37
3 4Y5b 0514733 4

Effect of aging time and temperature on the impact and tensile … · 2017. 2. 3. · EFFECT OF AGING TIME AND TEMPE-RAT'URE OBT THE IMPACT hr'\sD TENSILE BEHAVIOR OF L-605 - A COBALT-BASE

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 3 4Y5b 0514733 4

  • This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuiacy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

  • ORNL- TM-3 73 4

    Contract No. W-7405-eng-26

    MIEALS AND CERAMICS DIVISION

    EFFECT OF AGING TIME AND TEMPERATURE ON THE IMPACT AND

    TENSILE BEWiVIOR OF L-605 - A COBALT-BASE ALLOY

    D. T . Bourgette

    APRIL 1973

    OAK RIDGE NATIONAL LABORATORY Oak Ridge, T e n n e s s e e 37830

    UNION CARBIDE CORPORATION operated by

    3 4456 OSL4733 i?~

  • iii

    CONTENTS

    Page

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1nt;soduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ex-perimental Procedure . . . . . . . . . . . . . . . . . . . . . . . 3

    ?.laterials . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Specimen Machining and Heat Treatment . . . . . . . . . . . . . 4 Impact Testing . . . . . . . . . . . . . . . . . . . . . . . . 5 T e n s i l e T e s t i n g . . . . . . . . . . . . . . . . . . . . . . . . 6

    Discussion of Resul ts . . . . . . . . . . . . . . . . . . . . . . . . 6 Impac tTes t s . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Aged at; 870°C . . . . . . . . . . . . . . . . . . . . . . 7 Aged at 760°C . . . . . . . . . . . . . . . . . . . . . . 13 Aged below 760°C . . . . . . . . . . . . . . . . . . . . . 16 Reentry Heating Ef fec t s . . . . . . . . . . . . . . . . . 16

    T e n s i l e T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . 16 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

  • 2 . StSSJECG CATEGORY NO.

  • I N ST R U CT 1 ONS

    Who uses this Form: All AEC contractors e\ccpt ;hose specifically instructed by their AEC contract admiristrator to iuse the shoitei Form AEC-427.

    W h ~ n to Use: Submit one copy of this Form with each docuinent which is sent to AEC ‘c Division of Technical Information Extension (DTIE) iii accordance with the requircmsnts of AEC Manual Chapter 3201.

    Where to send: Forward this Forin and the document(s) to:

    C‘SAEC - D l l F P. 0. Box 6 2 Oak Ridgc, 79 37830

    Itern instmctions:

    Item 1.

    Item 2.

    Item 3.

    Item 4.

    Item 5.

    The first element in the number shall he an AEC- approved code to be determined as follo responsible field office may requcst TITIF approval of a unique codc for a contractor, e.g., U N L I3hl1, ORNL. etc.; (b) A program division may request D T I I approval of a unique code for a program or series of report?, c.g., P N t . VUF, etc.; ( c ) An opcrations office may instruct a conuactor to use the code approved for the operations office, Le., NYO, COO, ORO, IDO. SRG. SAN. ALO, R1.0, NVO; and (d) Program divisions sha l l use the code W.ZSH for reports v,hich they- theinselves prepare unless there is rea5on to use some other approved code.

    The code chall he follo\\ed by a seqilential number. o r by a contract number p l u ~ a scqucntial number. ,>$ folloms: (a) Contractors or progr‘iiiis vjtli unique code\ may coniplctc tlic report number by adding a sequential iiuilibei to the codc, e.?., ORNL-101, ORNIL102, eic.; or PWF-1. PNE-?, r tc . : or they may add the identifying portioli of tiic contr:lct number a n d it sequent ia l ntiriibci, e.?, ABC-2105-1, ABC-2105-2. etc.; (b) Contractnrs using the operations office codc shnll coii1jilctc the report number by adding tlic identifying portion of the contract nurnbei a n d a \cquential nuiiibei. e.g.. SYO-2200-1, NYO-220CF2. etc.: i c ) Subcontractor rcports shall be identificd ni th t h e code used by the prime contiactor: and (d) Piogi;im divisions using the WASk! code shall coinplete the rcpor t ilttinbci by adding a sequential number nliicli they request froiii the Viwal Aids B1:imIi. Division of Iieadq

    Inwrt tlic apliiopriate 5uhjw:t cn tegory from TID-450G ( “Srand;ird Di\tribution for C‘nclasrified Scientific and Tcchnical Reports”) or M-3679 (“Standard Disiribu- tion for Classified Scientific and I’cchnical Reports”) foi both cl:i\sificd and unclassified documents. u.hether oi not printed for stniid;iid di~tribution.

