carried out at

Turkish Cement Producers Association laboratories and the results are listed in

Table 3.5 and 3.6, respectively. The X-Ray Diffractogram of the soil is illustrated

in Figure 3.3.

Table 3.5 Chemical Composition of Çayırhan Collapsible Soil

Component Weight (%)

CaCO3 24.30

CaO 13.65

SiO2 53.80

Al2O3 7.20

Loss on Ignition 1.05

Table 3.6 Mineralogical Composition of Çayırhan Collapsible Soil

Component

Calcite (CaCO3)

Bassanite (CaSO4.1/2 H2O)

Quartz (SiO2)

Feldspar [(K,Na)AlSi3O8]

Montmorillonite [Na0.3(Al,Mg)2Si4O10(OH)2.4H2O]

Dolomite [CaMg(CO3)2]

Page 43: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

34

Figure 3.3 X-Ray Diffractogram of Çayırhan Collapsible Soil

Page 44: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

35

Laboratory tests were performed on undisturbed samples of Çayırhan soil at

METU. The results are listed in Table 3.7

Table 3.7 Laboratory Test Results of Undisturbed Çayırhan Soil

Test Characteristics Unit Result

Gravel content % 4.8

Sand content % 31.6 Sieve Analyses

Fines content % 63.6

Liquid limit (LL) % 43.7

Plastic limit (PL) % 21.3 Atterberg Limits

Plasticity index (PI) % 22.4

Sieve + Atterberg USCS group symbol CL

Specific Gravity Determination

Gs 2.514

Moisture Content Determination

wn % 17.0

Optimum moisture content (wopt) % 20.5 Standard Proctor

Maximum dry density (γdmax) Mg/m3 1.677

Cohesion (cu) kPa 160-253

Internal friction angle (Øu) ˚ 0 Unconsolidated-Undrained (UU) Triaxial Strength

Modulus of elasticity (Eu) MPa 13.1-16.4

California Bearing Ratio

CBR % 0.7

Permeability k m/s 1.6×10-9

Single Oedometer Collapse potential (CP) % 13

Table 3.7 indicates that Çayırhan soil is a ‘severe trouble’ (See Table 2.1) type

collapsible soil. It is classified as low plastic, silty clay (CL) according to Unified

Soil Classification System. However, hydrometer tests in order to determine the

silt and clay fractions could not be performed in the laboratory due to

precipitation of material at the bottom of the hydrometer flask within first few

Page 45: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

36

hours. As expected, the soil has low specific gravity, low maximum dry density

and very low California Bearing Ratio.

3.3 Sample Preparation

As mentioned in Chapter I, the test program included index (sieve and

hydrometer analyses, Atterberg limits and standard compaction),

unconsolidated-undrained triaxial compression (UU), California Bearing Ratio

(CBR) and triaxial permeability tests.

The collapsible soil used in the study is designated as “Sample A”; fly ash as

“FA” and desulphogypsum as “DSG”. The mix design of the materials,

designated such as “5% FA” implies that the sample consists of 5% fly ash and

95% soil, i.e. 5% FA + 95% Sample A, by dry weight of the total sample. Table

3.8 indicates the samples used in the experimental research.

Table 3.8 Soil and (Soil + Admixture) Samples Used in the Experimental

Research

Sample A Sample A + Fly Ash

(FA)

Sample A + Desulphogypsum

(DSG)

100% Sample A

(Undisturbed)

95% A + 5% FA

(5%FA)

95% A + 5% DSG

(5%DSG)

100% Sample A

(Compacted)

90% A + 10% FA

(10%FA)

90% A + 10% DSG

(10%DSG)

85% A + 15% FA

(15%FA)

85% A + 15% DSG

(15%DSG)

80% A + 20% FA

(20%FA)

80% A + 20% DSG

(20%DSG)

75% A + 25% FA

(25%FA)

75% A + 25% DSG

(25%DSG)

Page 46: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

37

In addition to various mix designs of soil + additive, each sample was tested at

0 day, i.e. 1 hour, 7 days and 28 days after preparation in order to investigate

the effect of curing. However, for engineering index tests such as particle size

analyses, consistency limits and standard compaction the effect of curing would

not be required. For the remaining tests, the samples listed in Table 3.8 were

prepared as follows:

- The constituents of the sample were oven dried (Sample A and FA at 60 ˚C,

desulphogypsum at 30 ˚C) for 24 hours,

- The necessary amounts of dry materials were mixed manually in a clean

and dry trowel until the uniform distribution of particles was ensured,

- Necessary amount of water was added to the mixture in order to achieve

optimum moisture content,

- The mixture was again mixed manually to enhance penetration and

uniformly distribution of water through pores,

- The mixture was filled in a clean nylon bag, which was then closed tightly

and put in a moist room in order not to allow for moisture content changes.

The sample was left in that room throughout the curing period.

3.4 Test Procedures and Results

3.4.1 Particle Size Analyses

The sieve analyses of the samples were carried out according to ASTM D 422.

Wet sieving procedure was preferred since coarse-grained particles of soil were

expected to be soft and pulverize readily as indicated in ASTM D 2217. 500 g of

total samples were used in each test. As mentioned before, the hydrometer

analyses could not be achieved. The effect of curing on particle size distribution

was not to be investigated therefore only 0 day cured, i.e. 1 hour soaked

samples were sieved. The results indicating the fines, sand and gravel content

of the samples are listed in Table 3.9, whereas the test forms are presented in

Appendix A. The particle size distribution curves for FA and DSG blended

samples together with the Sample A are illustrated in Figure 3.4 and 3.5,

respectively.

Page 47: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

38

Table 3.9 Results of Engineering Index Tests

Sample

Fin

es

(%

)

Sa

nd

(%

)

Gra

ve

l (%

)

LL (%)

PL (%)

PI (%) U

SC

S

Sy

mb

ol

MD

D

(Mg

/m3)

OM

C

(%

)

Sample A (Undisturbed)

63.6 31.6 4.8 43.7 21.3 22.4 CL 1.68 20.5

95% A + 5% FA 62.9 31.8 5.4 39.2 24.4 14.8 CL 1.66 21.5

90% A + 10% FA 62.9 32.4 4.7 39.0 22.4 16.7 CL 1.62 22.5

85% A + 15% FA 63.6 34.3 2.1 38.3 21.7 16.6 CL 1.62 21.5

80% A + 20% FA 64.8 32.9 2.3 37.4 22.9 14.5 CL 1.66 18.0

75% A + 25% FA 66.1 32.0 1.9 36.6 24.1 12.5 CL - ML 1.64 19.0

95% A + 5% DSG 61.5 34.3 4.2 37.1 23.6 13.5 CL 1.65 21.5

90% A + 10% DSG 62.3 34.6 3.2 37.0 23.2 13.8 CL 1.61 24.0

85% A + 15% DSG 63.4 32.7 4.0 36.9 24.6 12.3 CL-ML 1.60 24.5

80% A + 20% DSG 64.7 31.9 3.4 37.4 25.8 11.5 ML 1.61 25.0

75% A + 25% DSG 66.0 29.5 4.6 37.9 26.0 11.9 ML 1.59 25.5

Page 48: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

39

Figure 3.4 Particle size distribution curves for FA blended samples

Page 49: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

40

Figure 3.5 Particle size distribution curves for DSG blended samples

Page 50: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

41

3.4.2 Atterberg Limits and Soil Classification

The Atterberg Limits tests were carried out on uncured (0 day cured) samples

according to ASTM D 4318 in order to determine liquid limit (LL), plastic limit

(PL) and plasticity index (PI) values. Using Atterberg limits and particle size

distribution values, the group symbol, i.e. soil type, of the samples were

determined according to Unified Soil Classification System. The results are listed

in Table 3.9, whereas the test forms are presented in Appendix B. The plasticity

chart for FA and DSG blended samples together with the undisturbed Sample A

are illustrated in Figure 3.6 and 3.7, respectively.

3.4.3 Standard Compaction

The standard compaction tests were carried out on uncured (0 day cured)

samples according to ASTM D 698. 2 500 g of total samples were used in each

test. The results of standard compaction tests were to be used in sample

preparation for the strength, permeability and bearing tests, i.e. these tests

were decided to be performed on samples prepared at optimum moisture

content and compacted to maximum dry density. As a result special care was

taken in standard compaction tests and the results are tabulated in Table 3.9,

whereas the test forms are presented in Appendix C.

Page 51: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

42

Figure 3.6 Plasticity chart for FA blended samples

Page 52: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

43

Figure 3.7 Plasticity chart for DSG blended samples

Page 53: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

44

3.4.4 Unconsolidated Undrained (UU) Triaxial Compressive Strength

Unconsolidated-undrained compressive strength tests in triaxial compression

were carried out on samples prepared according to the guidelines presented in

paragraph 3.3 and compacted to maximum dry density. Effect of curing was

also investigated in these tests performed according to ASTM D 2850. Wykeham

Farrance type triaxial equipment (Figure 3.8) was used and undrained cohesion

(cu) and secant modulus of elasticity (Eu) of each sample was determined. The

tests were performed at three cell pressures namely 50 kPa (≈0.5 kg/cm2), 100

kPa (≈1 kg/cm2) and 200 kPa (≈2 kg/cm2). The results are listed in Table 3.10,

whereas the test forms are given in Appendix D.

Figure 3.8 Wykeham Farrance type unconsolidated-undrained triaxial compressive test

equipment

Page 54: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

45

Table 3.10 Results of Strength and Permeability Tests

cu

(σ3 =

50 k

Pa)

cu

(σ3 =

100 k

Pa)

cu

(σ3 =

200 k

Pa)

Eu

(σ3 =

50 k

Pa)

Eu

(σ3 =

100 k

Pa)

Eu

(σ3 =

200 k

Pa)

CB

R

k Sample

Cu

rin

g C

on

dit

ion

(d

ay)

kPa kPa kPa MPa MPa MPa (%) (m/s)

100% A (UD) 0 159,9 214,8 253,3 13,1 13,4 16,4 0.7 1.6E-09

100% A (Comp.) 0 281,2 331,8 405,5 21,7 23,9 28,1 11.4 7.5E-10

100% A (Comp.) 7 417,8 484,0 564,6 28,5 44,1 46,9 25.0 7.5E-10

100% A (Comp.) 28 416,8 445,0 526,8 52,2 55,3 56,8 27.1 1.5E-09

95% A + 5% FA 0 277,4 345,5 417,8 16,4 21,9 28,6 17.9 4.8E-10

95% A + 5% FA 7 158,4 252,6 266,7 24,7 25,9 32,8 24.3 6.6E-10

95% A + 5% FA 28 223,3 272,2 314,3 15,5 16,9 23,3 25.7 2.1E-10

90% A + 10% FA 0 172,3 287,5 330,3 17,8 21,5 25,0 21.6 1.4E-09

90% A + 10% FA 7 213,1 252,4 312,5 24,8 27,4 29,5 38.6 1.7E-09

90% A + 10% FA 28 471,7 484,4 526,1 35,0 44,2 51,1 41.9 1.5E-09

85% A + 15% FA 0 179,9 246,1 347,7 14,1 19,4 24,1 27.8 3.0E-09

85% A + 15% FA 7 350,3 362,8 430,5 27,0 29,6 37,1 45.2 1.4E-09

85% A + 15% FA 28 545,7 646,3 695,7 43,4 51,4 77,7 64.3 3.9E-10

80% A + 20% FA 0 309,7 358,8 502,1 28,0 32,3 37,3 29.3 4.6E-09

80% A + 20% FA 7 379,0 416,3 593,2 46,5 47,9 51,5 41.0 4.1E-09

80% A + 20% FA 28 603,9 676,5 807,0 33,5 43,8 60,7 61.4 1.2E-08

75% A + 25% FA 0 393,3 573,0 628,8 33,6 41,6 59,0 80.0 3.2E-09

75% A + 25% FA 7 321,9 490,0 575,1 17,7 30,2 47,8 55.0 1.5E-09

75% A + 25% FA 28 594,9 647,8 785,8 41,7 42,6 62,3 55.7 5.7E-09

95% A + 5% DSG 0 269,4 354,3 439,3 17,1 40,8 43,2 11.4 2.7E-09

95% A + 5% DSG 7 578,2 613,4 729,9 40,4 43,7 49,9 31.4 1.5E-09

95% A + 5% DSG 28 580,8 658,3 784,5 67,5 76,8 84,0 32.9 6.6E-10

90% A + 10% DSG 0 210,0 230,4 303,6 23,4 28,7 29,6 22.9 4.7E-09

90% A + 10% DSG 7 268,6 284,1 348,7 23,6 26,0 29,4 18.1 1.5E-09

90% A + 10% DSG 28 203,6 259,5 318,9 14,1 18,0 20,8 19.5 1.1E-09

85% A + 15% DSG 0 124,8 165,2 193,0 12,7 15,1 16,6 21.6 1.5E-09

85% A + 15% DSG 7 140,8 190,7 270,2 13,6 18,6 25,1 11.5 2.5E-09

85% A + 15% DSG 28 186,4 240,2 306,8 15,9 19,7 20,8 8.4 2.8E-09

80% A + 20% DSG 0 93,5 137,6 177,4 2,9 5,2 6,9 22.1 1.0E-09

80% A + 20% DSG 7 110,4 120,6 166,6 3,3 3,4 5,3 8.2 7.5E-10

80% A + 20% DSG 28 153,5 170,4 285,5 8,1 23,5 24,5 6.2 1.9E-09

75% A + 25% DSG 0 122,7 133,7 188,4 6,4 6,6 9,3 20.0 1.5E-09

75% A + 25% DSG 7 117,7 171,2 260,2 7,4 9,9 15,0 6.4 3.0E-09

75% A + 25% DSG 28 139,7 177,9 265,9 9,7 10,0 18,2 5.0 2.9E-09

Page 55: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

46

3.4.5 California Bearing Ratio

California Bearing Ratio (CBR) tests were carried out on the samples prepared

according to the guidelines presented in paragraph 3.3 and compacted to

maximum dry density. Effect of curing was also investigated in these tests

performed according to ASTM D 1883.

This test was developed by US California Division of Highways as a method of

classifying and evaluating soil sub-grade and base course materials for flexible

pavements. The CBR is currently used in pavement design for both roads and

airfield pavements. Typical ratings are listed in Table 3.11.

Table 3.11 Typical Ratings for CBR Performances of Soils

CBR (%) General Rating

Uses

0-3 Very poor Sub-grade

3-7 Poor to fair Sub-grade

7-20 Fair Sub-base

20-50 Good Base of sub-base

>50 Excellent Base

The apparatus necessary for the test is presented below:

Loading Machine

A loading machine with a capacity of at least 44.5 kN and equipped with a

movable head or base that travels at a uniform (not pulsating) rate of 1.27

mm/min for use in forcing the penetration piston into the sample. A typical

loading machine is illustrated in Figure 3.9.

Page 56: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

47

Figure 3.9 Typical loading machine

Mould

The mould shall be a rigid metal cylinder with an inside diameter of 152.4 mm

and a height of 177.8 mm, as shown in Figure 3.10. It shall be provided with a

metal extension collar and a metal base plate having at least twenty eight 1.59

mm diameter holes uniformly spaced over the plate within the inside

circumference of the mould.

Figure 3.10 CBR Mould and Sample Preparation

Page 57: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

48

Rammer

A rammer as specified in ASTM D 698 for standard compaction of the sample in

a 152.4 mm diameter mould.

Expansion - Measuring Apparatus

An adjustable metal stem and perforated metal plate and a metal tripod to

support the dial gage for measuring the amount of swell during soaking.

Weights

One or two metal weights having a total mass of 4.54 kg and a central hole

through which the penetration piston passes when loading the sample were

used. Also slotted metal weights each having masses of 2.27 kg are required to

locate above the sample during soaking.

Penetration Piston

A metal piston 49.63 mm in diameter to be loaded by the loading machine and

penetrate into the sample during the test.

Gages

Two dial gages, one measuring the amount of penetration and the other

measuring the load attached to piston.

CBR test procedure is summarized briefly as follows:

- As the sample prepared at optimum moisture content was used in this

study, before CBR test, a moisture content determination is performed in

order to check whether the moisture content of the sample was within the

±0.5% of its optimum.

- The mould (with extension collar attached) is clamped to the base plate.

The spacer disk is attached above the base plate and a filter paper is placed

on top of spacer disk. Then the sample is compacted into the mould.

Page 58: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

49

- Extension collar is removed and compacted sample is trimmed by means of

a straight-edge. The mass of mould + compacted sample is recorded. The

mould is then inverted and another filter paper is placed.

- Surcharge weights are placed above the mould. The mould and the weights

are immersed in water. Initial measurement for swell is taken and the

sample is allowed to soak for 96 hours.

- After 96 hours the free water is removed and the sample is allowed to drain

downward for 15 minutes.

- Surcharge weights are placed on the sample and the penetration piston is

seated. Thereafter load is applied on the penetration piston so that the rate

of penetration is 1.27 mm/min. The load readings at penetration of 0.64

mm, 1.27 mm, 1.91 mm, 2.54 mm, 5.08 mm, 7.62 mm, 10.16 mm and

12.70 mm are recorded.

- The soil is removed from the mould and its moisture content is determined.

The calculation of CBR is achieved as follows:

The load readings are converted to the stress by dividing them into the cross-

sectional area of the piston. Stress - penetration curve is then plotted. A

typical curve is illustrated in Figure 3.11. If necessary, the curve is corrected

for concave upward shape or surface irregularities. The corrected stresses

taken from the stress-penetration curve for 2.54 mm and 5.08 mm

penetrations are divided by the standard stresses of 6.9 MPa and 10.3 MPa,

respectively, and are multiplied by 100 to obtain CBR values. The bearing ratio

reported for the soil is normally the one at 2.54 mm. If the CBR at 5.08 mm

penetration is greater than the one at 2.54 mm, then the test is rerun. If this

test again gives a similar result, then the CBR is reported as the one at 5.08

mm penetration.

The CBR test results carried out in this study are listed in Table 3.10, whereas

the test forms are presented in Appendix E.

Page 59: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

50

Figure 3.11 Typical stress - penetration curve (ASTM D 1883, 1993)

3.4.6 Triaxial Permeability

Sample A is a clayey soil. Clayey soils have low permeability in the order of 10-9

– 10-12 m/s. Fly ash and desulphogypsum also have low permeability since they

are fine-grained materials. In order to investigate the effect of fly ash and

desulphogypsum treatment, the permeability tests were conducted in triaxial

test equipment. The effect of curing was also investigated on samples prepared

Page 60: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

51

according to the guidelines presented in paragraph 3.3 and compacted to

maximum dry density.

The setup of triaxial permeability test with two backpressure systems is

illustrated in Figure 3.12. The backpressure systems are connected to the base

(p1) and top (p2) of the sample. A cell pressure (σ3), which should always be

greater than backpressures, is also applied to the triaxial chamber.

Figure 3.12 Triaxial permeability test setup with 2 backpressure systems (after Head,

1986)

However, triaxial permeability test with one backpressure system was used in

this study as illustrated in Figure 3.13.

Page 61: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

52

Figure 3.13 Triaxial permeability test setup with 1 backpressure system (after Head,

1986)

The test procedure is described as follows:

- A predetermined backpressure, p1 (50 kPa in this study) is applied on top of

the sample to ensure that virtually all the air in the voids is driven into

solution.

- A cell pressure (100 kPa in this study) is also applied into triaxial chamber

to prevent failure of sample due to increase in pore pressure during

saturation phase.

- Saturation phase ends when outward drainage of water has ceased in the

burette.

- The timer is then started and the readings of volume change gauge

mounted on the backpressure line and readings of burette mounted on the

base of sample are recorded at regular time intervals (half an hour or 1

hour in this study since the samples are fine grained materials). Volume

change gauge measures the volume of water inflow into the sample in

millilitres whereas the burette measures the height of water outflow from

the sample in centimetres. Since the cross-sectional area of the burette is

known, the volume of outflow water is also known.

- When the volume of inflow equals to outflow, the rate of flow appears to be

steady, meaning that the test may be finished.

Page 62: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

53

The procedure for the calculation of permeability is presented as follows:

- The cumulative outflow, Q (ml) up to the time of each reading is calculated

and a graph of Q against time t (minutes) is plotted.

- The linear portion of the graph indicates that a steady rate of flow is

reached.

- From the linear part of the graph the slope is measured to calculate the

mean rate of flow, q (ml/min). A typical graph and flow rate calculation is

illustrated in Figure 3.14.

Figure 3.14 Typical graph for flow rate calculation (after Head, 1986)

- The mean hydraulic gradient is the difference in head per unit length, i.e.:

i = 102 × L

pp21

− ……………………… (2)

Page 63: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

54

where;

L : Length of sample (mm)

p1 : Backpressure (kPa)

p2 : Pressure (kPa) at the base of sample

P2 = 9.81 × 1000

h (kPa) …………………… (3)

Substituting (3) in (2) the hydraulic gradient becomes:

i = 102 × L

hp −1 …………………………… (4)

If the pressure head (h) due to the height of water in the burette is small

(say less than 5% of p1), as is the case in this study, then Equation (4)

approximates to:

i = 102 × L

p1 ….………………………… (5)

- The coefficient of permeability (k) is then calculated from the following

formula:

k = 1

10260 pA

qL

× (m/s) ………………… (6) which simplifies to:

k = 1

6120Ap

qL (m/s) ………………… (7)

where;

A : cross-sectional area of the sample (mm2)

q : mean rate of flow (ml/min).

Page 64: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

55

The results of triaxial permeability tests are also tabulated in Table 3.10,

whereas the test forms are listed in Appendix F.

The triaxial equipment used for permeability tests throughout this study is

shown in Figure 3.15.

Figure 3.15 Triaxial permeability test apparatus

Page 65: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

56

4 CHAPTER IV

DISCUSSION OF RESULTS

4.1 Particle Size Distribution

Referring to Table 3.9 and Figures 3.4 and 3.5, the particle size distribution

curves for samples containing more than 15% FA or DSG, shifted to the finer

side; whereas samples containing less than 15% FA or DSG, to the coarser side.

However, this evaluation only takes into account sieve analysis and the amount

of above-mentioned shift is so small that it has no importance from engineering

point of view. In fact, addition of FA and DSG altered mainly the distribution of

the silt-clay fraction. According to Table 3.9 the clayey (CL) Çayırhan soil

transforms into silty soil (CL-ML or ML) when blended with 25% FA or more than

15% DSG.

4.2 Consistency Limits and Soil Classification

FA and DSG treatment both lowered the points towards A-Line in the plasticity

chart (Figures 3.6 and 3.7), meaning that the plasticity of Çayırhan soil

decreased. The decrease was more radical in DSG treatment so that addition of

more than 15% DSG caused the soil classification to change from low plasticity

clay (CL) to inorganic silt (ML). On the other hand, addition of 25% FA could

have started such a classification change.