    Gicc title exact!). a \ on the docunient iiself unless title t title and state “classified

    If box c is checked. indicate type of item being sent, e.g., thesis, translation, etc.

    a . If box a is checlicd. tiic numbcr of copies specified for the appropriaie ca~egcry or categorim in M-3679 or .TID-4500 shall be rormrcled to D TIE for distribution.

    b. I f box b is chcckcd. complete address li.;t must be provitlcd D Ilk.

    c. It’ bo.x c is checked, at least one copy shall hc original ribbon or offset and be coinpletely legible. A clear carbon copy is acceptable as a second reproduci- ble copy.

    If box a is cheeked for :in uaclassified document, it may bz diitributrd Iaficr patent clearanc-> to addrew ceq listed in ‘1’10-4.500 for the appropriate subject category. LO liblaiies in thc U.S. and abroad, which througli purcliasc of rnicroiiclic ifiainiain collections of A I C reports, and to the Clexiiighouse for Federal Scicntific and Tcchnical Informatinn for sale to the public.

    !f bor a is checked for a classified docunieili. it may he distributed to addrcssees listed in M-3679 for the appropriaie subject cittegoi-y.

    I tem 6 .

    If a box other than a i r checked, the rccommended limitation will he follo\icd unless DTIE receives other instructions from ili, rcsponsible A t C piogram divi- siuii.

    Bo\ g may be checked in order to specify- special instructions. such as “Make availabk only J‘ specifi- cally approved by the p r o p m division,” etc.

    Item 7. a. Announcemcnt pioccdurcs arc noii-nally determined by the distribution t h a t i s to be given a documrnt. If box a or b in item 6 is checked for an unclassificd docuinent. it will normally be listed in thc weekly “Accessions of Uiiliniited Dii!,iLt,:ion Kcports by DTIE” (T1U-4,401) a i d x i y be Zbsiracted in “Kuclear Sciencc ..?‘Jd i - ~ i r t s “ iNSA).

    A cluu?ifred docIlnlci*tt, or a n unclasqified docirillent for w h c h box c, d. e, f . or g in item 6 is chxl ted, may be citec! with appropriate subject iiidc:< terms in “Inde.\es of :.iliiitrd Distribution Reports” (ILDR).

    b. Chcck 7b if the nomial announceinelct procedures dcrcribcd iii 7a axe not appropriate and indicate recommended announcement lirnita tiiJi1s.

    Item 8. If a bo\ other thai? a is checked in itern 6 , or if 7b is checked, state reason for the recorniacndcd ?-cstriction. e.%.. “prcliininary inforination,” “prepared primalily for intern:!l use,” etc.

    Item 9. I t i s arsuined that there is no ob;cition to publicatioil from t l iv standpoint of the originating orbanization’s patcnt inicres:. Otherwise exp!.iin in item 1 1 .

    Item 10. The purpose o f ;hi.; itctn Is to detcrminc whether a givzil c1;irdficd doculnent can bc diztributed to acrcss permiticis. I f hox a is checked. it cannot be made available to them (Code of Federal Regilations, 10 CFR, Part 35, subiq;irt 25.6); if box b i s c h e i k d D T K v:%I detcriiline whether or not to nijke it available.

    Item 1 1 . Cse this q x c e if neceswry to expand on answers gvcn above, e. . .. item 6; and item 9.

    I tmi 12. Enter name o f person to wlioi11 inquirics concerning the recon1,nendationr on this FoiiTi may be addrcwx1.

  • EFFECT OF AGING TIME AND TEMPE-RAT'URE OBT THE IMPACT hr'\sD

    TENSILE BEHAVIOR OF L-605 - A COBALT-BASE ALLOY

    D. T. Bourgette

    ABSTRACT

    The e f f e c t of aging temperature and time on the impact and t e n s i l e behavior of L-605 was s tudied over t h e range o f '7413 t o 870°C and 50 t o 4000 h r . temperatures r e su l t ed i n severe a l l o y embrittlement. The p r i n c i p a l embr i t t l i ng r eac t ion was the p r e c i p i t a t i o n o f t h e Laves phase, CozW. A t t h e lower temperatures, hDwever, t he p r e c i p i t a t i o n of CojW may have contr ibuted t o embrit t lement. Maximum aging embrittlement occurred a f t e r 5OG h r a t 8'70°C.