4.3 Compaction Characteristics

FA and DSG are lightweight and fine materials in the form of powder. Therefore

the maximum dry density (MDD) of Sample A decreased slightly with the

addition of FA and DSG, whatever the mix-design was (Table 3.9). On the other

hand, the optimum moisture content (OMC) of Sample A increased with the

Page 66: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

57

addition of FA and DSG. The only exception for optimum moisture content was

in 20% and 25% FA treatments.

4.4 Total Shear Strength Parameters

4.4.1 Undrained Cohesion (cu)

As mentioned before, UU tests were carried out at 3 cell pressures, namely 50

kPa, 100 kPa and 200 kPa. The Mohr circles for each of these tests were drawn

but identical circles as in the case of Øu = 0 could not be achieved since the

samples were not fully saturated; however the samples were prepared at

optimum moisture content. Therefore horizontal tangents passing through peak

points of each circle were drawn to obtain undrained cohesion values.

The cohesion of undisturbed Sample A was found as 159.9 kPa, 214.8 kPa and

253.3 kPa (Table 3.10) for 3 cell pressures, respectively. These values increased

to 281.2 kPa, 331.8 kPa and 405.5 kPa, when Sample A was simply compacted

to maximum dry density at its optimum moisture content. Curing for 7 and 28

days further increased the cohesion of simply compacted sample.

Since FA and DSG added samples were also compacted, rather than the

undisturbed Sample A, the compacted Sample A should have been taken into

account for the comparisons. Thus, FA or DSG treatments could only be

meaningful if they provided a better strength than the compacted Sample A.

The comparisons and evaluations are as follows:

Blending Sample A with FA and compacting did not result in a definite trend

(Figures 4.1, 4.2 and 4.3), i.e., there was not a consistent correlation between

fly ash content, cohesion, and curing condition. However, for 0 day curing,

samples containing 20% and 25% FA; for 7 days curing samples containing

20% and 25% FA (but only for 200 kPa cell pressures); and for 28 days curing

samples containing more than 10% FA had better results than the compacted

Sample A.

Page 67: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

58

0

100

200

300

400

500

600

700

Fly Ash Content (%)

cu (

kP

a)

0 day cure 281,2 277,4 172,3 179,9 309,7 393,3

7 day cure 417,8 158,4 213,1 350,3 379,0 321,9

28 day cure 416,8 223,3 471,7 545,7 603,9 594,9

0 5 10 15 20 25

Figure 4.1 Undrained cohesion at σ3 = 50 kPa for FA blended samples

0

100

200

300

400

500

600

700

FA Content (%)

cu (

kP

a)

0 day cure 331,8 345,5 287,5 246,1 358,8 573,0

7 day cure 484,0 252,6 252,4 362,8 416,3 490,0

28 day cure 445,0 272,2 484,4 646,3 676,5 647,8

0 5 10 15 20 25

Figure 4.2 Undrained cohesion at σ3 = 100 kPa for FA blended samples

Page 68: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

59

0

100

200

300

400

500

600

700

800

900

Fly Ash Content (%)

cu (

kP

a)

0 day cure 405,5 417,8 330,3 347,7 502,1 628,8

7 day cure 564,6 266,7 312,5 430,5 593,2 575,1

28 day cure 526,8 314,3 526,1 695,7 807,0 785,8

0 5 10 15 20 25

Figure 4.3 Undrained cohesion at σ3 = 200 kPa for FA blended samples

The effect of addition of DSG to Sample A is illustrated in Figures 4.4, 4.5 and

4.6. Unlike FA treatment, there was a consistent trend here such that increasing

DSG content decreased cohesion. The only exception for this behaviour was 5%

DSG treatment for all curing conditions.

Page 69: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

60

0

100

200

300

400

500

600

DSG Content (%)

cu (

kP

a)

0 day cure 281,2 269,4 210,0 124,8 93,5 122,7

7 day cure 417,8 578,2 268,6 140,8 110,4 117,7

28 day cure 416,8 580,8 203,6 186,4 153,5 139,7

0 5 10 15 20 25

Figure 4.4 Undrained cohesion at σ3 = 50 kPa for DSG blended samples

0

100

200

300

400

500

600

700

DSG Content (%)

cu

(k

Pa

)

0 day cure 331,8 354,3 230,4 165,2 137,6 133,7

7 day cure 484,0 613,4 284,1 190,7 120,6 171,2

28 day cure 445,0 658,3 259,5 240,2 170,4 177,9

0 5 10 15 20 25

Figure 4.5 Undrained cohesion at σ3 = 100 kPa for DSG blended samples

Page 70: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

61

0

100

200

300

400

500

600

700

800

DSG Content (%)

cu (

kP

a)

0 day cure 405,5 439,3 303,6 193,0 177,4 188,4

7 day cure 564,6 729,9 348,7 270,2 166,6 260,2

28 day cure 526,8 784,5 318,9 306,8 285,5 265,9

0 5 10 15 20 25

Figure 4.6 Undrained cohesion at σ3 = 200 kPa for DSG blended samples

As a result, 20% and 25% FA treatments without curing increase the undrained

cohesion. The minimum increase, 8%, was obtained at 100 kPa cell pressure for

20% FA treatment; and the maximum increase, 73%, was obtained at 100 kPa

cell pressure for 25% FA treatment. Therefore for short term construction

purposes, especially 25% FA treatment without curing is strongly proposed by

this study. If there is time for curing and if the engineer needs more increase in

undrained cohesive strength, then he may use treatments containing more than

10% FA with 28 days curing, optionally.

On the other hand, only 5% DSG treatment may be proposed by this study. This

treatment increases undrained cohesion slightly for uncured samples but

significantly for cured samples. The engineer may cure untreated Çayırhan soil

for 7 or 28 days and simply compact; but if he needs a greater undrained

strength, 5% DSG treatment with 7 or 28 days curing would be helpful.

Page 71: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

62

4.4.2 Undrained Secant Modulus of Elasticity (Eu)

As mentioned before, UU tests were carried out at 3 cell pressures, namely 50

kPa, 100 kPa and 200 kPa. The secant moduli of elasticity at these 3 cell

pressures were calculated for all of the samples.

Similar to cohesive strength, the elastic moduli of the undisturbed Sample A

increased significantly by simply compacting to maximum dry density at its

optimum moisture content. Curing for 7 and 28 days further increased the

elastic moduli (Table 3.10).

Since FA and DSG added samples were also compacted, rather than the

undisturbed Sample A, the compacted Sample A should have been taken into

account for the comparisons. Thus, FA or DSG treatments could only be

meaningful if they provided a better strength than the compacted Sample A.

The comparisons and evaluations are as follows:

Blending Sample A with FA and compacting did not result in a definite trend

(Figures 4.7, 4.8 and 4.9), i.e., there was not a consistent correlation between

fly ash content, secant modulus of elasticity and curing condition. However,

such an evaluation is possible that, for 0 day curing, samples containing 20%

and 25% FA; for 7 days curing, only 20% FA sample; and for 28 days curing,

none of the samples (except the ones at 200 kPa cell pressure) had better

results than the compacted Sample A.

Page 72: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

63

0

10

20

30

40

50

60

Fly Ash Content (%)

Eu (

MP

a)

0 day cure 21,7 16,4 17,8 14,1 28,0 33,6

7 day cure 28,5 24,7 24,8 27,0 46,5 17,7

28 day cure 52,2 15,5 35,0 43,4 33,5 41,7

0 5 10 15 20 25

Figure 4.7 Secant modulus of elasticity at σ3 = 50 kPa for FA blended samples

0

10

20

30

40

50

60

Fly Ash Content (%)

Eu (

MP

a)

0 day cure 23,9 21,9 21,5 19,4 32,3 41,6

7 day cure 44,1 25,9 27,4 29,6 47,9 30,2

28 day cure 55,3 16,9 44,2 51,4 43,8 42,6

0 5 10 15 20 25

Figure 4.8 Secant modulus of elasticity at σ3 = 100 kPa for FA blended samples

Page 73: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

64

0

10

20

30

40

50

60

70

80

Fly Ash Content (%)

Eu (

MP

a)

0 day cure 28,1 28,6 25,0 24,1 37,3 59,0

7 day cure 46,9 32,8 29,5 37,1 51,5 47,8

28 day cure 56,8 23,3 51,1 77,7 60,7 62,3

0 5 10 15 20 25

Figure 4.9 Secant modulus of elasticity at σ3 = 200 kPa for FA blended samples

The effect of addition of DSG to Sample A is illustrated in Figures 4.10, 4.11 and

4.12. Unlike FA treatment, there was a consistent trend here such that

increasing DSG content decreased secant moduli of elasticity. The only

exception for this behaviour was 5% DSG treatment.

Page 74: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

65

0

10

20

30

40

50

60

70

DSG Content (%)

Eu (

MP

a)

0 day cure 21,7 17,1 23,4 12,7 2,9 6,4

7 day cure 28,5 40,4 23,6 13,6 3,3 7,4

28 day cure 52,2 67,5 14,1 15,9 8,1 9,7

0 5 10 15 20 25

Figure 4.10 Secant modulus of elasticity at σ3 = 50 kPa for DSG blended samples

0

10

20

30

40

50

60

70

80

DSG Content (%)

Eu (

MP

a)

0 day cure 23,9 40,8 28,7 15,1 5,2 6,6

7 day cure 44,1 43,7 26,0 18,6 3,4 9,9

28 day cure 55,3 76,8 18,0 19,7 23,5 10,0

0 5 10 15 20 25

Figure 4.11 Secant modulus of elasticity at σ3 = 100 kPa for DSG blended samples

Page 75: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

66

0

10

20

30

40

50

60

70

80

90

DSG Content (%)

Eu (

MP

a)

0 day cure 28,1 43,2 29,6 16,6 6,9 9,3

7 day cure 46,9 49,9 29,4 25,1 5,3 15,0

28 day cure 56,8 84,0 20,8 20,8 24,5 18,2

0 5 10 15 20 25

Figure 4.12 Secant modulus of elasticity at σ3 = 200 kPa for DSG blended samples

As a result, treating Çayırhan collapsible soil by 20% and 25% FA without curing

might be thought as beneficial from secant moduli point of view. If there is time

for curing, simply compacting Çayırhan soil would be more logical instead of any

treatment.

On the other hand, 5% DSG treatment with 28 days curing only may be

proposed from elastic moduli point of view as simple compaction resulted in

better elastic moduli for other cases.

4.4.3 General Discussion for UU Test Results

Correlating the discussions mentioned in paragraphs 4.4.1 and 4.4.2, it has

been clear that 20%-25% FA treatment without curing or 5% DSG treatment

with 28 days curing only could be the proposal of this study. The reason for this

selection was that only these treatments were able to provide a further

improvement for the shear strength parameters (cohesion and secant moduli of

elasticity) of compacted Sample A. The photographs of the tested samples are

illustrated in Figures 4.13 and 4.14.

Page 76: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

67

Figure 4.13 Tested 5% DSG (28 day cured) samples (under 50, 100 and 200 kPa cell

pressures from left to right)

Figure 4.14 Tested 20% FA (0 day cured) samples (under 50, 100 and 200 kPa cell

pressures from left to right)

Page 77: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

68

4.5 CBR

The CBR of undisturbed Sample A was found as 0.7% (Table 3.10) which implies

that the soil is “very poor”. This value increased to 11.4%, 25.0% and 27.1%

when Sample A was simply compacted to maximum dry density at its optimum

moisture content and cured for 0, 7 and 28 days, respectively. Referring to

Table 3.11 compaction only improved the soil rating to “fair” whereas curing and

compaction together improved it to “good”.

Since FA and DSG added samples were also compacted, rather than the

undisturbed Sample A, the compacted Sample A should have been taken into

account for the comparisons.

Blending Sample A with FA and compacting resulted in consistent trend (Figure

4.15) such that increasing fly ash content increases CBR. In general curing

effects CBR positively. It should be mentioned that the rating for soil becomes

“excellent” by 25% FA treatment without curing.

On the other hand, blending Sample A with DSG and compacting resulted in two

different behaviours with respect to the curing condition. For uncured (0 day)

samples, increasing DSG content increased CBR, whereas for cured samples

increasing DSG content decreased CBR (Figure 4.16) except 5% DSG. The

rating for soil becomes “good” for uncured samples and cured 5% DSG sample,

which is proposed by this study.

Page 78: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

69

0

10

20

30

40

50

60

70

80

90

Fly Ash Content (%)

CB

R (

%)

0 day cure 11,4 17,9 21,6 27,8 29,3 80,0

7 day cure 25,0 24,3 38,6 45,2 41,0 55,0

28 day cure 27,1 25,7 41,9 64,3 61,4 55,7

0 5 10 15 20 25

Figure 4.15 CBR values for FA blended samples

0

5

10

15

20

25

30

35

DSG Content (%)

CB

R (

%)

0 day cure 11,4 11,4 22,9 21,6 22,1 20,0

7 day cure 25,0 31,4 18,1 11,5 8,2 6,4

28 day cure 27,1 32,9 19,5 8,4 6,2 5,0

0 5 10 15 20 25

Figure 4.16 CBR values for DSG blended samples

Page 79: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

70

4.6 Permeability

The permeability of undisturbed Sample A was found as 1.6 × 10-9 m/s (Table

3.10) which implies that the soil is impervious. This value decreased to 7.5 ×

10-10 m/s and 1.5 × 10-9 cm/s when Sample A was simply compacted to

maximum dry density at its optimum moisture content and cured for 0, 7 and

28 days, respectively.

Since FA and DSG added samples were also compacted, rather than the

undisturbed Sample A, the compacted Sample A should have been taken into

account for the comparisons.

Blending Sample A with FA and compacting increased the permeability for 0 and

7 days curing in general. For 28 days curing, a consistent trend can not be

obtained but it should be mentioned that the permeability increases significantly

for 20% and 25% FA treatments (Figure 4.17).

However, for all of the treatments and for all of the curing conditions, the

samples are within “impervious” soil class except 28 days cured 20% FA

treatment for which the class is “semi-pervious”. As a result, other than the 28

days cured 20% FA sample, all of the samples may be used in the core zone of

an embankment from permeability point of view. The 28 days cured 20% FA

sample may be used in the shell zone of an embankment.

Blending Sample A with DSG and compacting also increased the permeability for

0 and 7 days curing in general. For 28 days curing, a consistent trend can not

be obtained, either (Figure 4.18).

However, for all of the treatments and for all of the curing conditions, the

samples are within “impervious” soil class. As a result, all of the samples may

be used in the core zone of an embankment from permeability point of view.

Page 80: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

71

0,0E+00

2,0E-09

4,0E-09

6,0E-09

8,0E-09

1,0E-08

1,2E-08

Fly Ash Content (%)

k (

m/s

)

0 day cure 7,5E-10 4,8E-10 1,4E-09 3,0E-09 4,6E-09 3,2E-09

7 day cure 7,5E-10 6,6E-10 1,7E-09 1,4E-09 4,1E-09 1,5E-09

28 day cure 1,5E-09 2,1E-10 1,5E-09 3,9E-10 1,2E-08 5,7E-09

0 5 10 15 20 25

Figure 4.17 Permeability values for FA blended samples

0,0E+00

1,0E-09

2,0E-09

3,0E-09

4,0E-09

5,0E-09

DSG Content (%)

k (

m/s

)

0 day cure 7,5E-10 2,7E-09 4,7E-09 1,5E-09 1,0E-09 1,5E-09

7 day cure 7,5E-10 1,5E-09 1,5E-09 2,5E-09 7,5E-10 3,0E-09

28 day cure 1,5E-09 6,6E-10 1,1E-09 2,8E-09 1,9E-09 2,9E-09

0 5 10 15 20 25

Figure 4.18 Permeability values for DSG blended samples

Page 81: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

72

4.7 Chemical, Mineralogical and Leachate Analyses

In this study, the geotechnical performances of fly ash and desulphogypsum in

treating the collapsible soils were presented. However, past research has

established that both fly ash and desulphogypsum consist of fine particles that

contain leachable heavy metals such as arsenic, cobalt, lead, nickel, and zinc,

and are therefore classified as toxic wastes (Baytar, 2005). The risks imposed

on the environment by possible geotechnical applications of FA and DSG should

be carefully weighed against creating new pollution sources elsewhere.

Therefore, to define more clearly the conditions for a safe application from

environmental point of view, the chemical, mineralogical and leachate analyses

for 25% FA (maximum additive content) sample were performed at the

laboratories mentioned in paragraph 1.4.

The results of chemical and mineralogical composition of 25% FA are listed in

Table 4.1 and 4.2, respectively. The X-Ray Diffractogram of the mixture is

illustrated in Figure 4.19.

Table 4.1 Chemical Composition of 25% FA + 75% Sample A Mixture

Component Weight (%)

SiO2 44.54

Al2O3 11.12

Fe2O3 4.19

CaO 13.52

MgO 3.32

SO3 9.94

Na2O 1.85

K2O 1.66

TiO2 0.67

Loss on Ignition 8.43

Page 82: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

73

Table 4.2 Mineralogical Composition of 25% FA + 75% Sample A Mixture

Mineral

Quartz (SiO2)

Calcite (CaCO3)

Bassanite (CaSO4.0.5H2O)

Feldspar [(K,Na)AlSi3O8]

Dolomite [Ca,Mg (CO3)2

Page 83: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

74

Figure 4.19 X-Ray Diffractogram of 25% FA + 75% Sample A Mixture

Page 84: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

75

Leachate analyses comprise the determination of heavy metal content of the

water filtered from the fly ash + soil mixture. The water sample was prepared in

the laboratory of the Environmental Engineering Department of METU according

to Turkish Water Pollution Quality Regulation as follows:

- 50 g dry mixture of fly ash + soil was put in a glass bowl and 500 g of distilled

water is added.

- The mouth of the bowl was closed with folio paper and then the bowl was put

in the centrifuge machine which has shaken the bowl for 24 hours.

- The water + fly ash + soil mixture was leached from a filter paper to obtain

the solution, i.e. the water containing the minerals from fly ash and soil.

The leachate analyses were carried out according to EPA (USA Environmental

Pollution Agency) 200_8 method by using ICP-MS equipment. The results are

tabulated in Table 4.3.

Table 4.3 Results of Leachate Analyses of 25% FA + 75% Sample A Mixture

Heavy Metals

Weight of

Element in

Solution

(mg/L)

MCL*

(TS 266)

(mg/L)

MCL*

(EPA)

(mg/L)

Lead 0.0000 0.0100 0.0150

Chromium 0.2060 0.0500 0.1000

Manganese 0.0000 0.0500 0.0500

Iron 2.5510 0.2000 0.3000

Copper 0.0896 2.0000 1.3000

Cadmium 0.0203 0.0050 0.0050

Cobalt 0.0075 - -

Nickel 0.0357 0.0200 -

Arsenic 0.1940 0.0100 0.0100

* Maximum contaminant level

Page 85: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

76

The water leached from a geotechnical application that used 25% FA admixture

does not have the possibility of consumption for drinking or domestic uses. In

order to provide information only, maximum contaminant levels according to

Turkish (TS 266) and USA (EPA) Standards are also illustrated in Table 4.3. The

table indicates that the leached water contains more chromium, iron, cadmium,

nickel and arsenic than the amount allowed by the standards and can not be

used for drinking or domestic uses.

Table 4.4 lists the quality criteria for inland water sources according to Turkish

Water Pollution Control Regulation.

Table 4.4 Quality Criteria for Inland Water Sources

Water Quality Classes (mg/L) Component

1 2 3 4

Lead 0.0100 0.0200 0.0500 >0.0500

Chromium 0.0200 0.0500 0.2000 >0.2000

Manganese 0.1000 0.5000 3.0000 >3.0000

Iron 0.3000 1.0000 5.0000 >5.0000

Copper 0.0200 0.0500 0.2000 >0.2000

Cadmium 0.0030 0.0050 0.0100 >0.0100

Cobalt 0.0100 0.0200 0.2000 >0.2000

Nickel 0.0200 0.0500 0.2000 >0.2000

Arsenic 0.0200 0.0500 0.1000 >0.1000

Class 1 : High quality water

Class 2 : Slightly polluted water

Class 3 : Polluted water

Class 4 : Highly polluted water

Table 4.5 tabulates the quality classes of leached water according to Turkish

Water Pollution Control Regulation.

Page 86: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

77

Table 4.5 Quality Classes of Leached Water

Component Quality Class

Lead 1

Chromium 4

Manganese 1

Iron 3

Copper 3

Cadmium 4

Cobalt 1

Nickel 2

Arsenic 4

As a result of leachate analyses, the water is of Class 4, highly polluted.

Page 87: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

78

5

6 CHAPTER V

CONCLUSIONS

This research investigated the effect of fly ash and desulphogypsum on some

geotechnical properties of Çayırhan soil which is collapsible in the natural,

undisturbed state. Fly ash and desulphogypsum were introduced as admixtures

up to a maximum of 25% by dry weight of soil. According to the results of the

experiments, the following conclusions are warranted:

1. Addition of FA and DSG alter mainly the distribution of the silt-clay fraction of

the soil. Clayey (CL) Çayırhan soil transforms into silty soil (CL-ML or ML)

when blended with 25% FA or with 15% and more DSG.

2. FA and DSG treatment both lower the plasticity of Çayırhan soil. The

decrease is more radical in DSG treatment that the soil classification changes

after 15% DSG.

3. Addition of FA and DSG decrease maximum dry density (MDD) slightly

whatever the mix-design is. On the other hand, optimum moisture content

(OMC) increases with the addition of FA (except 20% and 25%) and DSG.

4. In general, there is no consistent trend between total shear strength

parameters, additive content and curing condition. However, this study

revealed that standard compaction and curing improves the total shear

strength parameters of Çayırhan soil. In order to improve these parameters

further, 20%-25% FA treatment without curing or 5% DSG treatment with 28

days curing is proposed.

Page 88: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

79

5. Standard compaction and curing increase CBR of Çayırhan soil. Increasing fly

ash content increases CBR further. Effect of curing here is usually positive.

20% and 25% FA treatments are strongly proposed by this research. On the

other hand, increasing desulphogypsum content increases CBR further for

uncured samples whereas decreases CBR for cured samples. Among DSG

treated samples, only 5% DSG treatment with curing may be a proposal.

6. Addition of FA and DSG increase the permeability of Çayırhan soil for 0 and 7

days curing. On the other hand a consistent trend can not be obtained for 28

days curing. The main conclusion here is that the overall impervious

characteristic of the soil does not change except 28 days cured 20% FA

treatment for which the permeability is classified as semi-pervious.

7. As a result, in order to improve the strength and bearing characteristics of

Çayırhan soil further, this study proposes 20%-25% Çayırhan FA treatments

without curing and 5% Çayırhan DSG treatment with 28 days curing. These

mixtures may be used for the treatment of collapsible soils in Çayırhan

Thermal Power Plant area.