    Prolonged exposure a t these

    Impact t e s t i n g of identica1.1 y aged specimens a t temperatures of 315 t o 7170°C revealed t h a t 33% of t h e toughness was l o s t a t t h e highest t e s t temperature and t h a t a l l f r a c t u r e s were i n t e r - granular . Impact t e s t i n g a t lower temperatures revealed a g rea t e r loss of toughness.

    Specimens aged a t 760, 815, and 870°C and t e n s i l e t e s t ed a t room temperature and 540°C showed a severe loss of d u c t i l - i t y , t h e g r e a t e s t l o s s occurring i n specimens aged at; 870°C. Specimens aged a t 760°C for 1000 h r exhib i ted a d u c t 5 l i t y ~f 10% a t r m m temperature and 2cS$ a t 540'C. ( a t 740°C) resuLted i n a continued loss of d u c t i l i t y .

    Longer aging times

    INTROIYJC TI ON

    The Co-Cr-W alloy, L-605 (Haynes a l l o y No- ? 5 ) , i s genera l ly regard-eci as one of t he most proven cobalt-base alloys commercially ava i l ab le . T h i s a1:Loy i s used i n many common engineering appl ica t ions ranging from j e t engine components t o fbrnace muffles operat ing i n environments such 8s

    a i r and low-pressure ni t rogen o r oxygen. Sn addi t ion, L-6G5 is u s e d i n the cons t ruc t ion of l i q u i d metal hea t - t r ans fe r loops and accessory equip- ment - The exce l l en t oxidat ion res i s tance , ' corrosion r e s i s t ance i n l i q u i d

    ~ ~~~

    'Haynes Alloy No. 25 Ihta Folder, Haynes S t e l l i t e Company, Kokomo, Indiana, ,June 1962. Now S t e l l i t e Division, Cabot Corporation, Kokomo, Indiana 46'301.

  • 2

    metals, * high-temperature s t r eng th , ' y 4 and good f a b r i c a b i l i t y and welda- b i l i t y promote t h e use of t h i s a l l o y i.n these app l i ca t ions ,

    The use of L-605 i n an environment such as the hard v&cuurn ih space f o r times i n excess of 10,300 h r may, however, l ead t o se r ious problem

    as soc ia t ed wi th low post-age duc t i l i t y5Y6 and w e l d fusion l i n e f a i l u r e s .

    I n add i t ion , r e s i s t a n c e t o thermal cycle f a i l u r e could be low because of t h e l o s s of low-temperature d u c t i l i t y .

    Impact, loading of L-605 hardware af ter long-term aging at 500 'co 900°C i s possible i n some aerospace appl icat ions.

    gat ion the re fo re w a s concerned wi th 'che e f f e c t of long-term aging on t h e

    microstructure, impact, and t ens i - l e behavior of L-605.

    "he present i n v e s t i -

    Alloy 1,-605 derives i t s s t r e n g t h pr imari ly from so l id - so lu t ion har-

    dening, but a d d i t i o n a l s t r eng th can be acquired by aging. Cobalt i s hexag-

    ona l c lose packed a t room temperature but changes to face-centered cubic

    above d18"C.

    t h i s polymorphic transformation of t h e matrix, wi th t h e hexagonal close-

    packed l a t t i - c e being associated wi th t h e less duc1;ile s t r u c t u r e s . Tungsten

    and chromium r a i s e and n i c k e l and i r o n luier the transformation tempera-

    t u r e . For L-605, transformation from face-centered cubi.c t o hexagonal

    The d u c t i l i t y of a cobalt-base a l l o y i s often a f f e c t e d by

    2D. H. Jansen and E . E. Hoffman, Type 316 S ta in l e s s S tee l , Tnconel, ~ - - and Haynes Alloy N o . 25 Natural-Circulation Boiling-Potassi.um Corrosion Test Loops, ORNL-3970 (June 1965).

    'R. Wid-mer, J. M. Dhosi, and N. J. Grant, Mechanisms Associated wi th Long Tjme Creep Phenomena -____., Technical Report AFML-TR-65-181, Pa r t I T , 1967.