8. Among these proposals, the leachate analyses for 25% FA sample were

carried out and the water quality was found as Class 4 which is highly

polluted. However, the water sample was obtained from a manually mixed

sample, not from a compacted sample. In fact, the geotechnical application

will use 25% FA sample after compaction, thus the leachate from this layer

would be of better quality.

To be on the safe side when using this material in embankments, necessary

precautions, i.e. geomembrane application under the embankment and

construction of drainage ditches at the sides of the embankment, should be

taken to prevent environmental pollution.

Page 89: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

80

REFERENCES

1. Annual Book of ASTM Standards, Soil and Rock; Dimension Stone;

Geosynthetics, Volume 04.08, ASTM, 1993

2. Basma, A.A. and Tuncer, E.R., Evaluation and Control of Collapsible Soils,

Journal of Geotechnical Engineering, Vol. 118, No. 10, 1992, pp. 1 491 -

1 504

3. Baytar, A.Ö., Effects of Fly Ash and Desulphogypsum on the Geotechnical

Properties of Çayırhan Soil, M.Sc. Thesis, Middle East Technical

University, Turkey, 2005

4. Booth, A.R., Collapse Settlement in Compacted Soils, CSIR Res. Report

324, Council for Scientific and Industrial Research, Pretoria, South Africa,

1977

5. Bull, W.B., Alluvial Fans and Near-Surface Subsidence in Western Fresno

County, California, Professional Paper, 437-A, United States Geological

Survey, 1964, p.72

6. Burland, I., Effective Stresses in Partially Saturated Soils, Ph. D. Thesis,

University of Johannesburg, South Africa, 1961

7. Clemence S.P. and Finbarr A.O., Design Considerations for Collapsible

Soils, Journal of Geotechnical Engineering, ASCE, 1981, pp. 305-317

8. Coduto, D., Foundation Design Principles and Practices, Prentice Hall,

1994

9. Collapsible Soils, Rocktalk, Vol.4, No.4, US Colorado Geological Survey,

2001, pp. 1 - 12

10. Craig, R.F., Soil Mechanics, Chapman and Hall, 1983

Page 90: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

81

11. Das, B.M., Principles of Foundation Engineering, McGraw-Hill, 1990

12. Dudley, J.H., Review of Collapsing Soils, Journal of the Soil Mechanics

and Foundations Division, ASCE, Vol. 96, No. SM3, 1970, pp. 925 - 947

13. Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-

Hill, 1996

14. Head, K.H., Manual of Soil Laboratory Testing for ELE International Ltd.,

Vol. 3, Pentech Press, 1986

15. Houston, S.L. and Houston, W.N., State of the Practice, Mitigation

Measures for Collapsible Soil Sites, Proceedings of the Foundation

Engineering Congress, ASCE, 1989, pp. 25 - 29

16. Houston, S.L. and El-Ehwany, M., Sample Disturbance of Cemented

Collapsible Soils, Journal of Geotechnical Engineering Division, ASCE, Vol.

117, No. 5, 1991, pp. 731 - 752

17. Houston, S.L., Houston, W.N., Zapata, C.E. and Lawrence, C.,

Geotechnical Engineering Practice for Collapsible Soils, Journal of

Geotechnical and Geological Engineering, Vol. 19, 2001, pp. 333 - 355

18. Jeffies, M.G. Explosive Compaction, Geotechnical News, Vol. 9, No. 2,

1991, pp. 29 - 31

19. Jennings, J. E. and Knight, K., A Guide to Construction on or with

Materials Exhibiting Additional Settlement Due to Collapse of Grain

Structure, Sixth Regional Conference for Africa on Soil Mechanics and

Foundation Engineering, 1975, pp. 99 - 105

20. Knight, K., The Origin and Occurrence of Collapsing Soils, Proceedings of

Third Regional Conference for Africa on Soil Mechanics and Foundation

Engineering, Vol.1, 1963, pp. 127 - 130

Page 91: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

82

21. Knodel, P.C., Construction of Large Canal on Collapsing Soils, Journal of

the Geotechnical Engineering Division, Vol. 107, No.1, 1981, pp. 79 - 94

22. Lawton E.C., Fragaszy J.R and Hardcastle J.H., Collapse of Compacted

Clayey Sand, Journal of Geotechnical Engineering, Vol. 115, No. 9, ASCE,

1989, pp. 1 252 - 1 267

23. Lawton E.C., Fragaszy J.R and Hetherington M.D., Review of Wetting-

Induced Collapse in Compacted Soil, Journal of Geotechnical Engineering,

ASCE, 1992, pp. 1 376 - 1 394

24. Lawton E.C., Fragaszy J.R. and Hardcastle J.H., Stress Ratio Effects on

Collapse of Compacted Clayey Sand, Journal of Geotechnical Engineering,

ASCE, 1991, pp. 714 - 729

25. Leonards, G.A. and Davidson, L.W., Reconsideration of Failure Initiating

Mechanisms for Teton Dam, Proceedings of International Conference on

Case Histories in Geotechnical Engineering, Vol. 2, 1984, pp. 1 103 -

1 113

26. Miranda, A.N., Behaviour of Small Earth Dams During Initial Filling, Ph.D.

Thesis, Colorado State University, USA, 1988

27. Mitchell, J.K., Fundamentals of Soil Behaviour, John Wiley and Sons Inc.,

1993

28. Ordemir, İ., Çökebilen Zeminler, Zemin Mekaniği ve Temel Mühendisliği

Üçüncü Ulusal Kongresi, 1990, sayfa 77 - 88

29. Özkul, M.H., Utilization of Citro and Desulphogypsum as Set Retarders in

Portland Cement, Cement and Concrete Research, Vol. 30, 2000, pp.

1 755 - 1 758

30. Peterson, R. and Iverson, N.L., Study of Several Low Earth Dams

Failures, Proceedings of Third International Conference on Soil Mechanics

and Foundation Engineering, Vol. 2, 1953, pp. 273 - 276

Page 92: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

83

31. Rollins, K.M. and Rogers, G.W., Mitigation Measures for Small Structures

on Collapsible Alluvial Soils, Journal of Geotechnical Engineering, ASCE,

1994, pp. 1 533 - 1 553

32. Rollins, K.M and Kim J.H., US Experience with Dynamic Compaction of

Collapsible Soils, In-Situ Deep Soil Improvement, ASCE Geotechnical

Special Publication, No. 45, 1994, pp. 26 - 43

33. Shaw, D. and Johnpeer, G., Ground Subsidence Study Near Espanola and

Recommendations for Construction on Collapsible Soils, New Mexico

Geology, Vol. 7, No. 3, 1985, pp. 59 - 62

34. Sokolovski, V.E. and Semkin, V.V., Chemical Stabilization of Loess Soils,

Journal of Soil Mechanics and Foundation Engineering, Vol. 4, 1984, pp.

8- 11

35. TS 1901, Methods of Boring and Obtaining Disturbed and Undisturbed

Samples for Civil Engineering Purposes, Turkish Standards Institute,

1975

36. TS 266, Water Intended for Human Consumption, Turkish Standards

Institute, 2005

37. Vitton, S. J., Blast Damage Investigations of Foundations Constructed on

Collapsible Soils, Journal of International Society of Explosive Engineers,

1997, p. 291

Page 93: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

84

APPENDIX

Page 94: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

85

APPENDIX A: PARTICLE SIZE ANALYSES TEST FORMS

Table A-1: Particle Size Analysis of Undisturbed Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 28.08.2004

Sample Name Undisturbed Tested by MŞ

Sample Mass 1000 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm) 1,81 1,81 0,18 99,82

3/4 in (20 mm) 10,35 12,16 1,22 98,78

1/2 in (12,5 mm) 13,35 25,51 2,55 97,45

3/8 in (10 mm) 5,43 30,94 3,09 96,91

1/4 in (6,3 mm) 10,98 41,92 4,19 95,81

No 4 (5 mm) 5,80 47,72 4,77 95,23

No 6 (3,15 mm)

No 10 (2 mm) 34,24 81,96 8,20 91,80

No 20 (840 µm)

No 30 (630 µm) 43,11 125,07 12,51 87,49

No 40 (400 µm)

No 50 (315 µm) 21,48 146,55 14,66 85,35

No 70 (200 µm) 17,52 164,07 16,41 83,59

No 100 (160 µm) 59,28 223,35 22,34 77,67

No 200 (80 µm) 140,33 363,68 36,37 63,63

Total 363,68

Gravel Content 4,77 %

Sand Content 31,60 %

Fines Content 63,63 %

Page 95: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

86

Table A-2: Particle Size Analysis of 5% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 05.09.2004

Sample Name 5% FA Tested by MŞ

Sample Mass 1000 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm) 2,69 2,69 0,27 99,73

1/2 in (12,5 mm) 9,38 12,07 1,21 98,79

3/8 in (10 mm) 12,59 24,66 2,47 97,53

1/4 in (6,3 mm) 13,01 37,67 3,77 96,23

No 4 (5 mm) 16,00 53,67 5,37 94,63

No 6 (3,15 mm)

No 10 (2 mm) 26,70 80,37 8,04 91,96

No 20 (840 µm)

No 30 (630 µm) 60,75 141,12 14,11 85,89

No 40 (400 µm)

No 50 (315 µm) 41,65 182,77 18,28 81,72

No 70 (200 µm) 28,87 211,64 21,16 78,84

No 100 (160 µm) 44,99 256,63 25,66 74,34

No 200 (80 µm) 114,78 371,41 37,14 62,86

Total 371,41

Gravel Content 5,37 %

Sand Content 31,77 %

Fines Content 62,86 %

Page 96: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

87

Table A-3: Particle Size Analysis of 10% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 08.09.2004

Sample Name 10% FA Tested by MŞ

Sample Mass 500 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm) 1,80 1,80 0,36 99,64

3/4 in (20 mm)

1/2 in (12,5 mm) 2,67 4,47 0,89 99,11

3/8 in (10 mm) 5,75 10,22 2,04 97,96

1/4 in (6,3 mm) 7,76 17,98 3,60 96,40

No 4 (5 mm) 5,46 23,44 4,69 95,31

No 6 (3,15 mm)

No 10 (2 mm) 14,62 38,06 7,61 92,39

No 20 (840 µm)

No 30 (630 µm) 31,40 69,46 13,89 86,11

No 40 (400 µm)

No 50 (315 µm) 14,79 84,25 16,85 83,15

No 70 (200 µm) 15,60 99,85 19,97 80,03

No 100 (160 µm) 23,12 122,97 24,59 75,41

No 200 (80 µm) 62,56 185,53 37,11 62,89

Total 185,53

Gravel Content 4,69 %

Sand Content 32,42 %

Fines Content 62,89 %

Page 97: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

88

Table A-4: Particle Size Analysis of 15% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 10.09.2004

Sample Name 15% FA Tested by MŞ

Sample Mass 500 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm)

3/8 in (10 mm)

1/4 in (6,3 mm) 4,19 4,19 0,84 99,16

No 4 (5 mm) 6,17 10,36 2,07 97,93

No 6 (3,15 mm)

No 10 (2 mm) 12,49 22,85 4,57 95,43

No 20 (840 µm)

No 30 (630 µm) 26,26 49,11 9,82 90,18

No 40 (400 µm)

No 50 (315 µm) 21,21 70,32 14,06 85,94

No 70 (200 µm) 15,81 86,13 17,23 82,77

No 100 (160 µm) 23,13 109,26 21,85 78,15

No 200 (80 µm) 72,77 182,03 36,41 63,59

Total 182,03

Gravel Content 2,07 %

Sand Content 34,33 %

Fines Content 63,59 %

Page 98: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

89

Table A-5: Particle Size Analysis of 20% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 10.09.2004

Sample Name 20% FA Tested by MŞ

Sample Mass 500 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm)

3/8 in (10 mm) 1,35 1,35 0,27 99,73

1/4 in (6,3 mm) 5,62 6,97 1,39 98,61

No 4 (5 mm) 4,31 11,28 2,26 97,74

No 6 (3,15 mm)

No 10 (2 mm) 12,41 23,69 4,74 95,26

No 20 (840 µm)

No 30 (630 µm) 23,92 47,61 9,52 90,48

No 40 (400 µm)

No 50 (315 µm) 21,25 68,86 13,77 86,23

No 70 (200 µm) 15,25 84,11 16,82 83,18

No 100 (160 µm) 23,11 107,22 21,44 78,56

No 200 (80 µm) 68,79 176,01 35,20 64,80

Total 176,01

Gravel Content 2,26 %

Sand Content 32,95 %

Fines Content 64,80 %

Page 99: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

90

Table A-6: Particle Size Analysis of 25% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 10.09.2004

Sample Name 25% FA Tested by MŞ

Sample Mass 500 g Soil Class CL-ML

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm)

3/8 in (10 mm)

1/4 in (6,3 mm) 4,70 4,70 0,94 99,06

No 4 (5 mm) 4,73 9,43 1,89 98,11

No 6 (3,15 mm)

No 10 (2 mm) 12,56 21,99 4,40 95,60

No 20 (840 µm)

No 30 (630 µm) 21,97 43,96 8,79 91,21

No 40 (400 µm)

No 50 (315 µm) 17,77 61,73 12,35 87,65

No 70 (200 µm) 15,11 76,84 15,37 84,63

No 100 (160 µm) 25,15 101,99 20,40 79,60

No 200 (80 µm) 67,56 169,55 33,91 66,09

Total 169,55

Gravel Content 1,89 %

Sand Content 32,02 %

Fines Content 66,09 %

Page 100: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

91

Table A-7: Particle Size Analysis of 5% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 12.09.2004

Sample Name 5% DSG Tested by MŞ

Sample Mass 500 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm) 3,83 3,83 0,77 99,23

3/8 in (10 mm) 5,76 9,59 1,92 98,08

1/4 in (6,3 mm) 5,76 15,35 3,07 96,93

No 4 (5 mm) 5,77 21,12 4,22 95,78

No 6 (3,15 mm)

No 10 (2 mm) 19,27 40,39 8,08 91,92

No 20 (840 µm)

No 30 (630 µm) 32,09 72,48 14,50 85,50

No 40 (400 µm)

No 50 (315 µm) 20,85 93,33 18,67 81,33

No 70 (200 µm) 12,03 105,36 21,07 78,93

No 100 (160 µm) 23,42 128,78 25,76 74,24

No 200 (80 µm) 63,62 192,40 38,48 61,52

Total 192,40

Gravel Content 4,22 %

Sand Content 34,26 %

Fines Content 61,52 %

Page 101: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

92

Table A-8: Particle Size Analysis of 10% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 12.09.2004

Sample Name 10% DSG Tested by MŞ

Sample Mass 500 g Soil Class CL

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm)

3/8 in (10 mm)

1/4 in (6,3 mm) 7,10 7,10 1,42 98,58

No 4 (5 mm) 8,65 15,75 3,15 96,85

No 6 (3,15 mm)

No 10 (2 mm) 21,56 37,31 7,46 92,54

No 20 (840 µm)

No 30 (630 µm) 33,66 70,97 14,19 85,81

No 40 (400 µm)

No 50 (315 µm) 20,12 91,09 18,22 81,78

No 70 (200 µm) 12,51 103,60 20,72 79,28

No 100 (160 µm) 21,78 125,38 25,08 74,92

No 200 (80 µm) 63,10 188,48 37,70 62,30

Total 188,48

Gravel Content 3,15 %

Sand Content 34,55 %

Fines Content 62,30 %

Page 102: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

93

Table A-9: Particle Size Analysis of 15% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 12.09.2004

Sample Name 15% DSG Tested by MŞ

Sample Mass 500 g Soil Class CL-ML

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm) 4,67 4,67 0,93 99,07

3/8 in (10 mm) 4,31 8,98 1,80 98,20

1/4 in (6,3 mm) 5,97 14,95 2,99 97,01

No 4 (5 mm) 4,90 19,85 3,97 96,03

No 6 (3,15 mm)

No 10 (2 mm) 18,64 38,49 7,70 92,30

No 20 (840 µm)

No 30 (630 µm) 30,60 69,09 13,82 86,18

No 40 (400 µm)

No 50 (315 µm) 20,15 89,24 17,85 82,15

No 70 (200 µm) 14,67 103,91 20,78 79,22

No 100 (160 µm) 24,25 128,16 25,63 74,37

No 200 (80 µm) 55,03 183,19 36,64 63,36

Total 183,19

Gravel Content 3,97 %

Sand Content 32,67 %

Fines Content 63,36 %

Page 103: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

94

Table A-10: Particle Size Analysis of 20% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 12.09.2004

Sample Name 20% DSG Tested by MŞ

Sample Mass 500 g Soil Class ML

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm)

3/8 in (10 mm) 4,30 4,30 0,86 99,14

1/4 in (6,3 mm) 4,37 8,67 1,73 98,27

No 4 (5 mm) 8,06 16,73 3,35 96,65

No 6 (3,15 mm)

No 10 (2 mm) 17,84 34,57 6,91 93,09

No 20 (840 µm)

No 30 (630 µm) 28,60 63,17 12,63 87,37

No 40 (400 µm)

No 50 (315 µm) 18,27 81,44 16,29 83,71

No 70 (200 µm) 12,18 93,62 18,72 81,28

No 100 (160 µm) 20,88 114,50 22,90 77,10

No 200 (80 µm) 61,78 176,28 35,26 64,74

Total 176,28

Gravel Content 3,35 %

Sand Content 31,91 %

Fines Content 64,74 %

Page 104: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

95

Table A-11: Particle Size Analysis of 25% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PARTICLE SIZE ANALYSIS (WET SIEVING)

Location Çayırhan Thermal Power Plant Date 13.09.2004

Sample Name 25% DSG Tested by MŞ

Sample Mass 500 g Soil Class ML

ASTM TEST

SIEVES

Mass

Retained

(g)

Cumulative

Mass

Retained

(g)

Cumulative

Percentage

Retained

(%)

Cumulative

Percentage

Passing

(%)

Remarks

3 in (80 mm)

2 1/2 in (63 mm)

2 in (50 mm)

1 1/2 in (40 mm)

1 in (25 mm)

3/4 in (20 mm)

1/2 in (12,5 mm) 5,83 5,83 1,17 98,83

3/8 in (10 mm) 5,80 11,63 2,33 97,67

1/4 in (6,3 mm) 4,93 16,56 3,31 96,69

No 4 (5 mm) 6,27 22,83 4,57 95,43

No 6 (3,15 mm)

No 10 (2 mm) 18,86 41,69 8,34 91,66

No 20 (840 µm)

No 30 (630 µm) 25,95 67,64 13,53 86,47

No 40 (400 µm)

No 50 (315 µm) 15,59 83,23 16,65 83,35

No 70 (200 µm) 15,99 99,22 19,84 80,16

No 100 (160 µm) 22,96 122,18 24,44 75,56

No 200 (80 µm) 48,04 170,22 34,04 65,96

Total 170,22

Gravel Content 4,57 %

Sand Content 29,48 %

Fines Content 65,96 %

Page 105: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

96

APPENDIX B: ATTERBERG LIMITS TEST FORMS

Table B-1: Atterberg Limits of Undisturbed Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 07.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 34 30 23

Container No 233 223 214 233 181

Mass of Container + Wet Soil (g) 20,01 25,97 30,05 11,82 12,48

Mass of Container + Dry Soil (g) 15,35 19,41 22,07 10,48 11,01

Mass of Container (g) 4,12 4,08 4,02 4,12 4,18

Mass of Moisture (g) 4,66 6,56 7,98 1,34 1,47

Mass of Dry Soil (g) 11,23 15,33 18,05 6,36 6,83

Moisture Content (%) 41,5 42,8 44,2 21,1 21,5

SUMMARY RESULTS

Liquid Limit (LL) 43,7 % Soil Class (USCS) : CL

Plastic Limit (PL) 21,3 %

Plasticity Index (PI) 22,4 %

FLOW CURVE

2 m

Çayırhan TPP

Undisturbed

y = -6,6941Ln(x) + 65,287

R2 = 0,9684

40

42

44

46

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 106: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

97

Table B-2: Atterberg Limits of 5% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 07.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 47 33 21

Container No 214 227 179 13 17

Mass of Container + Wet Soil (g) 26,92 23,66 27,29 12,18 12,89

Mass of Container + Dry Soil (g) 20,77 18,23 20,71 10,50 11,20

Mass of Container (g) 4,02 4,07 4,19 3,85 4,04

Mass of Moisture (g) 6,15 5,43 6,58 1,68 1,69

Mass of Dry Soil (g) 16,75 14,16 16,52 6,65 7,16

Moisture Content (%) 36,7 38,3 39,8 25,3 23,6

SUMMARY RESULTS

Liquid Limit (LL) 39,2 % Soil Class (USCS) : CL

Plastic Limit (PL) 24,4 %

Plasticity Index (PI) 14,8 %

FLOW CURVE

2 m

Çayırhan TPP

5% FA

y = -3,8389Ln(x) + 51,595

R2 = 0,9905

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 107: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

98

Table B-3: Atterberg Limits of 10% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 07.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 50 40 18

Container No 23 28 22 4 14

Mass of Container + Wet Soil (g) 25,55 24,52 26,73 12,51 11,83

Mass of Container + Dry Soil (g) 19,81 18,99 20,22 10,88 10,39

Mass of Container (g) 4,16 4,18 4,02 3,77 3,78

Mass of Moisture (g) 5,74 5,53 6,51 1,63 1,44

Mass of Dry Soil (g) 15,65 14,81 16,20 7,11 6,61

Moisture Content (%) 36,7 37,3 40,2 22,9 21,8

SUMMARY RESULTS

Liquid Limit (LL) 39,0 % Soil Class (USCS) : CL

Plastic Limit (PL) 22,4 %

Plasticity Index (PI) 16,7 %

FLOW CURVE

2 m

Çayırhan TPP

10% FA

y = -3,468Ln(x) + 50,195

R2 = 0,9991

34

36

38

40

42

10 100Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 108: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

99

Table B-4: Atterberg Limits of 15% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 07.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 46 30 21

Container No 199 185 223 1 10

Mass of Container + Wet Soil (g) 22,46 22,57 24,42 11,95 11,40

Mass of Container + Dry Soil (g) 17,56 17,46 18,73 10,52 10,16

Mass of Container (g) 4,15 3,89 4,08 4,13 4,24

Mass of Moisture (g) 4,90 5,11 5,69 1,43 1,24

Mass of Dry Soil (g) 13,41 13,57 14,65 6,39 5,92

Moisture Content (%) 36,5 37,7 38,8 22,4 20,9

SUMMARY RESULTS

Liquid Limit (LL) 38,3 % Soil Class (USCS) : CL

Plastic Limit (PL) 21,7 %

Plasticity Index (PI) 16,6 %

2 m

Çayırhan TPP

FLOW CURVE

15% FA

y = -2,9224Ln(x) + 47,687

R2 = 0,9953

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 109: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

100

Table B-5: Atterberg Limits of 20% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 07.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 36 30 21

Container No 234 200 207 9 24

Mass of Container + Wet Soil (g) 23,73 25,08 26,16 11,49 12,58

Mass of Container + Dry Soil (g) 18,56 19,48 20,08 10,02 10,98

Mass of Container (g) 4,19 4,25 4,11 3,78 3,77

Mass of Moisture (g) 5,17 5,60 6,08 1,47 1,60

Mass of Dry Soil (g) 14,37 15,23 15,97 6,24 7,21

Moisture Content (%) 36,0 36,8 38,1 23,6 22,2

SUMMARY RESULTS

Liquid Limit (LL) 37,4 % Soil Class (USCS) : CL

Plastic Limit (PL) 22,9 %

Plasticity Index (PI) 14,5 %

Çayırhan TPP

FLOW CURVE

2 m

20% FA

y = -3,852Ln(x) + 49,817

R2 = 0,998

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 110: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

101

Table B-6: Atterberg Limits of 25% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 07.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 25 25

Container No 216 217 183 232

Mass of Container + Wet Soil (g) 25,40 23,46 12,24 12,50

Mass of Container + Dry Soil (g) 19,67 18,30 10,64 10,90

Mass of Container (g) 4,07 4,17 4,13 4,14

Mass of Moisture (g) 5,73 5,16 1,60 1,60

Mass of Dry Soil (g) 15,60 14,13 6,51 6,76

Moisture Content (%) 36,7 36,5 24,6 23,7

SUMMARY RESULTS

Liquid Limit (LL) 36,6 % Soil Class (USCS) : CL-ML

Plastic Limit (PL) 24,1 %

Plasticity Index (PI) 12,5 %

Çayırhan TPP

FLOW CURVE

2 m

25% FA

34

36

38

40

42

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 111: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

102

Table B-7: Atterberg Limits of 5% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 10.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 25 25

Container No 233 232 14 24

Mass of Container + Wet Soil (g) 23,32 24,85 11,73 11,06

Mass of Container + Dry Soil (g) 18,13 19,25 10,19 9,69

Mass of Container (g) 4,12 4,14 3,78 3,77

Mass of Moisture (g) 5,19 5,60 1,54 1,37

Mass of Dry Soil (g) 14,01 15,11 6,41 5,92

Moisture Content (%) 37,0 37,1 24,0 23,1

SUMMARY RESULTS

Liquid Limit (LL) 37,1 % Soil Class (USCS) : CL

Plastic Limit (PL) 23,6 %

Plasticity Index (PI) 13,5 %

FLOW CURVE

Çayırhan TPP

2 m

5% DSG

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 112: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

103

Table B-8: Atterberg Limits of 10% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 10.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 40 28 20

Container No 22 227 217 13 183

Mass of Container + Wet Soil (g) 26,23 27,43 26,76 10,68 11,04

Mass of Container + Dry Soil (g) 20,37 21,14 20,60 9,38 9,75

Mass of Container (g) 4,02 4,07 4,17 3,85 4,13

Mass of Moisture (g) 5,86 6,29 6,16 1,30 1,29

Mass of Dry Soil (g) 16,35 17,07 16,43 5,53 5,62

Moisture Content (%) 35,8 36,8 37,5 23,5 23,0

SUMMARY RESULTS

Liquid Limit (LL) 37,0 % Soil Class (USCS) : CL

Plastic Limit (PL) 23,2 %

Plasticity Index (PI) 13,8 %

FLOW CURVE

Çayırhan TPP

2 m

10% DSG

y = -2,3869Ln(x) + 44,697

R2 = 0,9881

34

36

38

40

10 100Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 113: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

104

Table B-9: Atterberg Limits of 15% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 10.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 31 23 15

Container No 234 185 28 216 199

Mass of Container + Wet Soil (g) 25,30 24,85 27,27 11,97 11,54

Mass of Container + Dry Soil (g) 19,66 19,19 20,90 10,42 10,07

Mass of Container (g) 4,19 3,89 4,18 4,07 4,15

Mass of Moisture (g) 5,64 5,66 6,37 1,55 1,47

Mass of Dry Soil (g) 15,47 15,30 16,72 6,35 5,92

Moisture Content (%) 36,5 37,0 38,1 24,4 24,8

SUMMARY RESULTS

Liquid Limit (LL) 36,9 % Soil Class (USCS) : CL-ML

Plastic Limit (PL) 24,6 %

Plasticity Index (PI) 12,3 %

FLOW CURVE

Çayırhan TPP

2 m

15% DSG

y = -2,2821Ln(x) + 44,241

R2 = 0,9909

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 114: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

105

Table B-10: Atterberg Limits of 20% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 10.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 35 27 20

Container No 23 214 200 9 17

Mass of Container + Wet Soil (g) 26,85 25,58 27,47 10,19 13,18

Mass of Container + Dry Soil (g) 20,84 19,73 21,06 8,89 11,28

Mass of Container (g) 4,16 4,02 4,25 3,78 4,04

Mass of Moisture (g) 6,01 5,85 6,41 1,30 1,90

Mass of Dry Soil (g) 16,68 15,71 16,81 5,11 7,24

Moisture Content (%) 36,0 37,2 38,1 25,4 26,2

SUMMARY RESULTS

Liquid Limit (LL) 37,4 % Soil Class (USCS) : ML

Plastic Limit (PL) 25,8 %

Plasticity Index (PI) 11,5 %

FLOW CURVE

Çayırhan TPP

2 m

20% DSG

y = -3,7342Ln(x) + 49,39

R2 = 0,9839

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 115: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

106

Table B-11: Atterberg Limits of 25% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

ATTERBERG LIMITS TEST

Location Date 10.02.2005

Sample Name Tested by M. Şahin

Depth

Type of Test LL LL LL PL PL

No of Drops 47 38 19

Container No 179 207 10 1 4

Mass of Container + Wet Soil (g) 26,97 28,98 26,47 11,79 10,38

Mass of Container + Dry Soil (g) 21,13 22,20 20,27 10,23 9,00

Mass of Container (g) 4,19 4,11 4,24 4,13 3,77

Mass of Moisture (g) 5,84 6,78 6,20 1,56 1,38

Mass of Dry Soil (g) 16,94 18,09 16,03 6,10 5,23

Moisture Content (%) 34,5 37,5 38,7 25,6 26,4

SUMMARY RESULTS

Liquid Limit (LL) 37,9 % Soil Class (USCS) : ML

Plastic Limit (PL) 26,0 %

Plasticity Index (PI) 11,9 %

FLOW CURVE

Çayırhan TPP

2 m

25% DSG

y = -3,9198Ln(x) + 50,508

R2 = 0,7352

34

36

38

40

10 100

Number of Drops

Mo

istu

re C

on

ten

t (%

)

Page 116: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

107

APPENDIX C: STANDARD COMPACTION TEST FORMS

Table C-1: Standard Compaction of Undisturbed Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 28.08.2004

Sample Name Undisturbed Tested by MŞ

Sample Mass 3000 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 712 5 840 6 120 6 090 6 080

Mass of Mould+Base (g) 4 225 4 225 4 225 4 225 4 225

Mass of Compacted Specimen (g) 1 487 1 615 1 895 1 865 1 855

Bulk Density (g/ml) 1,577 1,713 2,010 1,978 1,967

Dry Density (g/ml) 1,468 1,509 1,676 1,583 1,524

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 57 79 166 116 113

Container + Wet Sample (g) 68,75 70,01 56,06 52,51 58,43

Container + Dry Sample (g) 65,38 64,48 49,89 46,05 48,93

Mass of Container (g) 19,78 23,61 18,94 20,12 16,27

Mass of Moisture (g) 3,37 5,53 6,17 6,46 9,50

Dry Mass (g) 45,60 40,87 30,95 25,93 32,66

Moisture Content (%) 7,39 13,53 19,94 24,91 29,09

Maximum Dry Density (g/ml) 1,677

OMC (%) 20,5

1,45

1,50

1,55

1,60

1,65

1,70

5 10 15 20 25 30

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 117: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

108

Table C-2: Standard Compaction of 5% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 04.09.2004

Sample Name %5 FA Tested by MŞ

Sample Mass 3000 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 877 6 065 6 135 6 080 6 045

Mass of Mould+Base (g) 4 225 4 225 4 225 4 225 4 225

Mass of Compacted Specimen (g) 1 652 1 840 1 910 1 855 1 820

Bulk Density (g/ml) 1,752 1,951 2,025 1,967 1,930

Dry Density (g/ml) 1,490 1,623 1,661 1,563 1,506

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 40 55 172 116 33

Container + Wet Sample (g) 62,30 60,70 59,09 74,00 67,66

Container + Dry Sample (g) 56,07 54,08 52,56 62,94 56,36

Mass of Container (g) 20,68 21,39 22,81 20,12 16,22

Mass of Moisture (g) 6,23 6,62 6,53 11,06 11,30

Dry Mass (g) 35,39 32,69 29,75 42,82 40,14

Moisture Content (%) 17,60 20,25 21,95 25,83 28,15

Maximum Dry Density (g/ml) 1,662

OMC (%) 21,5

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

1,66

1,68

16 18 20 22 24 26 28 30

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 118: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

109

Table C-3: Standard Compaction of 10% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 06.09.2004

Sample Name 10% FA Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 725 5 918 6 090 6 098 6 025

Mass of Mould+Base (g) 4 230 4 230 4 230 4 230 4 230

Mass of Compacted Specimen (g) 1 495 1 688 1 860 1 868 1 795

Bulk Density (g/ml) 1,585 1,790 1,972 1,981 1,903

Dry Density (g/ml) 1,417 1,535 1,618 1,590 1,486

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 63 166 159 115 40

Container + Wet Sample (g) 55,17 54,49 53,65 65,63 82,32

Container + Dry Sample (g) 51,12 49,42 47,37 55,90 68,81

Mass of Container (g) 17,04 18,94 18,69 16,37 20,68

Mass of Moisture (g) 4,05 5,07 6,28 9,73 13,51

Dry Mass (g) 34,08 30,48 28,68 39,53 48,13

Moisture Content (%) 11,88 16,63 21,90 24,61 28,07

Maximum Dry Density (g/ml) 1,62

OMC (%) 22,5

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

10 15 20 25 30

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 119: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

110

Table C-4: Standard Compaction of 15% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 06.09.2004

Sample Name %15 FA Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 715 5 982 6 096 6 060 6 012

Mass of Mould+Base (g) 4 230 4 230 4 230 4 230 4 230

Mass of Compacted Specimen (g) 1 485 1 752 1 866 1 830 1 782

Bulk Density (g/ml) 1,575 1,858 1,979 1,941 1,890

Dry Density (g/ml) 1,389 1,576 1,619 1,548 1,469

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 39 58 43 151 88

Container + Wet Sample (g) 54,54 53,36 57,47 58,83 77,99

Container + Dry Sample (g) 50,05 48,32 51,16 51,20 65,10

Mass of Container (g) 16,42 20,16 22,76 21,08 20,13

Mass of Moisture (g) 4,49 5,04 6,31 7,63 12,89

Dry Mass (g) 33,63 28,16 28,40 30,12 44,97

Moisture Content (%) 13,35 17,90 22,22 25,33 28,66

Maximum Dry Density (g/ml) 1,62

OMC (%) 21,5

1,36

1,38

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

12 14 16 18 20 22 24 26 28 30

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 120: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

111

Table C-5: Standard Compaction of 20% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 07.09.2004

Sample Name 20% FA Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 712 5 823 6 053 6 062 6 005

Mass of Mould+Base (g) 4 228 4 228 4 228 4 228 4 228

Mass of Compacted Specimen (g) 1 484 1 595 1 825 1 834 1 777

Bulk Density (g/ml) 1,574 1,691 1,935 1,945 1,884

Dry Density (g/ml) 1,445 1,496 1,651 1,625 1,497

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 70 30 61 56 57

Container + Wet Sample (g) 51,39 63,40 47,63 59,00 69,30

Container + Dry Sample (g) 48,58 58,63 43,16 52,82 59,13

Mass of Container (g) 17,11 22,16 17,24 21,42 19,78

Mass of Moisture (g) 2,81 4,77 4,47 6,18 10,17

Dry Mass (g) 31,47 36,47 25,92 31,40 39,35

Moisture Content (%) 8,93 13,08 17,25 19,68 25,84

Maximum Dry Density (g/ml) 1,655

OMC (%) 18

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

1,66

1,68

8 10 12 14 16 18 20 22 24 26 28

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 121: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

112

Table C-6: Standard Compaction of 25% FA Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 07.09.2004

Sample Name 25% FA Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 735 5 873 6 072 6 000 5 965

Mass of Mould+Base (g) 4 233 4 233 4 233 4 233 4 233

Mass of Compacted Specimen (g) 1 502 1 640 1 839 1 767 1 732

Bulk Density (g/ml) 1,593 1,739 1,950 1,874 1,837

Dry Density (g/ml) 1,455 1,533 1,636 1,500 1,444

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 46 123 34 60 65

Container + Wet Sample (g) 63,28 52,99 58,56 66,58 74,34

Container + Dry Sample (g) 59,77 48,70 52,52 57,63 62,10

Mass of Container (g) 22,64 16,72 21,10 21,71 17,15

Mass of Moisture (g) 3,51 4,29 6,04 8,95 12,24

Dry Mass (g) 37,13 31,98 31,42 35,92 44,95

Moisture Content (%) 9,45 13,41 19,22 24,92 27,23

Maximum Dry Density (g/ml) 1,635

OMC (%) 19

1,40

1,45

1,50

1,55

1,60

1,65

1,70

8 10 12 14 16 18 20 22 24 26 28 30

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 122: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

113

Table C-7: Standard Compaction of 5% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 08.09.2004

Sample Name %5 DSG Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 795 5 985 6 130 6 075 6 011

Mass of Mould+Base (g) 4 235 4 235 4 235 4 235 4 235

Mass of Compacted Specimen (g) 1 560 1 750 1 895 1 840 1 776

Bulk Density (g/ml) 1,654 1,856 2,010 1,951 1,883

Dry Density (g/ml) 1,465 1,584 1,646 1,542 1,455

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 113 71 115 33 79

Container + Wet Sample (g) 57,24 52,05 50,50 60,85 84,30

Container + Dry Sample (g) 52,56 46,94 44,33 51,49 70,50

Mass of Container (g) 16,27 17,18 16,37 16,22 23,61

Mass of Moisture (g) 4,68 5,11 6,17 9,36 13,80

Dry Mass (g) 36,29 29,76 27,96 35,27 46,89

Moisture Content (%) 12,90 17,17 22,07 26,54 29,43

Maximum Dry Density (g/ml) 1,648

OMC (%) 21,5

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

1,66

8 10 12 14 16 18 20 22 24 26 28 30

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 123: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

114

Table C-8: Standard Compaction of 10% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 11.09.2004

Sample Name %10 DSG Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 780 5 940 6 115 6 080 6 030

Mass of Mould+Base (g) 4 230 4 230 4 230 4 230 4 230

Mass of Compacted Specimen (g) 1 550 1 710 1 885 1 850 1 800

Bulk Density (g/ml) 1,644 1,813 1,999 1,962 1,909

Dry Density (g/ml) 1,440 1,533 1,612 1,522 1,436

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 67 113 56 159 70

Container + Wet Sample (g) 62,70 52,88 60,35 62,88 68,84

Container + Dry Sample (g) 57,23 47,21 52,81 52,97 56,03

Mass of Container (g) 18,53 16,27 21,42 18,69 17,11

Mass of Moisture (g) 5,47 5,67 7,54 9,91 12,81

Dry Mass (g) 38,70 30,94 31,39 34,28 38,92

Moisture Content (%) 14,13 18,33 24,02 28,91 32,91

Maximum Dry Density (g/ml) 1,61

OMC (%) 24

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

12 14 16 18 20 22 24 26 28 30 32 34

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 124: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

115

Table C-9: Standard Compaction of 15% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 25.09.2004

Sample Name %15 DSG Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 740 5 913 6 062 6 113 6 045

Mass of Mould+Base (g) 4 225 4 225 4 225 4 225 4 225

Mass of Compacted Specimen (g) 1 515 1 688 1 837 1 888 1 820

Bulk Density (g/ml) 1,607 1,790 1,948 2,002 1,930

Dry Density (g/ml) 1,404 1,518 1,587 1,583 1,476

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 64 153 55 57 88

Container + Wet Sample (g) 58,28 59,49 60,49 69,68 81,41

Container + Dry Sample (g) 53,32 53,32 53,25 59,23 67,00

Mass of Container (g) 18,91 18,95 21,39 19,78 20,13

Mass of Moisture (g) 4,96 6,17 7,24 10,45 14,41

Dry Mass (g) 34,41 34,37 31,86 39,45 46,87

Moisture Content (%) 14,41 17,95 22,72 26,49 30,74

Maximum Dry Density (g/ml) 1,597

OMC (%) 24,5

1,38

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

12 14 16 18 20 22 24 26 28 30 32 34

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 125: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

116

Table C-10: Standard Compaction of 20% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 09.10.2004

Sample Name 20% DSG Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 755 5 952 6 120 6 095 6 040

Mass of Mould+Base (g) 4 230 4 230 4 230 4 230 4 230

Mass of Compacted Specimen (g) 1 525 1 722 1 890 1 865 1 810

Bulk Density (g/ml) 1,617 1,826 2,004 1,978 1,919

Dry Density (g/ml) 1,397 1,523 1,608 1,530 1,449

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 79 151 123 70 63

Container + Wet Sample (g) 71,41 67,50 51,96 70,95 80,07

Container + Dry Sample (g) 64,90 59,79 44,99 58,75 64,61

Mass of Container (g) 23,61 21,08 16,72 17,11 17,04

Mass of Moisture (g) 6,51 7,71 6,97 12,20 15,46

Dry Mass (g) 41,29 38,71 28,27 41,64 47,57

Moisture Content (%) 15,77 19,92 24,66 29,30 32,50

Maximum Dry Density (g/ml) 1,61

OMC (%) 25

1,38

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

12 14 16 18 20 22 24 26 28 30 32 34

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 126: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

117

Table C-11: Standard Compaction of 25% DSG Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

STANDARD COMPACTION TEST

Location Çayırhan Thermal Power Plant Date 10.10.2004

Sample Name 25% DSG Tested by MŞ

Sample Mass 2500 g

Mould volume 943 ml

DENSITY

Test Number 1 2 3 4 5

Mass of Mould+Base+Compacted Specimen (g) 5 753 5 900 6 090 6 120 6 060

Mass of Mould+Base (g) 4 230 4 230 4 230 4 230 4 230

Mass of Compacted Specimen (g) 1 523 1 670 1 860 1 890 1 830

Bulk Density (g/ml) 1,615 1,771 1,972 2,004 1,941

Dry Density (g/ml) 1,400 1,462 1,583 1,559 1,465

MOISTURE CONTENT

Test Number 1 2 3 4 5

Container No 150 166 30 33 43

Container + Wet Sample (g) 68,51 53,12 59,86 63,53 83,46

Container + Dry Sample (g) 62,17 47,15 52,42 53,03 68,58

Mass of Container (g) 21,00 18,94 22,16 16,22 22,76

Mass of Moisture (g) 6,34 5,97 7,44 10,50 14,88

Dry Mass (g) 41,17 28,21 30,26 36,81 45,82

Moisture Content (%) 15,40 21,16 24,59 28,52 32,47

Maximum Dry Density (g/ml) 1,59

OMC (%) 25,5

1,38

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

12 14 16 18 20 22 24 26 28 30 32 34

Moisture Content (%)

Dry

Den

sit

y (

g/m

l)

Page 127: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

118

APPENDIX D: TRIAXIAL COMPRESSIVE STRENGTH (UU) TEST FORMS

Table D-1: (UU) Strength of Undisturbed Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,70 0,5 2,1 1,6 13,1

5,30 1,0 3,1 2,1 13,4

7,07 2,0 4,5 2,5 16,4

1.68 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

26.08.2004

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

Undisturbed

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

20.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

0,00 0,10 0,20 0,30 0,40

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3782x + 0,8602

R2 = 0,9676

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 128: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

119

Table D-2: (UU) Strength of Compacted Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

6,12 0,5 3,3 2,8 21,7

7,64 1,0 4,3 3,3 23,9

10,11 2,0 6,1 4,1 28,1

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

20.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

Sample A (Comp.) (0 day cure)

71

36

1.68 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

26.08.2004

M. Şahin

Çayırhan TPP

0

2

4

6

8

10

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,45x + 1,3423

R2 = 0,9979

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 129: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

120

Table D-3: (UU) Strength of Compacted Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

8,86 0,5 4,7 4,2 28,5

10,68 1,0 5,8 4,8 44,1

13,29 2,0 7,6 5,6 46,9

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

20.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

Sample A (Comp) (7 day cure)

71

36

1.677 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

07.06.2005

M. Şahin

Çayırhan TPP

0

2

4

6

8

10

12

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

ess

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4905x + 1,9183

R2 = 0,9954

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3) / 2

, (k

g/c

m2)

Page 130: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

121

Table D-4: (UU) Strength of Compacted Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

8,84 0,5 4,7 4,2 52,2

9,90 1,0 5,5 4,5 55,3

12,54 2,0 7,3 5,3 56,8

1.677 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

28.06.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

Sample A (Comp.) (28 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

20.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

2

4

6

8

10

12

0,00 0,05 0,10 0,15

Axial Strain (ε)

Dev

iato

r S

tre

ss

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4277x + 2,1498

R2 = 0,9977

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3) / 2

, (k

g/c

m2)

Page 131: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

122

Table D-5: (UU) Strength of 5% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

6,05 0,5 3,3 2,8 16,4

7,91 1,0 4,5 3,5 21,9

10,36 2,0 6,2 4,2 28,6

1.66 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

15.09.2004

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

5% FA (0 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

7

8

9

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4788x + 1,2496

R2 = 0,9919

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 132: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

123

Table D-6: (UU) Strength of 5% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,67 0,5 2,1 1,6 24,7

6,05 1,0 3,5 2,5 25,9

7,33 2,0 4,7 2,7 32,8

1.66 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

21.09.2004

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

5% FA (7 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4294x + 0,7879

R2 = 0,891

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 133: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

124

Table D-7: (UU) Strength of 5% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

4,97 0,5 2,7 2,2 15,5

6,44 1,0 3,7 2,7 16,9

8,29 2,0 5,1 3,1 23,3

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

5% FA (28 day cure)

71

36

1.66 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

07.10.2004

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

Dev

iato

r S

tre

ss

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3719x + 1,2615

R2 = 0,9786

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 134: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