    'C, J. Slunder, Short 'Term Tensile Propert ies Qf t h e Co-20 Cy15 W-10 Ni. Cobalt-Base Alloy (L-S05), DMTC Memo No. 179, l h t t e l l e Memorial I n s t i t u t e (Sept. 27, 1963) .

    Report No. 817-1390, Haynes S t e l l i t e Company, Kokomo, lndiana (May 21, 1958).

    5E. E . Jenkins, Einbrittlement of iIaynes Alloy No. 25 lhiring Brazing,

    6S. T. Wlodek, Embrittlement of a C o - C r - W (I,-605) Alloy, R-61-FPD-538 (Dee. 1, 1941.).

    7R. W, Sw1 ndeman, Oak Ridge Nati.osa1 Laboratory, p r i v a t e c o m n i c a - t lon, February 1.969.

    'F. S. Badger and F. C. Kraft, Jr., "Cobalt-Base and Nickel-Ease Alloys f o r Ultrahigh Temperature, ' I Metal Progr. - 52, 39.: (1947).

    -

  • c lose packed can be expected between 650 and 300°C, hut only a f t e r very

    long times.

    high-temperature s t r eng th over long periods of time.

    This sluggishness i s a p re requ i s i t e f o r r e t en t ion of 9710

    EXPER1MF;NTAL PROCDURE

    The purchasing of mater ia l s , machining o f t h e t e s t specimens, and

    aL1 heat t reatments i n a i r were completed a t t he Nartin-Marietta Corpora- t i on , t h e b h r t i n Company, Baltimore, Maryland. The impact t e s t i n g was conducted a t t h e B a t t e l l e Memorial I n s t i t u t e , Columbus, Ohia, while t h e

    t ens i l e t e s t i n g was completed a t t h e Martin Company. Evaluation of all . Clata, m t a l l o g r a p b i c examination, hardness and g ra in s i z e determinations, chemical. ana lys i s , and f i n a l repor t ing were completed a t ORNL. A-dditional

    impact specimens were machined, aged i n argon, and t e s t e d a t ORNL for t h e purpose of determining environmental e f f e c t s and the aging response

    of L-605 a t lower t emperatzlres .

    Materials

    Two pieces of L-605 were purchased f r o m t h e IJCC S t e l l i t e D i v i s i m i n accordance wi th aerospace ma te r i a l s p e c i f i c a t i o n AN3-5537B.

    chemical composition, mechanical proper t ies (vendor 's ) , and heat; i d e n t i - f i c a t i o n s a r e given i n Table 1. The material. as received had been solu-

    t i o n hea t - t r ea t ed ( i n a i r ) at 1230°C f o r a period of not less t'nan 0. 25 hr.

    'Die

    9W. Koster, "On t h e Inf luence of t h e Elements on t h e Pol-ymorphic Transformation of' Cobalt, " Z . Metallk. L+3, 297 (1952).

    Nickel on t h e Alpha/Beta Transformation arid Gamma P r e c i p i t a t i o n i n Cabal t- Chromium Alloys, 'I Trans. AIME 188, 154 (1350)

    __ ''A. R. Elsea and C. C . McBride, "The Effec ts of Nitrogen, I ron, and

    I_ I_

  • Table l. Analyses of Commercial L-605

    He a t Nunib e r

    (0.056 i n . shee t ) (0.500 i n . p l a t e )

    a 186-6-1843 186- 5- 1737 Compos it ion Mechanical

    ( T i t %) Proper t ies

    C r 20.24 20.37

    15.02 3-4.81 W Fe 2.00 1.80

    N i 10.24. 10.00

    MI1 1.35 1.43

    C 0.09 0.1-1

    Si 0.03 0.18

    S 0.005 0.014

    P 0.007 0.016

    co Balance Balance

    Ultimate t e n s i l e 136,650 129,800

    Yield s t r eng th 0.2% 64,750 59,200

    ~ u c t i l . i t y , i n 2 i n . 56.5% 64 $

    s t rength , p s i

    o f f s e t , p s i

    a Vendor's ana lys i s .