125

Table D-8: (UU) Strength of 10% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,95 0,5 2,2 1,7 17,8

6,75 1,0 3,9 2,9 21,5

8,61 2,0 5,3 3,3 25,0

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

22.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

10% FA (0 day cure)

71

36

1.62 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

21.09.2004

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5179x + 0,6654

R2 = 0,9539

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 135: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

126

Table D-9: (UU) Strength of 10% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

4,76 0,5 2,6 2,1 24,8

6,05 1,0 3,5 2,5 27,4

8,25 2,0 5,1 3,1 29,5

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

22.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

10% FA (7 day cure)

71

36

1.62 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

28.09.2004

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3958x + 1,1052

R2 = 0,9983

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 136: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

127

Table D-10: (UU) Strength of 10% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

9,93 0,5 5,2 4,7 35,0

10,69 1,0 5,8 4,8 44,2

12,52 2,0 7,3 5,3 51,1

1.62 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

10% FA (28 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

22.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0123456789

101112

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,2709x + 3,286

R2 = 0,9938

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 137: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

128

Table D-11: (UU) Strength of 15% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

4,10 0,5 2,3 1,8 14,1

5,92 1,0 3,5 2,5 19,4

8,95 2,0 5,5 3,5 24,1

1.62 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

28.09.2004

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

15% FA (0 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

7

8

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5253x + 0,6115

R2 = 0,9989

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 138: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

129

Table D-12: (UU) Strength of 15% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

7,51 0,5 4,0 3,5 27,0

8,26 1,0 4,6 3,6 29,6

10,61 2,0 6,3 4,3 37,1

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

15% FA (7 day cure)

71

36

1.62 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

12.10.2004

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

8

9

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,36x + 2,0197

R2 = 0,9856

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 139: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

130

Table D-13: (UU) Strength of 15% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

11,41 0,5 6,0 5,5 43,4

13,93 1,0 7,5 6,5 51,4

15,91 2,0 9,0 7,0 77,7

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

15% FA (28 day cure)

71

36

1.62 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

M. Şahin

Çayırhan TPP

0123456789

101112131415

0,00 0,05 0,10

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5002x + 2,5612

R2 = 0,9635

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 140: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

131

Table D-14: (UU) Strength of 20% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

6,69 0,5 3,6 3,1 28,0

8,18 1,0 4,6 3,6 32,3

12,04 2,0 7,0 5,0 37,3

1.66 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

05.10.2004

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

20% FA (0 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

18.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

01

2345

6789

1011

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,567x + 1,028

R2 = 0,9986

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 141: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

132

Table D-15: (UU) Strength of 20% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

8,08 0,5 4,3 3,8 46,5

9,33 1,0 5,2 4,2 47,9

13,86 2,0 7,9 5,9 51,5

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

18.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

20% FA (7 day cure)

71

36

1.66 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

12.10.2004

M. Şahin

Çayırhan TPP

0123456789

101112

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,6004x + 1,1489

R2 = 0,9954

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 142: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

133

Table D-16: (UU) Strength of 20% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

12,58 0,5 6,5 6,0 33,5

14,53 1,0 7,8 6,8 43,8

18,14 2,0 10,1 8,1 60,7

1.66 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

06.01.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

20% FA (28 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

18.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0123456789

1011121314151617

0,00 0,05 0,10

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,574x + 2,2944

R2 = 0,9999

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 143: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

134

Table D-17: (UU) Strength of 25% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

8,37 0,5 4,4 3,9 33,6

12,46 1,0 6,7 5,7 41,6

14,58 2,0 8,3 6,3 59,0

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

19.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

25% FA (0 day cure)

71

36

1.64 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

M. Şahin

Çayırhan TPP

0123456789

10111213

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,6239x + 1,2721

R2 = 0,9663

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 144: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

135

Table D-18: (UU) Strength of 25% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

6,94 0,5 3,7 3,2 17,7

10,80 1,0 5,9 4,9 30,2

13,50 2,0 7,8 5,8 47,8

1.64 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

09.12.2004

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

25% FA (7 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

19.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0123456789

101112

0,00 0,05 0,10

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,6321x + 0,9633

R2 = 0,9805

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 145: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

136

Table D-19: (UU) Strength of 25% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

12,40 0,5 6,4 5,9 41,7

13,96 1,0 7,5 6,5 42,6

17,72 2,0 9,9 7,9 62,3

1.64 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

15.03.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

25% FA (28 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

19.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0123456789

10111213141516

0,00 0,05 0,10

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5635x + 2,2942

R2 = 0,9993

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 146: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

137

Table D-20: (UU) Strength of 5% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

5,89 0,5 3,2 2,7 17,1

8,09 1,0 4,5 3,5 40,8

10,79 2,0 6,4 4,4 43,2

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

5% DSG (0 day cure)

71

36

1.65 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

15.02.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

8

9

10

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5269x + 1,0617

R2 = 0,9919

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 147: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

138

Table D-21: (UU) Strength of 5% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

12,06 0,5 6,3 5,8 40,4

13,27 1,0 7,1 6,1 43,7

16,60 2,0 9,3 7,3 49,9

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

5% DSG (7 day cure)

71

36

1.65 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

14.12.2004

M. Şahin

Çayırhan TPP

0123456789

101112131415

0,00 0,05 0,10

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5097x + 2,5456

R2 = 0,9971

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

0,0 2,0 4,0 6,0 8,0 10,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 148: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

139

Table D-22: (UU) Strength of 5% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

12,12 0,5 6,3 5,8 67,5

14,17 1,0 7,6 6,6 76,8

17,69 2,0 9,8 7,8 84,0

1.65 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

04.01.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

5% DSG (28 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

21.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

2

4

6

8

10

12

14

16

18

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,5737x + 2,206

R2 = 0,9995

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

0,0 2,0 4,0 6,0 8,0 10,0 12,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 149: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

140

Table D-23: (UU) Strength of 10% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

4,70 0,5 2,6 2,1 23,4

5,61 1,0 3,3 2,3 28,7

8,07 2,0 5,0 3,0 29,6

1.61 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

02.03.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

10% DSG (0 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

24 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

7

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3915x + 1,0526

R2 = 0,9942

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 150: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

141

Table D-24: (UU) Strength of 10% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

5,87 0,5 3,2 2,7 23,6

6,68 1,0 3,8 2,8 26,0

8,97 2,0 5,5 3,5 29,4

1.61 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

11.01.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

10% DSG (7 day cure)

71

36 CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

24.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

7

8

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3567x + 1,5168

R2 = 0,9907

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 151: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

142

Table D-25: (UU) Strength of 10% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

4,57 0,5 2,5 2,0 14,1

6,19 1,0 3,6 2,6 18,0

8,38 2,0 5,2 3,2 20,8

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

24.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

10% DSG (28 day cure)

71

36

1.61 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

30.03.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

ess

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4296x + 0,9857

R2 = 0,9904

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 152: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

143

Table D-26: (UU) Strength of 15% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,00 0,5 1,7 1,2 12,7

4,30 1,0 2,7 1,7 15,1

5,86 2,0 3,9 1,9 16,6

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

24.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL-ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

15% DSG (0 day cure)

71

36

1.60 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

14.03.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3062x + 0,7598

R2 = 0,9585

0,0

0,5

1,0

1,5

2,0

2,5

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 153: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

144

Table D-27: (UU) Strength of 15% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,32 0,5 1,9 1,4 13,6

4,81 1,0 2,9 1,9 18,6

7,40 2,0 4,7 2,7 25,1

1.60 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

14.01.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

15% DSG (7 day cure)

71

36 CL-ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,34

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

24.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

0,00 0,05 0,10 0,15

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4608x + 0,5439

R2 = 0,999

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 154: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

145

Table D-28: (UU) Strength of 15% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

4,23 0,5 2,4 1,9 15,9

5,80 1,0 3,4 2,4 19,7

8,14 2,0 5,1 3,1 20,8

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

24.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

CL-ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

15% DSG (28 day cure)

71

36

1.60 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

08.02.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

7

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,441x + 0,852

R2 = 0,9949

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 155: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

146

Table D-29: (UU) Strength of 20% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

2,37 0,5 1,4 0,9 2,9

3,75 1,0 2,4 1,4 5,2

5,55 2,0 3,8 1,8 6,9

1.61 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

30.05.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

20% DSG (0 day cure)

71

36 ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

25.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3529x + 0,4693

R2 = 0,98

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 1,0 2,0 3,0 4,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 156: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

147

Table D-30: (UU) Strength of 20% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

2,71 0,5 1,6 1,1 3,3

3,41 1,0 2,2 1,2 3,4

5,33 2,0 3,7 1,7 5,3

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

25.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

20% DSG (7 day cure)

71

36

1.61 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

05.07.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

0,00 0,05 0,10 0,15 0,20 0,25 0,30

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,2807x + 0,6258

R2 = 0,9864

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0,0 1,0 2,0 3,0 4,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 157: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

148

Table D-31: (UU) Strength of 20% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,57 0,5 2,0 1,5 8,1

4,41 1,0 2,7 1,7 23,5

7,71 2,0 4,9 2,9 24,5

1.61 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

20% DSG (28 day cure)

71

36 ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

25.0 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

0,00 0,05 0,10 0,15 0,20

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4844x + 0,4821

R2 = 0,9877

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 158: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

149

Table D-32: (UU) Strength of 25% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

2,95 0,5 1,7 1,2 6,4

3,67 1,0 2,3 1,3 6,6

5,77 2,0 3,9 1,9 9,3

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

25.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

25% DSG (0 day cure)

71

36

1.59 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

27.06.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,3143x + 0,6499

R2 = 0,9854

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 159: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

150

Table D-33: (UU) Strength of 25% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

2,85 0,5 1,7 1,2 7,4

4,42 1,0 2,7 1,7 9,9

7,20 2,0 4,6 2,6 15,0

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

25.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

Initial Diameter of Sample (mm)

25% DSG (7 day cure)

71

36

1.59 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

25.02.2005

M. Şahin

Çayırhan TPP

0

1

2

3

4

5

6

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 - σ

3), k

g/c

m2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4851x + 0,3765

R2 = 0,9994

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (k

g/c

m2)

Page 160: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

151

Table D-34: (UU) Strength of 25% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

UNCONSOLIDATED UNDRAINED TRIAXIAL (UU) TEST

4 - Failure Conditions 5- Results

σ1 σ3 p q Eu secant (MPa)

3,29 0,5 1,9 1,4 9,7

4,56 1,0 2,8 1,8 10,0

7,32 2,0 4,7 2,7 18,2

1.59 (MDD)Bulk Density (g/ml)

1 - General Information About Sample

Initial Height of Sample (mm)

Project

Sample Name

17.03.2005

M. Şahin

Çayırhan TPP

Initial Diameter of Sample (mm)

25% DSG (28 day cure)

71

36 ML

Wykeham Farrance

Date of Test

Tested by

Soil Classification

Apparatus

0,097

3 - Modified Failure Envelope (p-q Line) Regression Graph

2 - Deviator Stress - Axial Strain Graph

25.5 (OMC) Proving Ring Constant (kg/10-4 inch)Moisture Content (%)

0

1

2

3

4

5

6

0,00 0,05 0,10 0,15 0,20 0,25

Axial Strain (ε)

De

via

tor

Str

es

s (σ

1 -

σ

3),

kg

/cm

2

σ3 = 0.5 kg/cm2

σ3 = 1.0 kg/cm2

σ3 = 2.0 kg/cm2

y = 0,4587x + 0,5179

R2 = 0,9997

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 1,0 2,0 3,0 4,0 5,0

p = (σ1+σ3) / 2, (kg/cm2)

q =

1-σ

3)

/ 2

, (

kg

/cm

2)

Page 161: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

152

APPENDIX E: CALIFORNIA BEARING RATIO TEST FORMS

Table E-1: CBR of Undisturbed Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 000

5 480

2 520

1,187

1,018

Top Middle Bottom Average

215,94 922,63 862,25 878,20

203,43 742,73 703,30 713,90

128,15 238,71 239,79 241,33

12,51 179,90 158,95 164,30

16,6 35,7 34,3 34,8 34,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 4,18 0,22

0,050 1,250 6,27 0,32

0,075 1,825 7,94 0,41

0,100 2,500 70 9,20 0,48

0,200 5,000 105 12,96 0,67

0,300 7,500 134 16,30 0,84

0,400 10,000 162 18,81 0,97

0,500 12,500 183 20,90 1,08

5- Swell of specimen during soaking

1 2000

2

3

4 1869

CBR = 0,7 %

1,408

1,044

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

8 470

5 480

2 990

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

1,0

1,5

20,5

4291

05.09.2004

09.09.2004

M. Şahin

1,677

Sample A (Undisturbed)

CL

No compaction

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

CBR

%

0,682,2

1,9

Çayırhan TPP and 2 m

-1,1

Dial

readingSwell (%)

5,0

Pressure reading

0,643,1

3,9

4,5

Load-Penetration Curve

0,0

0,5

1,0

1,5

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssu

re (

kg/c

m2)

Page 162: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

153

Table E-2: CBR of Compacted Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 050

4 755

4 295

2,023

1,685

Top Middle Bottom Average

305,24 576,46 603,17 547,81

275,39 464,02 514,35 460,81

126,33 126,61 127,06 129,33

29,85 112,44 88,82 87,00

20,0 33,3 22,9 26,2 27,5

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 37,62 1,94

0,050 1,250 83,60 4,32

0,075 1,825 125,40 6,48

0,100 2,500 70 154,66 7,99

0,200 5,000 105 196,46 10,15

0,300 7,500 134 236,17 12,21

0,400 10,000 162 275,88 14,26

0,500 12,500 183 313,50 16,20

5- Swell of specimen during soaking

1 500

2

3

4 42

CBR = 11,4 %

Çayırhan TPP and 2 m

3,9

Dial

readingSwell (%)

75,0

Pressure reading

9,6747,0

56,5

66,0

CBR

%

11,4237,0

30,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart

SoakedCondition of sample

20,5

4291

31.05.2005

04.06.2005

M. Şahin

1,677

Sample A (Compacted) (0 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

9,0

20,0

After soaking

9 210

4 755

4 455

2,098

1,646

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 163: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

154

Table E-3: CBR of Compacted Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 070

4 750

4 320

2,035

1,681

Top Middle Bottom Average

326,18 643,29 602,76 601,51

291,68 530,49 516,58 510,22

127,41 128,64 126,74 129,75

34,50 112,80 86,18 91,29

21,0 28,1 22,1 24,0 24,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 33,44 1,73

0,050 1,250 91,96 4,75

0,075 1,825 158,84 8,21

0,100 2,500 70 246,62 12,75

0,200 5,000 105 455,62 23,55

0,300 7,500 134 547,58 28,30

0,400 10,000 162 606,10 31,32

0,500 12,500 183 660,44 34,13

5- Swell of specimen during soaking

1 500

2

3

4 365

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 17,5 25,0

5,000 26,0 24,8

CBR = 25,0 %

Graphical correction for CBR values

2,077

1,665

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

After soaking

9 160

4 750

4 410

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

8,0

22,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

20,5

4291

18.07.2005

22.07.2005

M. Şahin

1,677

Sample A (Compacted) (7 day cure)

CL

Standart

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

18,2159,0

38,0

Çayırhan TPP and 2 m

Pressure reading

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

CBR

%

1,2

Dial

readingSwell (%)

158,0

22,43109,0

131,0

145,0

Load-Penetration Curve

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 164: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

155

Table E-4: CBR of Compacted Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 050

4 750

4 300

2,025

1,682

Top Middle Bottom Average

296,22 580,89 684,60 530,07

267,73 478,63 578,05 448,34

128,25 129,64 126,60 128,77

28,49 102,26 106,55 81,73

20,4 29,3 23,6 25,6 26,2

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 41,80 2,16

0,050 1,250 104,50 5,40

0,075 1,825 167,20 8,64

0,100 2,500 70 259,16 13,39

0,200 5,000 105 489,06 25,27

0,300 7,500 134 568,48 29,38

0,400 10,000 162 610,28 31,54

0,500 12,500 183 656,26 33,92

5- Swell of specimen during soaking

1 500

2

3

4 420

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 19,0 27,1

5,000 27,5 26,2

CBR = 27,1 %

24,07117,0

136,0

146,0

0,7

Dial

readingSwell (%)

157,0

19,1362,0

40,0

Çayırhan TPP and 2 m

Pressure reading

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

CBR

%

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart

SoakedCondition of sample

20,5

4291

08.08.2005

12.08.2005

M. Şahin

1,677

Sample A (Compacted) (28 day cure)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

10,0

25,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

After soaking

9 140

4 750

4 390

Graphical correction for CBR values

2,068

1,639

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Load-Penetration Curve

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(k

g/c

m2)

Graphical correction

Page 165: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

156

Table E-5: CBR of 5% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 730

5 480

4 250

2,002

1,640

Top Middle Bottom Average

385,36 1 019,86 831,95 832,55

338,76 855,20 712,72 710,16

127,18 240,64 238,78 236,86

46,60 164,66 119,23 122,39

22,0 26,8 25,2 25,9 25,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 58,52 3,02

0,050 1,250 112,86 5,83

0,075 1,825 158,84 8,21

0,100 2,500 70 204,82 10,59

0,200 5,000 105 363,66 18,79

0,300 7,500 134 418,00 21,60

0,400 10,000 162 438,90 22,68

0,500 12,500 183 443,08 22,90

5- Swell of specimen during soaking

1 9073

2

3

4 9088

CBR = 17,9 %

Çayırhan TPP and 2 m

0,1

2,039

1,619

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 810

5 480

4 330

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

14,0

27,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

21,5

4288

10.09.2004

14.09.2004

M. Şahin

1,662

5% FA (0 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

105,0

CBR

%

15,1249,0

38,0

Pressure reading

17,9087,0

100,0

Dial

readingSwell (%)

106,0

Load-Penetration Curve

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssu

re (

kg/c

m2)

Page 166: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

157

Table E-6: CBR of 5% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 015

4 755

4 260

2,006

1,657

Top Middle Bottom Average

352,37 586,99 549,84 556,07

313,15 490,39 475,35 478,31

127,18 127,32 126,80 129,05

39,22 96,60 74,49 77,76

21,1 26,6 21,4 22,3 23,4

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 41,80 2,16

0,050 1,250 96,14 4,97

0,075 1,825 188,10 9,72

0,100 2,500 70 263,34 13,61

0,200 5,000 105 401,28 20,74

0,300 7,500 134 468,16 24,19

0,400 10,000 162 505,78 26,14

0,500 12,500 183 535,04 27,65

5- Swell of specimen during soaking

1 500

2

3

4 378

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 17,0 24,3

5,000 22,5 21,4

CBR = 24,3 %

Dial

readingSwell (%)

128,0

Pressure reading

19,7596,0

112,0

121,0

CBR

%

19,4463,0

45,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

21,5

4288

21.03.2005

25.03.2005

M. Şahin

1,662

5% FA (7 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

10,0

23,0

After soaking

9 070

4 755

4 315

Çayırhan TPP and 2 m

Graphical correction for CBR values

1,0

2,032

1,647

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 167: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

158

Table E-7: CBR of 5% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 995

4 745

4 250

2,002

1,652

Top Middle Bottom Average

368,54 813,63 942,25 808,64

326,41 691,45 813,34 691,65

127,18 226,66 241,29 239,73

42,13 122,18 128,91 116,99

21,1 26,3 22,5 25,9 24,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 33,44 1,73

0,050 1,250 73,15 3,78

0,075 1,825 192,28 9,94

0,100 2,500 70 267,52 13,83

0,200 5,000 105 438,90 22,68

0,300 7,500 134 501,60 25,92

0,400 10,000 162 539,22 27,87

0,500 12,500 183 576,84 29,81

5- Swell of specimen during soaking

1 200

2

3

4 180

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 18,0 25,7

5,000 24,5 23,3

CBR = 25,7 %

Dial

readingSwell (%)

138,0

Pressure reading

21,60105,0

120,0

129,0

CBR

%

19,7564,0

46,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

21,5

4288

11.04.2005

15.04.2005

M. Şahin

1,662

5% FA (28 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

8,0

17,5

After soaking

9 050

4 745

4 305

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,2

2,027

1,623

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 168: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

159

Table E-8: CBR of 10% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 660

5 480

4 180

1,969

1,603

Top Middle Bottom Average

384,36 1 054,11 942,14 979,88

336,74 871,50 797,80 820,23

127,75 236,87 241,32 240,47

47,62 182,61 144,34 159,65

22,8 28,8 25,9 27,5 27,4

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 123,31 6,37

0,050 1,250 192,28 9,94

0,075 1,825 252,89 13,07

0,100 2,500 70 292,60 15,12

0,200 5,000 105 418,00 21,60

0,300 7,500 134 445,17 23,01

0,400 10,000 162 455,62 23,55

0,500 12,500 183 463,98 23,98

5- Swell of specimen during soaking

1 2300

2

3

4 2435

CBR = 21,6 %

Çayırhan TPP and 2 m

1,2

2,016

1,582

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 760

5 480

4 280

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

29,5

46,0

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

22,5

4214

21.09.2004

25.09.2004

M. Şahin

1,62

10% FA (0 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Dial reading (0.01 mm)Penetration

21,6070,0

60,5

%

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

111,0

Pressure reading

20,57100,0

106,5

109,0

CBR

Load-Penetration Curve

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 169: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

160

Table E-9: CBR of 10% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 940

4 755

4 185

1,971

1,614

Top Middle Bottom Average

404,87 885,06 738,77 804,07

354,74 760,73 644,10 697,24

127,75 240,47 226,64 240,62

50,13 124,33 94,67 106,83

22,1 23,9 22,7 23,4 23,3

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 62,70 3,24

0,050 1,250 142,12 7,34

0,075 1,825 259,16 13,39

0,100 2,500 70 426,36 22,03

0,200 5,000 105 597,74 30,89

0,300 7,500 134 681,34 35,21

0,400 10,000 162 714,78 36,94

0,500 12,500 183 739,86 38,24

5- Swell of specimen during soaking

1 1000

2

3

4 900

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 27,0 38,6

5,000 33,0 31,4

CBR = 38,6 %

Dial

readingSwell (%)

177,0

Pressure reading

29,42143,0

163,0

171,0

CBR

%

31,48102,0

62,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

22,5

4214

01.04.2005

05.04.2005

M. Şahin

1,62

10% FA (7 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

15,0

34,0

After soaking

8 965

4 755

4 210

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,9

1,983

1,608

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 170: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

161

Table E-10: CBR of 10% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 965

4 755

4 210

1,983

1,618

Top Middle Bottom Average

358,77 777,45 898,65 799,15

316,12 677,17 776,24 695,50

126,81 240,78 239,35 240,66

42,65 100,28 122,41 103,65

22,5 23,0 22,8 22,8 22,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 60,61 3,13

0,050 1,250 171,38 8,86

0,075 1,825 263,34 13,61

0,100 2,500 70 384,56 19,87

0,200 5,000 105 798,38 41,26

0,300 7,500 134 936,32 48,39

0,400 10,000 162 990,66 51,20

0,500 12,500 183 1032,46 53,36

5- Swell of specimen during soaking

1 500

2

3

4 478

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 24,5 35,0

5,000 44,0 41,9

CBR = 41,9 %

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,2

2,004

1,631

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 010

4 755

4 255

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

14,5

41,0

22,5

4214

22.04.2005

26.04.2005

M. Şahin

1,62

10% FA (28 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maximum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

28,3992,0

63,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

247,0

Pressure reading

39,30191,0

224,0

237,0

CBR

%

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 171: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

162

Table E-11: CBR of 15% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 625

5 475

4 150

1,954

1,613

Top Middle Bottom Average

383,36 618,36 558,59 528,60

338,88 517,00 479,00 443,31

129,07 127,67 127,33 126,68

44,48 101,36 79,59 85,29

21,2 26,0 22,6 26,9 25,2

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 108,68 5,62

0,050 1,250 206,91 10,69

0,075 1,825 288,42 14,91

0,100 2,500 70 367,84 19,01

0,200 5,000 105 564,30 29,16

0,300 7,500 134 639,54 33,05

0,400 10,000 162 681,34 35,21

0,500 12,500 183 706,42 36,51

5- Swell of specimen during soaking

1 2151

2

3

4 2200

CBR = 27,8 %

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

169,0

Pressure reading

27,77135,0

153,0

163,0

CBRDial reading (0.01 mm)

Penetration

27,1688,0

69,0

%

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

21,5

4179

28.09.2004

02.10.2004

M. Şahin

1,62

15% FA (0 day cure)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

26,0

49,5

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

9 675

5 475

4 200

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Çayırhan TPP and 2 m

0,4

1,978

1,580

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 172: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

163

Table E-12: CBR of 15% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 895

4 750

4 145

1,952

1,614

Top Middle Bottom Average

378,34 749,50 727,61 684,38

335,15 654,66 635,57 601,38

129,07 239,78 226,66 241,28

43,19 94,84 92,04 83,00

21,0 22,9 22,5 23,0 22,8

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 52,25 2,70

0,050 1,250 146,30 7,56

0,075 1,825 267,52 13,83

0,100 2,500 70 426,36 22,03

0,200 5,000 105 873,62 45,15

0,300 7,500 134 969,76 50,12

0,400 10,000 162 1007,38 52,06

0,500 12,500 183 1045,00 54,01

5- Swell of specimen during soaking

1 500

2

3

4 540

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 28,5 40,7

5,000 47,5 45,2

CBR = 45,2 %

Çayırhan TPP and 2 m

Graphical correction for CBR values

-0,3

1,980

1,613

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

8 955

4 750

4 205

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

12,5

35,0

21,5

4179

07.04.2005

11.04.2005

M. Şahin

1,62

15% FA (7 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

31,48102,0

64,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

250,0

Pressure reading

43,00209,0

232,0

241,0

CBR

%

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 173: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

164

Table E-13: CBR of 15% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 900

4 750

4 150

1,954

1,612

Top Middle Bottom Average

402,19 543,95 577,41 572,64

354,43 465,57 496,97 491,76

129,36 126,93 129,29 129,64

47,76 78,38 80,44 80,88

21,2 23,1 21,9 22,3 22,5

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 154,66 7,99

0,050 1,250 321,86 16,63

0,075 1,825 535,04 27,65

0,100 2,500 70 752,40 38,88

0,200 5,000 105 1015,74 52,49

0,300 7,500 134 1124,42 58,11

0,400 10,000 162 1149,50 59,41

0,500 12,500 183 1157,86 59,84

5- Swell of specimen during soaking

1 500

2

3

4 490

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 45,0 64,3

5,000 55,5 52,9

CBR = 64,3 %

Dial

readingSwell (%)

277,0

Pressure reading

49,99243,0

269,0

275,0

CBR

%

55,55180,0

128,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

21,5

4179

02.05.2005

06.05.2005

M. Şahin

1,62

15% FA (28 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

37,0

77,0

After soaking

8 955

4 750

4 205

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,1

1,980

1,617

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 174: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

165

Table E-14: CBR of 20% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 595

5 485

4 110

1,936

1,635

Top Middle Bottom Average

410,56 911,07 1 014,86 909,02

366,83 776,98 886,07 783,31

129,15 239,80 240,53 241,37

43,73 134,09 128,79 125,71

18,4 25,0 20,0 23,2 22,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 158,84 8,21

0,050 1,250 267,52 13,83

0,075 1,825 330,22 17,07

0,100 2,500 70 397,10 20,52

0,200 5,000 105 545,49 28,19

0,300 7,500 134 618,64 31,97

0,400 10,000 162 664,62 34,35

0,500 12,500 183 706,42 36,51

5- Swell of specimen during soaking

1 200

2

3

4 145

CBR = 29,3 %

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

169,0

Pressure reading

26,85130,5

148,0

159,0

CBRDial reading (0.01 mm)

Penetration

29,3295,0

79,0

%

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

18

4147

05.10.2004

09.10.2004

M. Şahin

1,655

20% FA (0 day cure)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

38,0

64,0

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

9 625

5 485

4 140

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Çayırhan TPP and 2 m

0,5

1,950

1,589

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 175: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

166

Table E-15: CBR of 20% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 865

4 750

4 115

1,938

1,648

Top Middle Bottom Average

367,81 567,68 565,92 548,72

331,83 482,78 490,97 472,64

127,32 127,64 126,93 127,46

35,98 84,90 74,95 76,08

17,6 23,9 20,6 22,0 22,2

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 33,44 1,73

0,050 1,250 83,60 4,32

0,075 1,825 150,48 7,78

0,100 2,500 70 300,96 15,55

0,200 5,000 105 764,94 39,53

0,300 7,500 134 848,54 43,85

0,400 10,000 162 873,62 45,15

0,500 12,500 183 902,88 46,66

5- Swell of specimen during soaking

1 500

2

3

4 467

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 27,5 39,3

5,000 43,0 41,0

CBR = 41,0 %

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,3

1,959

1,604

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

8 910

4 750

4 160

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

8,0

20,0

18

4147

14.04.2005

18.04.2005

M. Şahin

1,655

20% FA (7 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

22,2272,0

36,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

216,0

Pressure reading

37,65183,0

203,0

209,0

CBR

%

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 176: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

167

Table E-16: CBR of 20% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 870

4 750

4 120

1,940

1,643

Top Middle Bottom Average

323,41 513,42 518,70 555,18

293,16 438,81 453,20 480,33

126,17 127,01 128,75 126,33

30,25 74,61 65,50 74,85

18,1 23,9 20,2 21,1 21,8

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 175,56 9,07

0,050 1,250 376,20 19,44

0,075 1,825 614,46 31,76

0,100 2,500 70 815,10 42,12

0,200 5,000 105 890,34 46,01

0,300 7,500 134 948,86 49,04

0,400 10,000 162 1015,74 52,49

0,500 12,500 183 1095,16 56,60

5- Swell of specimen during soaking

1 500

2

3

4 466

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 43,0 61,4

5,000 47,0 44,8

CBR = 61,4 %

Dial

readingSwell (%)

262,0

Pressure reading

43,82213,0

227,0

243,0

CBR

%

60,18195,0

147,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

18

4147

06.05.2005

10.05.2005

M. Şahin

1,655

20% FA (28 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

42,0

90,0

After soaking

8 935

4 750

4 185

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,3

1,971

1,619

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 177: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

168

Table E-17: CBR of 25% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 585

5 480

4 105

1,933

1,628

Top Middle Bottom Average

408,50 662,70 629,79 662,28

364,07 566,69 548,79 570,45

127,44 129,08 127,32 126,83

44,43 96,01 81,00 91,83

18,8 21,9 19,2 20,7 20,6

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 137,94 7,13

0,050 1,250 351,12 18,15

0,075 1,825 627,00 32,40

0,100 2,500 70 919,60 47,52

0,200 5,000 105 1554,96 80,36

0,300 7,500 134 1680,36 86,84

0,400 10,000 162 1713,80 88,57

0,500 12,500 183 1755,60 90,73

5- Swell of specimen during soaking

1 500

2

3

4 400

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 55,0 78,6

5,000 84,0 80,0

CBR = 80,0 %

Dial

readingSwell (%)

420,0

Pressure reading

76,53372,0

402,0

410,0

CBR

%

67,89220,0

150,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

19

4131

25.02.2005

29.02.2005

M. Şahin

1,635

25% FA (0 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

33,0

84,0

After soaking

9 650

5 480

4 170

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,9

1,964

1,628

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 178: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

169

Table E-18: CBR of 25% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 845

4 750

4 095

1,929

1,625

Top Middle Bottom Average

356,17 563,25 645,71 521,96

320,09 475,47 551,49 446,59

127,26 126,81 127,14 127,33

36,08 87,78 94,22 75,37

18,7 25,2 22,2 23,6 23,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 79,42 4,10

0,050 1,250 229,90 11,88

0,075 1,825 484,88 25,06

0,100 2,500 70 689,70 35,64

0,200 5,000 105 798,38 41,26

0,300 7,500 134 852,72 44,07

0,400 10,000 162 902,88 46,66

0,500 12,500 183 965,58 49,90

5- Swell of specimen during soaking

1 500

2

3

4 466

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 38,5 55,0

5,000 42,5 40,5

CBR = 55,0 %

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,3

1,962

1,586

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

8 915

4 750

4 165

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

19,0

55,0

19

4131

18.04.2005

22.04.2005

M. Şahin

1,635

25% FA (7 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

50,92165,0

116,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

231,0

Pressure reading

39,30191,0

204,0

216,0

CBR

%

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 179: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

170

Table E-19: CBR of 25% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 870

4 750

4 120

1,940

1,625

Top Middle Bottom Average

318,24 758,37 794,90 919,92

287,09 646,73 680,16 800,85

126,62 126,76 127,32 239,72

31,15 111,64 114,74 119,07

19,4 21,5 20,8 21,2 21,1

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 146,30 7,56

0,050 1,250 280,06 14,47

0,075 1,825 459,80 23,76

0,100 2,500 70 647,90 33,48

0,200 5,000 105 877,80 45,36

0,300 7,500 134 927,96 47,96

0,400 10,000 162 944,68 48,82

0,500 12,500 183 961,40 49,68

5- Swell of specimen during soaking

1 500

2

3

4 480

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 39,0 55,7

5,000 47,0 44,8

CBR = 55,7 %

Dial

readingSwell (%)

230,0

Pressure reading

43,20210,0

222,0

226,0

CBR

%

47,83155,0

110,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

19

4131

10.05.2005

14.05.2005

M. Şahin

1,635

25% FA (28 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

35,0

67,0

After soaking

8 915

4 750

4 165

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,2

1,962

1,619

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 180: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

171

Table E-20: CBR of 5% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 700

5 475

4 225

1,990

1,633

Top Middle Bottom Average

373,08 758,72 887,49 847,28

328,86 631,97 753,43 724,78

126,55 239,11 240,87 240,78

44,22 126,75 134,06 122,50

21,9 32,3 26,2 25,3 27,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 39,71 2,05

0,050 1,250 77,33 4,00

0,075 1,825 108,68 5,62

0,100 2,500 70 146,30 7,56

0,200 5,000 105 163,02 8,42

0,300 7,500 134 175,56 9,07

0,400 10,000 162 183,92 9,50

0,500 12,500 183 196,46 10,15

5- Swell of specimen during soaking

1 500

2

3

4 437

Penetration Pressure CBR (%)

2,500 8,0 11,4

5,000 8,8 8,4

CBR = 11,4 %

44,0

CBR

26,0

%

18,5

10,8035,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

47,0

Pressure reading

8,0239,0

42,0

Days

9,5

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Condition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

1,648

5% DSG (0 day cure)

CL

Standart Proctor

Soaked

21,5

4252

09.12.2004

13.09.2004

M. Şahin

After soakingBefore

soaking3- Moisture content determination

0,0

Penetration

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

After soaking

9 740

5 475

4 265

Dry density, γd = 100γ / 100 + m , (g/ml)

2- Dry density determination

Graphical correction for CBR values

Çayırhan TPP and 2 m

0,5

2,009

1,570

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Load-Penetration Curve

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg

/cm

2)

Graphical correction

Page 181: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

172

Table E-21: CBR of 5% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 000

4 750

4 250

2,002

1,652

Top Middle Bottom Average

324,03 530,38 623,25 492,66

289,58 445,70 532,16 419,97

126,66 127,35 126,33 128,79

34,45 84,68 91,09 72,69

21,1 26,6 22,4 25,0 24,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 75,24 3,89

0,050 1,250 150,48 7,78

0,075 1,825 263,34 13,61

0,100 2,500 70 359,48 18,58

0,200 5,000 105 555,94 28,73

0,300 7,500 134 635,36 32,84

0,400 10,000 162 677,16 35,00

0,500 12,500 183 710,60 36,72

5- Swell of specimen during soaking

1 500

2

3

4 387

Penetration Pressure CBR (%)

2,500 22,0 31,4

5,000 31,0 29,5

CBR = 31,4 %

Dry density, γd = 100γ / 100 + m , (g/ml)

2- Dry density determination

Graphical correction for CBR values

Çayırhan TPP and 2 m

1,0

2,044

1,640

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

After soaking

9 090

4 750

4 340

After soakingBefore

soaking3- Moisture content determination

0,0

Penetration

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

25.04.2005

29.04.2005

M. Şahin

1,648

5% DSG (7 day cure)

CL

Standart Proctor

Soaked

21,5

4252

Condition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

170,0

Pressure reading

27,36133,0

152,0

Days

18,0

162,0

CBR

63,0

%

36,0

26,5486,0

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 182: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

173

Table E-22: CBR of 5% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 010

4 750

4 260

2,006

1,654

Top Middle Bottom Average

334,14 522,64 618,27 550,24

297,81 439,13 528,88 465,60

127,48 128,01 127,03 127,66

36,33 83,51 89,39 84,64

21,3 26,8 22,2 25,0 24,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 71,06 3,67

0,050 1,250 142,12 7,34

0,075 1,825 234,08 12,10

0,100 2,500 70 330,22 17,07

0,200 5,000 105 597,74 30,89

0,300 7,500 134 698,06 36,08

0,400 10,000 162 760,76 39,32

0,500 12,500 183 815,10 42,12

5- Swell of specimen during soaking

1 500

2

3

4 440

Penetration Pressure CBR (%)

2,500 20,5 29,3

5,000 34,5 32,9

CBR = 32,9 %

182,0

CBR

56,0

%

34,0

24,3879,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

195,0

Pressure reading

29,42143,0

167,0

Days

17,0

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Condition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

1,648

5% DSG (28 day cure)

CL

Standart Proctor

Soaked

21,5

4252

16.05.2005

20.05.2005

M. Şahin

After soakingBefore

soaking3- Moisture content determination

0,0

Penetration

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

After soaking

9 125

4 750

4 375

Dry density, γd = 100γ / 100 + m , (g/ml)

2- Dry density determination

Graphical correction for CBR values

Çayırhan TPP and 2 m

0,5

2,060

1,652

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Load-Penetration Curve

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssu

re (

kg/c

m2)

Graphical correction

Page 183: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

174

Table E-23: CBR of 10% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 705

5 475

4 230

1,992

1,610

Top Middle Bottom Average

391,13 680,80 610,24 625,86

340,62 553,91 514,33 514,25

128,13 129,46 126,87 127,40

50,51 126,89 95,91 111,61

23,8 29,9 24,8 28,9 27,8

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 16,72 0,86

0,050 1,250 48,07 2,48

0,075 1,825 96,14 4,97

0,100 2,500 70 175,56 9,07

0,200 5,000 105 426,36 22,03

0,300 7,500 134 493,24 25,49

0,400 10,000 162 522,50 27,00

0,500 12,500 183 551,76 28,51

5- Swell of specimen during soaking

1 500

2

3

4 416

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 14,9 21,3

5,000 24,0 22,9

CBR = 22,9 %

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,7

2,037

1,593

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 800

5 475

4 325

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

4,0

11,5

24

4239

04.01.2005

08.01.2005

M. Şahin

1,61

10% DSG (0 day cure)

CL

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

12,9642,0

23,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial reading Swell (%)

132,0

Pressure reading

20,98102,0

118,0

125,0

CBR

%

Load-Penetration Curve

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 184: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

175

Table E-24: CBR of 10% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 990

4 750

4 240

1,997

1,612

Top Middle Bottom Average

331,62 507,99 640,28 558,31

292,36 423,30 537,14 467,71

128,13 126,96 127,49 127,87

39,26 84,69 103,14 90,60

23,9 28,6 25,2 26,7 26,8

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 48,07 2,48

0,050 1,250 96,14 4,97

0,075 1,825 146,30 7,56

0,100 2,500 70 198,55 10,26

0,200 5,000 105 367,84 19,01

0,300 7,500 134 443,08 22,90

0,400 10,000 162 489,06 25,27

0,500 12,500 183 524,59 27,11

5- Swell of specimen during soaking

1 500

2

3

4 485

CBR = 18,1 %

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial reading Swell (%)

125,5

Pressure reading

18,1088,0

106,0

117,0

CBRDial reading (0.01 mm)

Penetration

14,6647,5

35,0

%

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL

Standart Proctor

SoakedCondition of sample

24

4239

29.04.2005

03.05.2005

M. Şahin

1,61

10% DSG (7 day cure)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

11,5

23,0

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

9 030

4 750

4 280

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Çayırhan TPP and 2 m

0,1

2,016

1,590

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

Load-Penetration Curve

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(k

g/c

m2)

Page 185: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

176

Table E-25: CBR of 10% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 995

4 755

4 240

1,997

1,614

Top Middle Bottom Average

360,27 546,19 671,19 548,93

315,38 453,86 561,22 459,19

125,94 126,72 128,81 126,50

44,89 92,33 109,97 89,74

23,7 28,2 25,4 27,0 26,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 33,44 1,73

0,050 1,250 75,24 3,89

0,075 1,825 112,86 5,83

0,100 2,500 70 158,84 8,21

0,200 5,000 105 363,66 18,79

0,300 7,500 134 438,90 22,68

0,400 10,000 162 480,70 24,84

0,500 12,500 183 518,32 26,79

5- Swell of specimen during soaking

1 500

2

3

4 475

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 12,0 17,1

5,000 20,5 19,5

CBR = 19,5 %

Dry density, γd = 100γ / 100 + m , (g/ml)

2- Dry density determination

Graphical correction for CBR values

Çayırhan TPP and 2 m

0,2

2,016

1,589

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

After soaking

9 035

4 755

4 280

After soakingBefore

soaking3- Moisture content determination

0,0

Penetration

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

20.05.2005

24.05.2005

M. Şahin

1,61

10% DSG (28 day cure)

CL

Standart Proctor

Soaked

24

4239

Condition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial reading Swell (%)

124,0

Pressure reading

17,9087,0

105,0

Days

8,0

115,0

CBR

27,0

%

18,0

11,7338,0

Load-Penetration Curve

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 186: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

177

Table E-26: CBR of 15% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 690

5 480

4 210

1,983

1,595

Top Middle Bottom Average

411,25 727,00 821,05 676,87

355,71 616,19 698,33 577,68

127,34 241,61 239,90 240,81

55,54 110,81 122,72 99,19

24,3 29,6 26,8 29,4 28,6

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 43,89 2,27

0,050 1,250 100,32 5,18

0,075 1,825 167,20 8,64

0,100 2,500 70 246,62 12,75

0,200 5,000 105 413,82 21,39

0,300 7,500 134 476,52 24,63

0,400 10,000 162 514,14 26,57

0,500 12,500 183 543,40 28,08

5- Swell of specimen during soaking

1 500

2

3

4 462

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 15,1 21,6

5,000 22,4 21,3

CBR = 21,6 %

Dial

readingSwell (%)

130,0

Pressure reading

20,3799,0

114,0

123,0

CBR

%

18,2159,0

40,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL-ML

Standart Proctor

SoakedCondition of sample

24,5

4222

07.01.2005

11.01.2005

M. Şahin

1,597

15% DSG (0 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

10,5

24,0

After soaking

9 740

5 480

4 260

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,3

2,006

1,560

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 187: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

178

Table E-27: CBR of 15% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 900

4 750

4 150

1,954

1,574

Top Middle Bottom Average

321,46 665,26 600,19 720,13

283,78 545,71 505,01 596,39

128,01 128,49 129,46 126,18

37,68 119,55 95,18 123,74

24,2 28,7 25,3 26,3 26,8

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 41,80 2,16

0,050 1,250 79,42 4,10

0,075 1,825 117,04 6,05

0,100 2,500 70 150,48 7,78

0,200 5,000 105 234,08 12,10

0,300 7,500 134 292,60 15,12

0,400 10,000 162 334,40 17,28

0,500 12,500 183 372,02 19,23

5- Swell of specimen during soaking

1 500

2

3

4 470

CBR = 11,5 %

Çayırhan TPP and 2 m

0,3

1,969

1,553

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

8 930

4 750

4 180

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

10,0

19,0

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

24,5

4222

27.05.2005

31.05.2005

M. Şahin

1,597

15% DSG (7 day cure)

CL-ML

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Dial reading (0.01 mm)Penetration

11,1136,0

28,0

%

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

89,0

Pressure reading

11,5256,0

70,0

80,0

CBR

Load-Penetration Curve

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 188: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

179

Table E-28: CBR of 15% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 955

4 755

4 200

1,978

1,584

Top Middle Bottom Average

335,12 799,07 611,44 912,95

293,75 660,30 509,47 744,34

127,63 129,40 128,44 126,35

41,37 138,77 101,97 168,61

24,9 26,1 26,8 27,3 26,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 45,98 2,38

0,050 1,250 62,70 3,24

0,075 1,825 79,42 4,10

0,100 2,500 70 100,32 5,18

0,200 5,000 105 171,38 8,86

0,300 7,500 134 219,45 11,34

0,400 10,000 162 267,52 13,83

0,500 12,500 183 309,32 15,99

5- Swell of specimen during soaking

1 500

2

3

4 497

CBR = 8,4 %

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

74,0

Pressure reading

8,4441,0

52,5

64,0

CBRDial reading (0.01 mm)

Penetration

7,4124,0

19,0

%

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

CL-ML

Standart Proctor

SoakedCondition of sample

24,5

4222

17.06.2005

21.06.2005

M. Şahin

1,597

15% DSG (28 day cure)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

11,0

15,0

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

8 970

4 755

4 215

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

Çayırhan TPP and 2 m

0,0

1,985

1,566

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

Load-Penetration Curve

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 189: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