    Specimen Machining and Heat Treatment

    The Charpy V-notch impact spechiens and sheet t e n s i l e speclmens

    were machined i n accordance wi th Fig. 1. All. specimens were subsequently

    so lu t ion annealed a t 1230°C f o r a per iod of not Less than 0.25 hr. The impact specimens were aged i n a i r a t 8'70°C: f o r peri.ods of 50, 1-00, 500,

    1000, 2500, and 4000 hr . The shee t t e n s i l e specimens were aged i n a i r a t 760, 820, and 870"i! f o r per iods of 50, 100, 500, 1000, and /(to00 hr . Additional impact specimens were machined, so lu t ion annealed at 1230°C

    f o r 1 hr i.n vacuum, and. aged i n argon a t 650, 760, and 870°C f o r 50, 200, 500, and 1000 h r . These add i t iona l specimens were machined fYom

    t h e same hea t (186-5-1737) as were t h e air-aged specimens.

  • 5

    i3RNL-OWG 70-24 5 8

    SOLUTION ANNEAL AFTER MACHINING -t230°C - 0.25 hr

    0.0 i O ~ o . o o ' RADIUS NOTCH DETAIL

    CHARPY V-NOTCH IMPACT SPECIMEN

    TYPE 304 STAINLESS STEEL TABS

    THREE SIDES (TYP.)

    \HOLE 0.374 -0.381 DlAM

    FROM SPECIMEN END FUSION WELDED TO SPECIMEN ON LOCATE ON CENTER 5 k m .

    0.05f0.00~

    1 t I I ! I / I f 1

    HIGH TEMPERATURE TENSILE SPECIMEN DIMENSIONS ARE IN INCHES

    Fig. 1. Specimen Spec i f ica t ions for L-605 Aging Study.

    Impact Testing

    A c e r t i f i e d Richle impact t e s t e r ( s e r i a l No. €?A-17876) was used t o test t h e specimens aged i n a i r - Specimens were impact t e s t e d i n a i r a t 31!S, 427, 538, 649, and 760°C. A t r a n s f e r time from t h e mrnace t o t h e t e s t i n g block of 4 t o 5 sec necess i t a t ed a temperature c a l i b r a t i o n of the specimen t o co r rec t for r e s u l t i n g thermal lo s ses .

    machined i n a spare specimen t o permit a Chromel-%Alumel thermocouple

    (28-gage wi re ) t o be located d i r e c t l y behind t h e notch.

    couple connected to a high-speed recorder showed t h a t specimens impact t e s t e d a t t h e above temperatures had t o be heated to 31'7, 430, 543, 656,

    and 77OoC, respec t ive ly . The instrumented specimen was heated w i t h t h e

    A small hole was

    The thermo-

  • 6

    specimen t o be t e s t e d as a more accura te ind ica to r of spc imen tempera-

    t u r e .

    same temperature.

    I n an e f f o r t t o simulate the h e a t i n g b y r een t ry i n t o t h e e a r t h ' s

    Two specimens of each aging treatment were impact t e s t e d a t the

    atmosphere, impact specimens aged i n ajr f o r 4000 hr a t 870°C wel-e heated

    t o 1110°C and t e s t e d at a p p o x i m t e l y 1080°C. The impact specimens so lu t ion annealed i n vacuu111 and aged i n argon

    were impact t e s t e d a t 316°C wi th a Baldwin t e s t e r ( s e r i a l No, 1075).

    The specimens were superheated 2 t o 3 ° C . Spare specimens aged i n a i r

    were impact t e s t e d on t h e Baldwin machine; t h e r e s u l t s were i d e n t i c a l

    t o those obtained on t h e Hichle t e s t e r a t t h e Uattel-le Memorial I n s t i t u t e .

    Tensi le Testing

    A c e r t i f i e d Baldwin Lima Hamilton Universal t e n s i l e t e s t i n g machine

    was used i n making t e n s i l e measurements of a i r -aged specimens. The ten-

    s i l e t e s t e r was equipped w i t h a pacing device f o r t h e measurement and

    control. o f Lhe s t r a i n r a t e a t 0.05 i.n./inr.

    aged condi t ion were t e n s i l e t e s t e d a t 5 L , O o C , and one specimen of each

    aged condi t ion was t e s t e d a t room temperature.

    imens aged for 4000 h r a t 870°C were t e n s i l e t e s t e d a t 1080°C i n an e f f o r t t o sirnul a t e r een t ry heating.