180

Table E-29: CBR of 20% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 725

5 480

4 245

1,999

1,605

Top Middle Bottom Average

384,24 741,71 970,36 757,74

333,72 623,10 811,65 641,55

127,86 241,54 240,07 240,75

50,52 118,61 158,71 116,19

24,5 31,1 27,8 29,0 29,3

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 41,80 2,16

0,050 1,250 96,14 4,97

0,075 1,825 167,20 8,64

0,100 2,500 70 246,62 12,75

0,200 5,000 105 401,28 20,74

0,300 7,500 134 476,52 24,63

0,400 10,000 162 535,04 27,65

0,500 12,500 183 589,38 30,46

5- Swell of specimen during soaking

1 500

2

3

4 450

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 15,5 22,1

5,000 22,2 21,1

CBR = 22,1 %

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,4

2,016

1,559

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 760

5 480

4 280

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

10,0

23,0

25

4273

14.01.2005

18.01.2005

M. Şahin

1,61

80% sample + 20% DSG (0 day cure)

ML

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

18,2159,0

40,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

141,0

Pressure reading

19,7596,0

114,0

128,0

CBR

%

Load-Penetration Curve

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ss

ure

(k

g/c

m2)

Graphical correction

Page 190: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

181

Table E-30: CBR of 20% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 010

4 755

4 255

2,004

1,596

Top Middle Bottom Average

321,87 512,28 668,70 523,48

282,64 424,38 547,60 432,82

129,03 126,72 129,33 127,02

39,23 87,90 121,10 90,66

25,5 29,5 29,0 29,6 29,4

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 33,44 1,73

0,050 1,250 62,70 3,24

0,075 1,825 79,42 4,10

0,100 2,500 70 96,14 4,97

0,200 5,000 105 167,20 8,64

0,300 7,500 134 242,44 12,53

0,400 10,000 162 292,60 15,12

0,500 12,500 183 326,04 16,85

5- Swell of specimen during soaking

1 500

2

3

4 493

CBR = 8,2 %

Dial

readingSwell (%)

78,0

Pressure reading

8,2340,0

58,0

70,0

CBR

%

7,1023,0

19,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

ML

Standart Proctor

SoakedCondition of sample

25

4273

06.06.2005

10.06.2005

M. Şahin

1,61

20% DSG (7 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

8,0

15,0

After soaking

9 040

4 755

4 285

Çayırhan TPP and 2 m

0,1

2,018

1,560

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 191: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

182

Table E-31: CBR of 20% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 990

4 750

4 240

1,997

1,591

Top Middle Bottom Average

364,87 418,61 587,12 543,42

316,39 353,12 485,67 448,95

126,41 128,64 129,68 126,58

48,48 65,49 101,45 94,47

25,5 29,2 28,5 29,3 29,0

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 16,72 0,86

0,050 1,250 33,44 1,73

0,075 1,825 45,98 2,38

0,100 2,500 70 58,52 3,02

0,200 5,000 105 125,40 6,48

0,300 7,500 134 188,10 9,72

0,400 10,000 162 234,08 12,10

0,500 12,500 183 261,25 13,50

5- Swell of specimen during soaking

1 500

2

3

4 505

CBR = 6,2 %

Çayırhan TPP and 2 m

0,0

2,006

1,555

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 010

4 750

4 260

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

4,0

8,0

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

25

4273

27.06.2005

01.07.2005

M. Şahin

1,61

20% DSG (28 day cure)

ML

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Dial reading (0.01 mm)Penetration

4,3214,0

11,0

%

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

62,5

Pressure reading

6,1730,0

45,0

56,0

CBR

Load-Penetration Curve

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 192: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

183

Table E-32: CBR of 25% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

9 660

5 470

4 190

1,973

1,579

Top Middle Bottom Average

354,95 568,15 596,17 757,48

309,62 463,80 491,93 614,20

128,01 126,80 129,35 126,29

45,33 104,35 104,24 143,28

25,0 31,0 28,7 29,4 29,7

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 20,90 1,08

0,050 1,250 45,98 2,38

0,075 1,825 87,78 4,54

0,100 2,500 70 175,56 9,07

0,200 5,000 105 334,40 17,28

0,300 7,500 134 455,62 23,55

0,400 10,000 162 535,04 27,65

0,500 12,500 183 578,93 29,92

5- Swell of specimen during soaking

1 500

2

3

4 415

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 14,0 20,0

5,000 21,0 20,0

CBR = 20,0 %

Dial

readingSwell (%)

138,5

Pressure reading

16,4680,0

109,0

128,0

CBR

%

12,9642,0

21,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

ML

Standart Proctor

SoakedCondition of sample

25,5

4237

17.02.2005

21.02.2005

M. Şahin

1,59

25% DSG (0 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

5,0

11,0

After soaking

9 705

5 470

4 235

Çayırhan TPP and 2 m

Graphical correction for CBR values

0,7

1,995

1,538

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ss

ure

(k

g/c

m2)

Graphical correction

Page 193: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

184

Table E-33: CBR of 25% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 955

4 750

4 205

1,980

1,571

Top Middle Bottom Average

312,66 651,91 720,10 877,46

274,32 526,78 581,40 701,29

127,14 129,49 126,20 128,51

38,34 125,13 138,70 176,17

26,0 31,5 30,5 30,8 30,9

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 33,44 1,73

0,050 1,250 43,89 2,27

0,075 1,825 58,52 3,02

0,100 2,500 70 71,06 3,67

0,200 5,000 105 129,58 6,70

0,300 7,500 134 188,10 9,72

0,400 10,000 162 234,08 12,10

0,500 12,500 183 265,43 13,72

5- Swell of specimen during soaking

1 500

2

3

4 519

CBR = 6,4 %

Çayırhan TPP and 2 m

-0,2

2,004

1,531

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

After soaking

9 005

4 750

4 255

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

8,0

10,5

25,5

4237

10.06.2005

14.06.2005

M. Şahin

1,59

25% DSG (7 day cure)

ML

Standart Proctor

SoakedCondition of sample

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

5,2517,0

14,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Dial

readingSwell (%)

63,5

Pressure reading

6,3831,0

45,0

56,0

CBR

%

Load-Penetration Curve

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Page 194: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

185

Table E-34: CBR of 25% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

CALIFORNIA BEARING RATIO (CBR) TEST

1 - General Information about the specimen and test procedure

Start date

End date

Surcharge 9,08 kg

Mould volume 2123,3 ml

Tested by

Before soaking

8 945

4 750

4 195

1,976

1,571

Top Middle Bottom Average

343,65 506,65 703,41 567,58

299,49 415,47 571,63 463,15

128,21 127,39 127,93 127,56

44,16 91,18 131,78 104,43

25,8 31,7 29,7 31,1 30,8

4- Bearing ratio determination

Standart

pressure

inch mm kg/cm2 kg kg/cm2

0,000 0,000 0,00 0,00

0,025 0,625 8,36 0,43

0,050 1,250 16,72 0,86

0,075 1,825 25,08 1,30

0,100 2,500 70 35,53 1,84

0,200 5,000 105 81,51 4,21

0,300 7,500 134 129,58 6,70

0,400 10,000 162 171,38 8,86

0,500 12,500 183 202,73 10,48

5- Swell of specimen during soaking

1 500

2

3

4 520

Penetration

(mm)

Pressure

(kg/cm2)CBR (%)

2,500 2,9 4,1

5,000 5,3 5,0

CBR = 5,0 %

Dial

readingSwell (%)

48,5

Pressure reading

4,0119,5

31,0

41,0

CBR

%

2,628,5

6,0

Moisture content, m = W2-W1 / W1-W3 * 100 , (%)

Mass of moisture, γ = W2 - W1, (g)

Mass of container, W3, (g)

Dial reading (0.01 mm)Penetration

Maksimum dry density (g/ml)

Optimum moisture content (%)

Calculated mass of soil (g)

Location and depth

Sample name

Soil classification (USCS)

Method of compaction

ML

Standart Proctor

SoakedCondition of sample

25,5

4237

01.07.2005

05.07.2005

M. Şahin

1,59

25% DSG (28 day cure)

Mass of container + dry sample, W1, (g)

Mass of container + wet sample, W2, (g)

2- Dry density determination

Days

After soakingBefore

soaking3- Moisture content determination

0,0

2,0

4,0

After soaking

8 975

4 750

4 225

Çayırhan TPP and 2 m

Graphical correction for CBR values

-0,2

1,990

1,521

Mass of mould + base + specimen, W2, (g)

Mass of mould + base, W1, (g)

Mass of compacted specimen, W2-W1, (g)

Bulk density, γ = W2 - W1/ V , (g/ml)

Dry density, γd = 100γ / 100 + m , (g/ml)

Load-Penetration Curve

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12

Penetration (mm)

Pre

ssure

(kg/c

m2)

Graphical correction

Page 195: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

186

APPENDIX F: PERMEABILITY TEST FORMS

Table F-1: Permeability of Undisturbed Sample

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,677

Optimum moisture content (%) 20,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:30 7,0 36,8 0,0 0 0

09:00 7,3 36,5 0,3 0,3 0,3 30 30

10:00 7,7 36,2 0,4 0,3 0,6 60 90

10:30 8,2 36,0 0,5 0,2 0,8 30 120

11:00 8,5 35,9 0,3 0,1 0,9 30 150

11:45 8,8 35,6 0,3 0,3 1,2 45 195

13:15 9,3 35,1 0,5 0,5 1,7 90 285

14:00 9,8 34,6 0,5 0,5 2,2 45 330

3 - Results

Q (ml/min) 0,0071

L (mm) 71

A (mm2) 1018

k (m/s) = 1,6E-09

08.09.2004

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name Sample A (UD)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Rate of Flow Through Sample

y = 0,0071x - 0,2286

R2 = 0,9643

0,0

0,5

1,0

1,5

2,0

2,5

0 50 100 150 200 250 300 350

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 196: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

187

Table F-2: Permeability of Compacted Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,677

Optimum moisture content (%) 20,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

8,0 44,5 0,0 0 0

8,2 44,3 0,2 0,2 0,2 60 60

8,5 44,0 0,3 0,3 0,5 60 120

8,7 43,8 0,2 0,2 0,7 60 180

9,0 43,6 0,3 0,2 0,9 60 240

9,2 43,4 0,2 0,2 1,1 60 300

9,4 43,2 0,2 0,2 1,3 60 360

9,6 43,0 0,2 0,2 1,5 60 420

9,8 42,8 0,2 0,2 1,7 60 480

3 - Results

Q (ml/min) 0,0033

L (mm) 71

A (mm2) 1018

k (m/s) = 7,5E-10

01.06.2005

Location and depth

Sample height (cm)

Sample area (cm2)

Çayırhan TPP and 2 m

Sample name Sample A (Compacted) (0 day cure)

Soil classification (USCS) CL

10,18

7,1

1 - General Information about the specimen and test procedure

2 - Determination of triaxial permeability

Cell pressure (kPa)

Back pressure (kPa)

Tested by Sample diameter (cm) 3,6

Rate of Flow Through Sample

y = 0,0033x + 0,1

R2 = 1

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 100 200 300 400 500 600

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 197: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

188

Table F-3: Permeability of Compacted Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,677

Optimum moisture content (%) 20,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

11,3 37,1 0,0 0 0

11,6 36,9 0,3 0,2 0,2 60 60

12,0 36,6 0,4 0,3 0,5 60 120

12,3 36,4 0,3 0,2 0,7 60 180

12,5 36,2 0,2 0,2 0,9 60 240

12,7 36,0 0,2 0,2 1,1 60 300

12,9 35,8 0,2 0,2 1,3 60 360

3 - Results

Q (ml/min) 0,0033

L (mm) 71

A (mm2) 1018

k (m/s) = 7,5E-10

10,18

7,1

1 - General Information about the specimen and test procedure

2 - Determination of triaxial permeability

Cell pressure (kPa)

Back pressure (kPa)

Tested by Sample diameter (cm) 3,6

Çayırhan TPP and 2 m

Sample name Sample A (Compacted) (7 day cure)

Soil classification (USCS) CL

08.06.2005

Location and depth

Sample height (cm)

Sample area (cm2)

Rate of Flow Through Sample

y = 0,0033x + 0,1

R2 = 1

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

0 50 100 150 200 250 300 350 400

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 198: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

189

Table F-4: Permeability of Compacted Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,677

Optimum moisture content (%) 20,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

8,4 42,6 0,0 0 0

8,6 42,5 0,2 0,1 0,1 30 30

8,8 42,3 0,2 0,2 0,3 30 60

8,9 42,2 0,1 0,1 0,4 30 90

9,1 42,1 0,2 0,1 0,5 30 120

9,2 42,0 0,1 0,1 0,6 30 150

9,4 41,8 0,2 0,2 0,8 30 180

9,6 41,6 0,2 0,2 1,0 30 210

9,8 41,4 0,2 0,2 1,2 30 240

10,0 41,2 0,2 0,2 1,4 30 270

3 - Results

Q (ml/min) 0,0067

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

29.06.2005

Çayırhan TPP and 2 m

Sample name Sample A (Compacted) (28 day cure)

Soil classification (USCS) CL

Location and depth

10,18

7,1

1 - General Information about the specimen and test procedure

2 - Determination of triaxial permeability

Cell pressure (kPa)

Back pressure (kPa)

Tested by Sample diameter (cm) 3,6

Sample height (cm)

Sample area (cm2)

Rate of Flow Through Sample

y = 0,0067x - 0,4

R2 = 1

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

0 50 100 150 200 250 300

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 199: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

190

Table F-5: Permeability of 5% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,662

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:53 10,8 30,4 0,0 0 0

09:30 11,0 30,4 0,2 0,0 0,0 37 37

10:00 11,1 30,3 0,1 0,1 0,1 30 67

10:30 11,1 30,3 0,0 0,0 0,1 30 97

11:03 11,2 30,3 0,1 0,0 0,1 33 130

11:35 11,4 30,1 0,2 0,2 0,3 32 162

13:20 11,8 30,1 0,4 0,0 0,3 105 267

14:30 12,0 30,1 0,2 0,0 0,3 70 337

16:40 12,4 29,9 0,4 0,2 0,5 130 467

09:30 13,0 29,9 0,6 0,0 0,5 434 901

11:40 13,5 29,6 0,5 0,3 0,8 130 1031

13:35 13,8 29,5 0,3 0,1 0,9 115 1146

15:30 14,0 29,3 0,2 0,2 1,1 115 1261

17:00 14,3 29,0 0,3 0,3 1,4 90 1351

09:20 15,4 28,6 1,1 0,4 1,8 980 2331

11:00 15,5 28,4 0,1 0,2 2,0 100 2431

11:35 15,6 28,3 0,1 0,1 2,1 35 2466

12:40 15,7 28,1 0,1 0,2 2,3 65 2531

13:55 15,9 27,9 0,2 0,2 2,5 75 2606

15:45 16,1 27,7 0,2 0,2 2,7 110 2716

17:08 16,3 27,5 0,2 0,2 2,9 83 2799

3 - Results

Q (ml/min) 0,0021

L (mm) 71

A (mm2) 1018

k (m/s) = 4,8E-10

10,18

7,1

1 - General Information about the specimen and test procedure

2 - Determination of triaxial permeability

Cell pressure (kPa)

Back pressure (kPa)

Tested by

Sample diameter (cm) 3,6

Çayırhan TPP and 2 m

Sample name 5% FA (0 day cure)

Soil classification (USCS) CL

16.09.2004

17.09.2004

20.09.2004

Location and depth

Sample height (cm)

Sample area (cm2)

Rate of Flow Through Sample

y = 0,0021x - 2,874

R2 = 0,9935

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

2550 2600 2650 2700 2750 2800 2850

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 200: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

191

Table F-6: Permeability of 5% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,662

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings (min)

Cumulative

Time

(min)

13:00 11,8 42,2 0,0 0 0

13:25 12,0 42,0 0,2 0,2 0,2 25 25

14:15 12,1 41,9 0,1 0,1 0,3 50 75

16:05 12,5 41,5 0,4 0,4 0,7 110 185

17:05 12,7 41,3 0,2 0,2 0,9 60 245

08:40 15,8 38,7 3,1 2,6 3,5 935 1180

10:20 16,0 38,5 0,2 0,2 3,7 100 1280

12:25 16,6 38,0 0,6 0,5 4,2 115 1395

14:25 17,0 37,6 0,4 0,4 4,6 120 1515

3 - Results

Q (ml/min) 0,0029

L (mm) 71

A (mm2) 1018

k (m/s) = 6,6E-10

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

04.10.2004

05.10.2004

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 5% FA (7 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0029x + 0,1021

R2 = 0,9984

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0 200 400 600 800 1000 1200 1400 1600

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 201: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

192

Table F-7: Permeability of 5% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,662

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings (min)

Cumulative

Time

(min)

13.10.2004 09:35 8,0 42,6 0,0 0 0

08:45 9,5 41,6 1,5 1,0 1,0 1390 1390

13:20 9,7 41,4 0,2 0,2 1,2 275 1665

16:45 9,9 41,2 0,2 0,2 1,4 205 1870

08:25 10,8 40,4 0,9 0,8 2,2 940 2810

10:50 11,0 40,3 0,2 0,1 2,3 145 2955

17:10 11,2 40,0 0,2 0,3 2,6 380 3335

10:20 12,4 39,5 1,2 0,5 3,1 1030 4365

13:40 12,6 39,3 0,2 0,2 3,3 200 4565

16:43 12,9 39,0 0,3 0,3 3,6 183 4748

08:30 13,7 38,2 0,8 0,8 4,4 947 5695

11:40 13,9 38,0 0,2 0,2 4,6 190 5885

16:40 14,2 37,7 0,3 0,3 4,9 300 6185

3 - Results

Q (ml/min) 0,0009

L (mm) 71

A (mm2) 1018

k (m/s) = 2,1E-10

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 5% FA (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm) 7,1 Back pressure (kPa)

19.10.2004

15.10.2004

18.10.2004

14.10.2004

Rate of Flow Through Sample

y = 0,0009x - 0,963

R2 = 0,9952

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 202: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

193

Table F-8: Permeability of 10% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,62

Optimum moisture content (%) 22,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings (min)

Cumulative

Time

(min)

09:42 15,5 34,9 0,0 0 0

10:48 15,1 34,4 0,4 0,5 0,5 66 66

16:00 13,9 33,6 1,2 0,8 1,3 312 378

17:03 13,5 33,2 0,4 0,4 1,7 63 441

09:05 10,8 32,3 2,7 0,9 2,6 3842 4283

10:05 10,5 31,9 0,3 0,4 3,0 60 4343

11:15 10,0 31,4 0,5 0,5 3,5 70 4413

15:15 8,4 29,8 1,6 1,6 5,1 240 4653

17:07 7,8 29,2 0,6 0,6 5,7 112 4765

3 - Results

Q (ml/min) 0,0063

L (mm) 71

A (mm2) 1018

k (m/s) = 1,4E-09

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

03.12.2004

06.12.2004

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 10% FA (0 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0063x - 24,352

R2 = 0,9975

0

1

2

3

4

5

6

7

4300 4400 4500 4600 4700 4800

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 203: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

194

Table F-9: Permeability of 10% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,62

Optimum moisture content (%) 22,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:30 7,0 36,8 0,0 0 0

09:00 7,3 36,5 0,3 0,3 0,3 30 30

10:55 7,4 36,3 0,1 0,2 0,5 115 145

11:27 8,2 36,0 0,8 0,3 0,8 32 177

11:55 8,5 35,9 0,3 0,1 0,9 28 205

12:35 8,8 35,6 0,3 0,3 1,2 40 245

14:07 9,4 35,0 0,6 0,6 1,8 92 337

14:50 9,8 34,6 0,4 0,4 2,2 43 380

3 - Results

Q (ml/min) 0,0073

L (mm) 71

A (mm2) 1018

k (m/s) = 1,7E-09

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

08.04.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 10% FA (7 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0073x - 0,5971

R2 = 0,9916

0,0

0,5

1,0

1,5

2,0

2,5

0 100 200 300 400

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 204: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

195

Table F-10: Permeability of 10% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,62

Optimum moisture content (%) 22,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings (min)

Cumulative

Time

(min)

10,0 38,2 0,0 0 0

10,4 38,0 0,4 0,2 0,2 30 30

10,7 37,7 0,3 0,3 0,5 37 67

11,0 37,4 0,3 0,3 0,8 47 114

11,2 37,2 0,2 0,2 1,0 30 144

11,4 37,0 0,2 0,2 1,2 30 174

11,7 36,8 0,3 0,2 1,4 33 207

11,9 36,6 0,2 0,2 1,6 27 234

12,1 36,4 0,2 0,2 1,8 30 264

3 - Results

Q (ml/min) 0,0066

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

03.05.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 10% FA (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0066x + 0,0516

R2 = 0,9997

0,0

0,5

1,0

1,5

2,0

0 50 100 150 200 250 300

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 205: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

196

Table F-11: Permeability of 15% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,62

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings (min)

Cumulative

Time

(min)

14,5 44,4 0,0 0,0 0,0 0 0

14,1 44,0 0,4 0,4 0,4 30 30

13,7 43,8 0,4 0,2 0,6 30 60

13,3 43,6 0,4 0,2 0,8 30 90

13,0 43,3 0,3 0,3 1,1 30 120

12,5 43,0 0,5 0,3 1,4 30 150

12,5 44,9 0,0 0,0 0,0 0 0

11,6 43,7 0,9 1,2 1,2 80 80

11,4 43,3 0,2 0,4 1,6 30 110

11,2 42,9 0,2 0,4 2,0 30 140

11,0 42,5 0,2 0,4 2,4 30 170

8,4 40,8 2,6 1,7 4,1 126 296

8,0 40,4 0,4 0,4 4,5 30 326

7,6 40,0 0,4 0,4 4,9 30 356

7,2 39,6 0,4 0,4 5,3 30 386

6,8 39,2 0,4 0,4 5,7 30 416

3 - Results

Q (ml/min) 0,0133

L (mm) 71

A (mm2) 1018

k (m/s) = 3,0E-09

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

18.05.2005

17.05.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 15% FA (0 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0133x + 0,1533

R2 = 1

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0 100 200 300 400 500

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 206: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

197

Table F-12: Permeability of 15% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,62

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings (min)

Cumulative

Time

(min)

08:53 13,5 31,5 0,0 0 0

11:07 14,4 30,6 0,9 0,9 0,9 134 134

11:50 14,7 30,4 0,3 0,2 1,1 43 177

13:30 15,5 29,8 0,8 0,6 1,7 100 277

14:09 15,8 29,5 0,3 0,3 2,0 39 316

14:30 15,9 29,4 0,1 0,1 2,1 21 337

3 - Results

Q (ml/min) 0,0062

L (mm) 71

A (mm2) 1018

k (m/s) = 1,4E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

14.01.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 15% FA (7 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0062x + 0,0189

R2 = 0,9984

0,0

0,5

1,0

1,5

2,0

2,5

0 100 200 300 400

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 207: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

198

Table F-13: Permeability of 15% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,62

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

09:04 7,8 35,6 0,0 0 0

09:34 8,4 34,8 0,6 0,8 0,8 30 30

10:04 9,0 34,2 0,6 0,6 1,4 30 60

10:34 9,6 33,6 0,6 0,6 2,0 30 90

11:04 10,1 33,1 0,5 0,5 2,5 30 120

11:34 10,6 32,6 0,5 0,5 3,0 30 150

12:34 11,6 31,6 1,0 1,0 4,0 60 210

13:34 12,6 30,6 1,0 1,0 5,0 60 270

3 - Results

Q (ml/min) 0,0017

L (mm) 71

A (mm2) 1018

k (m/s) = 3,9E-10

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

04.02.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 15% FA (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,017x + 0,4392

R2 = 0,9994

0

1

2

3

4

5

6

0 50 100 150 200 250 300

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 208: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

199

Table F-14: Permeability of 20% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,655

Optimum moisture content (%) 18

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

10:50 24,0 35,5 0,0 0 0

11:40 22,8 34,3 1,2 1,2 1,2 50 50

12:40 21,6 33,1 1,2 1,2 2,4 60 110

13:40 20,5 31,9 1,1 1,2 3,6 60 170

14:40 19,4 30,8 1,1 1,1 4,7 60 230

3 - Results

Q (ml/min) 0,0203

L (mm) 71

A (mm2) 1018

k (m/s) = 4,6E-09

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

08.10.2004

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 20% FA (0 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0203x + 0,1048

R2 = 0,9979

0

1

2

3

4

5

6

0 50 100 150 200 250

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 209: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

200

Table F-15: Permeability of 20% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,655

Optimum moisture content (%) 18

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:30 5,2 32,1 0,0 0 0

09:25 6,1 31,3 0,9 0,8 0,8 55 55

09:55 6,6 30,8 0,5 0,5 1,3 30 85

10:55 7,9 29,6 1,3 1,2 2,5 60 145

11:35 8,5 28,9 0,6 0,7 3,2 40 185

13:07 10,1 27,4 1,6 1,5 4,7 92 277

14:13 11,3 26,2 1,2 1,2 5,9 66 343

15:03 12,3 25,2 1,0 1,0 6,9 50 393

16:03 13,3 24,2 1,0 1,0 7,9 60 453

3 - Results

Q (ml/min) 0,0181

L (mm) 71

A (mm2) 1018

k (m/s) = 4,1E-09

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Cell pressure (kPa)

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

23.02.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 20% FA (7 day cure)

Soil classification (USCS) CL

Rate of Flow Through Sample

y = 0,0181x - 0,2863

R2 = 0,9973

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 210: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

201

Table F-16: Permeability of 20% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,655

Optimum moisture content (%) 18

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:30 13,0 36,0 0,0 0 0

09:25 16,1 33,0 3,1 3,0 3,0 55 55

09:55 17,6 31,5 1,5 1,5 4,5 30 85

10:25 19,4 30,0 1,8 1,5 6,0 30 115

10:55 20,9 28,5 1,5 1,5 7,5 30 145

3 - Results

Q (ml/min) 0,0516

L (mm) 71

A (mm2) 1018

k (m/s) = 1,2E-08

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

15.03.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 20% FA (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0516x + 0,072

R2 = 0,9995

0

1

2

3

4

5

6

7

8

0 50 100 150 200

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 211: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

202

Table F-17: Permeability of 25% FA Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,635

Optimum moisture content (%) 19

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:38 19,8 43,5 0,0 0 0

09:13 19,3 43,2 0,5 0,3 0,3 35 35

09:45 18,9 42,8 0,4 0,4 0,7 32 67

10:40 18,3 42,2 0,6 0,6 1,3 55 122

11:50 17,5 41,4 0,8 0,8 2,1 70 192

12:23 17,0 40,9 0,5 0,5 2,6 33 225

12:37 16,1 40,0 0,9 0,9 3,5 14 239

3 - Results

Q (ml/min) 0,0139

L (mm) 71

A (mm2) 1018

k (m/s) = 3,2E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

23.12.2004

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 25% FA (0 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0139x - 0,2819

R2 = 0,9483

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 50 100 150 200 250 300

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 212: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

203

Table F-18: Permeability of 25% FA Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,635

Optimum moisture content (%) 19

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:35 14,2 38,0 0,0 0 0

09:05 14,8 37,6 0,6 0,4 0,4 30 30

10:10 14,8 37,3 0,0 0,3 0,7 65 95

10:35 15,0 37,1 0,2 0,2 0,9 25 120

11:53 15,4 36,7 0,4 0,4 1,3 78 198

14:45 16,6 35,5 1,2 1,2 2,5 172 370

15:21 16,8 35,3 0,2 0,2 2,7 36 406

16:00 17,0 35,1 0,2 0,2 2,9 39 445

16:55 17,4 34,7 0,4 0,4 3,3 55 500

3 - Results

Q (ml/min) 0,0064

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

10.12.2004

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 25% FA (7 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0064x + 0,0963

R2 = 0,9981

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 100 200 300 400 500 600

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 213: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

204

Table F-19: Permeability of 25% FA Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,635

Optimum moisture content (%) 19

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:43 20,8 43,5 0,0 0 0

09:45 19,0 41,7 1,8 1,8 1,8 62 62

10:08 18,5 41,1 0,5 0,6 2,4 23 85

10:38 17,7 40,3 0,8 0,8 3,2 30 115

11:08 16,9 39,4 0,8 0,9 4,1 30 145

11:50 15,7 38,6 1,2 0,8 4,9 42 187

12:45 14,1 37,0 1,6 1,6 6,5 55 242

13:30 13,0 35,9 1,1 1,1 7,6 45 287

14:13 11,9 34,8 1,1 1,1 8,7 43 330

3 - Results

Q (ml/min) 0,025

L (mm) 71

A (mm2) 1018

k (m/s) = 5,7E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

16.03.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 25% FA (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,025x + 0,4429

R2 = 0,9998

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 214: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

205

Table F-20: Permeability of 5% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,648

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:30 9,4 39,1 0,0 0,0 0,0 0 0

09:30 8,7 38,3 0,7 0,8 0,8 60 60

10:30 7,9 37,4 0,8 0,9 1,7 60 120

11:30 7,3 36,9 0,6 0,5 2,2 60 180

12:40 6,4 36,0 0,9 0,9 3,1 70 250

13:30 5,8 35,4 0,6 0,6 3,7 50 300

14:20 5,2 34,8 0,6 0,6 4,3 50 350

3 - Results

Q (ml/min) 0,012

L (mm) 71

A (mm2) 1018

k (m/s) = 2,7E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

17.02.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 5% DSG (0 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,012x + 0,1

R2 = 1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

Cumulative Time (min.)

Cu

mu

lati

ve

Flo

w (

ml)

Page 215: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

206

Table F-21: Permeability of 5% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,648

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

7,8 43,6 0,0 0,0 0,0 0 0

8,0 43,3 0,2 0,3 0,3 30 30

8,2 43,0 0,2 0,3 0,6 30 60

8,4 42,8 0,2 0,2 0,8 30 90

8,6 42,6 0,2 0,2 1,0 30 120

9,0 42,2 0,4 0,4 1,4 60 180

9,4 41,8 0,4 0,4 1,8 60 240

9,8 41,4 0,4 0,4 2,2 60 300

10,2 41,0 0,4 0,4 2,6 60 360

3 - Results

Q (ml/min) 0,0067

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Cell pressure (kPa)

Sample height (cm) 7,1 Back pressure (kPa)

26.04.2005

2 - Determination of triaxial permeability

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 5% DSG (7 day cure)

Soil classification (USCS) CL

Rate of Flow Through Sample

y = 0,0067x + 0,2

R2 = 1

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 50 100 150 200 250 300 350 400

Cumulative Time (min.)

Cu

mu

lati

ve

Flo

w (

ml)

Page 216: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

207

Table F-22: Permeability of 5% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,648

Optimum moisture content (%) 21,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative Flow

Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:45 15,4 39,9 0,0 0 0

09:33 15,0 39,8 0,4 0,1 0,1 48 48

10:04 14,9 39,7 0,1 0,1 0,2 31 79

11:00 14,7 39,5 0,2 0,2 0,4 56 135

11:33 14,6 39,4 0,1 0,1 0,5 33 168

13:05 14,3 39,1 0,3 0,3 0,8 92 260

14:05 14,0 39,0 0,3 0,1 0,9 60 320

15:36 13,7 38,7 0,3 0,3 1,2 91 411

16:55 13,5 38,5 0,2 0,2 1,4 79 490

3 - Results

Q (ml/min) 0,0029

L (mm) 71

A (mm2) 1018

k (m/s) = 6,6E-10

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

05.01.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 5% DSG (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0029x + 0,004

R2 = 0,9961

0,0

0,5

1,0

1,5

2,0

0 100 200 300 400 500 600

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 217: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

208

Table F-23: Permeability of 10% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,61

Optimum moisture content (%) 24

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:30 10,0 41,7 0,0 0,0 0,0 0 0

09:00 9,3 41,0 0,7 0,7 0,7 30 30

09:30 8,7 40,4 0,6 0,6 1,3 30 60

10:00 8,1 39,8 0,6 0,6 1,9 30 90

10:30 7,5 39,2 0,6 0,6 2,5 30 120

11:00 6,9 38,6 0,6 0,6 3,1 30 150

3 - Results

Q (ml/min) 0,0205

L (mm) 71

A (mm2) 1018

k (m/s) = 4,7E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

03.03.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 10% DSG (0 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0205x + 0,0476

R2 = 0,9993

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 20 40 60 80 100 120 140 160

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 218: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

209

Table F-24: Permeability of 10% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,61

Optimum moisture content (%) 24

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:35 7,0 37,9 0,0 0,0 0,0 0 0

09:50 7,5 37,4 0,5 0,5 0,5 75 75

10:50 7,9 37,0 0,4 0,4 0,9 60 135

11:45 8,3 36,6 0,4 0,4 1,3 55 190

13:00 8,8 36,1 0,5 0,5 1,8 75 265

14:15 9,2 35,7 0,4 0,4 2,2 75 340

15:02 9,5 35,4 0,3 0,3 2,5 47 387

3 - Results

Q (ml/min) 0,0065

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Sample height (cm) 7,1 Back pressure (kPa)

10.03.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 10% DSG (7 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0065x + 0,0263

R2 = 0,9984

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 100 200 300 400 500

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 219: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

210

Table F-25: Permeability of 10% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,61

Optimum moisture content (%) 24

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:32 8,4 45,1 0,0 0,0 0,0 0 0

09:25 8,7 44,9 0,3 0,2 0,2 53 53

09:55 8,9 44,8 0,2 0,1 0,3 30 83

11:20 9,4 44,3 0,5 0,5 0,8 85 168

12:30 9,7 43,9 0,3 0,4 1,2 70 238

13:05 9,9 43,7 0,2 0,2 1,4 35 273

13:35 10,0 43,6 0,1 0,1 1,5 30 303

14:34 10,4 43,3 0,4 0,3 1,8 59 362

15:00 10,5 43,2 0,1 0,1 1,9 26 388

15:47 10,8 42,9 0,3 0,3 2,2 47 435

16:42 11,0 42,7 0,2 0,2 2,4 55 490

3 - Results

Q (ml/min) 0,0049

L (mm) 71

A (mm2) 1018

k (m/s) = 1,1E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

31.03.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 10% DSG (28 day cure)

Soil classification (USCS) CL Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0049x + 0,0368

R2 = 0,9746

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 100 200 300 400 500 600

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 220: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

211

Table F-26: Permeability of 15% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

13,0 40,7 0,0 0,0 0,0 0 0

12,7 40,5 0,3 0,2 0,2 30 30

12,6 40,4 0,1 0,1 0,3 30 60

12,4 40,2 0,2 0,2 0,5 30 90

12,2 40,0 0,2 0,2 0,7 30 120

12,0 39,8 0,2 0,2 0,9 30 150

11,8 39,6 0,2 0,2 1,1 30 180

11,6 39,4 0,2 0,2 1,3 30 210

11,4 39,2 0,2 0,2 1,5 30 240

3 - Results

Q (ml/min) 0,0067

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

Soil classification (USCS) CL-ML Cell pressure (kPa)

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 15% DSG (0 day cure)

Sample height (cm) 7,1 Back pressure (kPa)

07.07.2005

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Rate of Flow Through Sample

y = 0,0067x - 0,1

R2 = 1

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

0 50 100 150 200 250 300

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 221: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

212

Table F-27: Permeability of 15% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

10,8 45,0 0,0 0,0 0,0 0 0

10,5 44,8 0,3 0,2 0,2 15 15

10,3 44,6 0,2 0,2 0,4 15 30

10,2 44,4 0,1 0,2 0,6 15 45

10,1 44,3 0,1 0,1 0,7 15 60

9,7 43,9 0,4 0,4 1,1 30 90

9,3 43,5 0,4 0,4 1,5 30 120

9,0 43,2 0,3 0,3 1,8 30 150

8,6 42,8 0,4 0,4 2,2 30 180

8,3 42,5 0,3 0,3 2,5 30 210

8,0 42,2 0,3 0,3 2,8 30 240

7,7 41,9 0,3 0,3 3,1 30 270

7,4 41,6 0,3 0,3 3,4 30 300

7,1 41,3 0,3 0,3 3,7 30 330

3 - Results

Q (ml/min) 0,0111

L (mm) 71

A (mm2) 1018

k (m/s) = 2,5E-09

05.10.2005

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Sample height (cm) 7,1 Back pressure (kPa)

Soil classification (USCS) CL-ML Cell pressure (kPa)

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 15% DSG (7 day cure)

Rate of Flow Through Sample

y = 0,0111x + 0,1096

R2 = 0,9978

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 50 100 150 200 250 300 350

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 222: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

213

Table F-28: Permeability of 15% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

16:00 14,6 38,0 0,0 0 0

17:00 15,4 37,6 0,8 0,4 0,4 60 60

09:30 16,2 32,4 0,8 5,2 5,6 990 1050

10:05 16,7 32,2 0,5 0,2 5,8 35 1085

11:00 17,5 31,5 0,8 0,7 6,5 55 1140

11:42 18,0 31,0 0,5 0,5 7,0 42 1182

12:22 18,5 30,5 0,5 0,5 7,5 40 1222

13:02 19,0 30,0 0,5 0,5 8,0 40 1262

13:42 19,5 29,5 0,5 0,5 8,5 40 1302

3 - Results

Q (ml/min) 0,0125

L (mm) 71

A (mm2) 1018

k (m/s) = 2,8E-09

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Sample height (cm) 7,1 Back pressure (kPa)

09.02.2005

08.02.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 15% DSG (28 day cure)

Soil classification (USCS) CL-ML Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0125x - 7,775

R2 = 1

0

1

2

3

4

5

6

7

8

9

1160 1180 1200 1220 1240 1260 1280 1300 1320

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 223: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

214

Table F-29: Permeability of 20% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

6,0 41,9 0,0 0 0

6,4 41,6 0,4 0,3 0,3 60 60

6,7 41,3 0,3 0,3 0,6 60 120

7,0 41,0 0,3 0,3 0,9 60 180

7,4 40,8 0,4 0,2 1,1 60 240

7,7 40,5 0,3 0,3 1,4 60 300

8,0 40,2 0,3 0,3 1,7 60 360

3 - Results

Q (ml/min) 0,0046

L (mm) 71

A (mm2) 1018

k (m/s) = 1,0E-09

31.05.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 20% DSG (0 day cure)

Soil classification (USCS) ML Cell pressure (kPa)

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Rate of Flow Through Sample

y = 0,0046x + 0,0214

R2 = 0,998

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 50 100 150 200 250 300 350 400

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 224: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

215

Table F-30: Permeability of 20% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

10,1 40,8 0,0 0 0

10,4 40,7 0,3 0,1 0,1 60 60

10,7 40,5 0,3 0,2 0,3 60 120

11,0 40,3 0,3 0,2 0,5 60 180

11,2 40,1 0,2 0,2 0,7 60 240

11,4 39,9 0,2 0,2 0,9 60 300

11,6 39,7 0,2 0,2 1,1 60 360

3 - Results

Q (ml/min) 0,0033

L (mm) 71

A (mm2) 1018

k (m/s) = 7,5E-10

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

07.06.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 20% DSG (7 day cure)

Soil classification (USCS) ML Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0033x - 0,1

R2 = 1

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 50 100 150 200 250 300 350 400

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 225: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

216

Table F-31: Permeability of 20% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

09:35 19,0 41,5 0,0 0 0

10:40 18,3 41,5 0,7 0,0 0,0 65 65

11:40 17,8 41,0 0,5 0,5 0,5 60 125

12:40 17,3 40,0 0,5 1,0 1,5 60 185

13:40 16,8 39,5 0,5 0,5 2,0 60 245

14:40 16,3 39,0 0,5 0,5 2,5 60 305

15:40 15,8 38,5 0,5 0,5 3,0 60 365

3 - Results

Q (ml/min) 0,0083

L (mm) 71

A (mm2) 1018

k (m/s) = 1,9E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

14.02.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 20% DSG (28 day cure)

Soil classification (USCS) ML Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0083x - 0,0417

R2 = 1

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 50 100 150 200 250 300 350 400

Cumulative Time (min)

Cu

mu

lati

ve

Flo

w (

ml)

Page 226: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

217

Table F-32: Permeability of 25% DSG Sample (0 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

12,8 37,0 0,0 0,0 0,0 0

13,0 36,8 0,2 0,2 0,2 33 33

13,2 36,6 0,2 0,2 0,4 35 68

13,5 36,4 0,3 0,2 0,6 30 98

13,7 36,2 0,2 0,2 0,8 30 128

13,9 36,0 0,2 0,2 1,0 30 158

14,1 35,8 0,2 0,2 1,2 30 188

14,3 35,6 0,2 0,2 1,4 30 218

14,5 35,4 0,2 0,2 1,6 30 248

14,7 35,2 0,2 0,2 1,8 30 278

3 - Results

Q (ml/min) 0,0067

L (mm) 71

A (mm2) 1018

k (m/s) = 1,5E-09

28.06.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 25% DSG (0 day cure)

Soil classification (USCS) ML Cell pressure (kPa)

Sample height (cm) 7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Rate of Flow Through Sample

y = 0,0067x - 0,0533

R2 = 1

0,0

0,5

1,0

1,5

2,0

0 50 100 150 200 250 300

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 227: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

218

Table F-33: Permeability of 25% DSG Sample (7 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

14:00 14,6 45,1 0,0 0 0

14:50 15,0 44,9 0,4 0,2 0,2 50 50

15:45 15,5 44,4 0,5 0,5 0,7 55 105

16:50 16,2 43,9 0,7 0,5 1,2 65 170

08:45 16,0 43,2 0,2 0,7 1,9 3835 4005

09:40 15,3 42,2 0,7 1,0 2,9 55 4060

10:55 14,2 41,2 1,1 1,0 3,9 75 4135

11:40 13,6 40,4 0,6 0,8 4,7 45 4180

12:55 12,8 39,6 0,8 0,8 5,5 75 4255

14:15 12,5 38,6 0,3 1,0 6,5 80 4335

14:45 12,0 38,3 0,5 0,3 6,8 30 4365

15:15 11,0 37,7 1,0 0,6 7,4 30 4395

15:45 10,6 37,3 0,4 0,4 7,8 30 4425

16:15 10,2 36,9 0,4 0,4 8,2 30 4455

16:45 9,8 36,5 0,4 0,4 8,6 30 4485

3 - Results

Q (ml/min) 0,0133

L (mm) 71

A (mm2) 1018

k (m/s) = 3,0E-09

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

Sample height (cm) 7,1 Back pressure (kPa)

28.02.2005

25.02.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 25% DSG (7 day cure)

Soil classification (USCS) ML Cell pressure (kPa)

Rate of Flow Through Sample

y = 0,0133x - 51,2

R2 = 1

7,0

7,5

8,0

8,5

9,0

4420 4430 4440 4450 4460 4470 4480 4490

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)

Page 228: EFFECTS OF FLY ASH AND DESULPHOGYPSUM ON …etd.lib.metu.edu.tr/upload/12606945/index.pdf · v ÖZ UÇUCU KÜL VE DESÜLFOJİPSİN, ÇAYIRHAN ZEMİNİNİN MUKAVEMET VE GEÇİRİMLİLİK

219

Table F-34: Permeability of 25% DSG Sample (28 day cure)

MIDDLE EAST TECHNICAL UNIVERSITY

SOIL MECHANICS LABORATORY

PERMEABILITY TEST BY TRIAXIAL APPARATUS

Maksimum dry density (g/ml) 1,597

Optimum moisture content (%) 24,5

100

50

M. Şahin

Date Time

Volume

Change

Reading

(ml)

Burette

Reading

(ml)

Volume of

Water

Entered

Specimen

(ml)

Volume of

Water Left

Specimen

(ml)

Cumulative

Flow Through

Specimen

(ml)

Time Interval

Between

Readings

(min)

Cumulative

Time

(min)

08:35 11,6 42,6 0,0 0,0 0,0 0 0

09:00 11,3 42,3 0,3 0,3 0,3 25 25

09:30 10,9 41,9 0,4 0,4 0,7 30 55

10:00 10,6 41,6 0,3 0,3 1,0 30 85

10:30 10,2 41,0 0,4 0,6 1,6 30 115

11:00 9,9 40,7 0,3 0,3 1,9 30 145

11:30 9,4 40,3 0,5 0,4 2,3 30 175

12:30 8,5 39,5 0,9 0,8 3,1 60 235

14:00 7,5 38,5 1,0 1,0 4,1 90 325

15:00 8,3 37,8 0,8 0,7 4,8 60 385

16:00 9,1 37,0 0,8 0,8 5,6 60 445

17:00 9,9 36,2 0,8 0,8 6,4 60 505

3 - Results

Q (ml/min) 0,0126

L (mm) 71

A (mm2) 1018

k (m/s) = 2,9E-09

7,1 Back pressure (kPa)

2 - Determination of triaxial permeability

Sample diameter (cm) 3,6 Tested by

Sample area (cm2) 10,18

18.03.2005

1 - General Information about the specimen and test procedure

Location and depth Çayırhan TPP and 2 m

Sample name 25% DSG (28 day cure)

Soil classification (USCS) ML Cell pressure (kPa)

Sample height (cm)

Rate of Flow Through Sample

y = 0,0126x + 0,0346

R2 = 0,9989

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

Cumulative Time (min)

Cu

mu

lati

ve F

low

(m

l)