    Three specimens of each

    I n addi t ion, t h ree spec-

    DISCUSSION OF RESULTS

    Impact Tests

    I n i t i a l l y , it should be understood t h a t t h e uninstrumented- Charpy V-notch impact t e s t possesses many shortcomings. numerical information t h a t can be used d i r e c t l y i n design cal.cu1 a t ions ,

    t h e s t r e s s d i s t r i b u t i o n during f r a c t u r e i s unknown, t he resisLance of

    the mater ia l t o crack i n i t i a t i o n and propagation cannot be obtained, and conditions of the t e s t do not adequately r e f l e c t ac txa l se rv ice condi- t i o n s .

    It does not provid-e

    I n t h i s s tudy the (notched) impact t e s t was used t o determine

  • 7

    r e l a t i v e changes i n t h e toughness 3f L-605 microstructures t h a t r e s u l t e d from thermal treatments which w i Z i be encountered i n se rv i ce and which

    a r e known t o cause a l l o y embrit t lement. These r e s u l t s coupled wi th ca l -

    cu la t ions of r e e n t r y v e l o c i t i e s and impact forces assoc ia ted w i t h reent ry

    and launch pad abor t s w i l l hopefully determine the s e r v i c e a b i l i t y of

    L-605 under impact loads. In addi t ion, t h e notched specimen geometry

    may simulate notches of t h e type encountered i n welds and regions of high stress concentrat ion.

    The Charpy V-notch impact t e s t i s a severe mechanical t e s t . An a l l o y withstanding a Charpy t e s t without exhib i t ing much l o w energy

    cleavage has an exce l l en t chance of withstanding a cleavage f r a c t u r e i n

    se rv i ce a t t h e t e s t temperature. When t h e maximum f r a c t u r e toughness is

    g r e a t e r than nominally 100 f't-lb ( a t LOO$ t e a r ) , it i s considered suf - f i c i e n t l y high t o guarantee aga ins t f a i l u r e by low energy t e a r , a t l e a s t

    i n medium-strength ma te r i a l s . Conversely, when t h e fYactxre toughness

    is low ( 5 t o 2 0 f t - l b ) and t h e f r a c t u r e i s p r i n c i p a l l y by cleavage o r

    is in te rgranular , t h e a l l o y i s very suscept ib le t o b r i t t l e f a i l u r e .

    Aged. at 870" C

    %ne f r a c t u r e toughness of 21-695 aged i n air a t 870°C genera l ly decreased with aging time at all t e s t temperatures. decrease occurred a f t e r aging f o r 50 h r .

    observed after the 100-hy aging t rea tment , but thereaf te r . t h e toughness

    continued t o decrease f o r aging times t o ~+/to1X1 hr. This behavior i s

    i l l u s t r a t e d i n Fig. 2. For specimens impact t e s t e d a t 42'?*C, a 100% f ibrous f r a c t u r e was obtained f o r t h e solution-annealed condi t ion, while subsequent aging t reatments r e s u l t e d i n s l i g h t cleavage, gross i-nter- g ranular f r a c t u r e s , and a smll increase i n g ra in s i ze .

    Lreatments , f o r example, r e s u l t e d i n about 2076 cleavage ( t ransgranular t e a r without deformation) , while after the lOO-hr aging t reatment , cleav- age f r a c t u r e s were very scarce and in t e rg ranu la r f r a c t u r e s were obtained. Aging t i m e s longer than 100 hr r e s u l t e d i n t o t a l in te rgranular f a i l u r e s . Hardness behavior (Fig. 3) and l a t e r a l expansion f u r t h e r i nd ica t e a l l o y embrittlement and loss of toughness w i t h aging t i m e .

    The greatest,

    A recovery i n toughness was

    The 50-hr aging

  • 8

    ORNL-OWG 70-2461

    250

    240

    230

    220

    c

    '7 0 - D - + .I- v

    & 60 (r W z W

    $ 5 0 3 t- 0 Q [L LL.

    4c

    3c

    2c

    4 (

    C

    +- -4

    ......... __ 1 -I- + 4' . . . . . . .

    1 ' :

    HT-1230°C FOR 0.25 hf

    @ @

    I I I 100 200 300 4 00 5 00 so0 700 800

    IMPACT TEST TEMPERATURE ("C)

    Fig. 2. Influence of Test, Temperature and Aging Time i n A i r a t 870°C on t h e Fracture Toughness of L-605.

  • 340

    330

    $ 320 z 0 LT

    3 310 z b- 0 Q

    2 0 2 a (5 290

    300

    0 (2-3)

    0 500 1000 1500 2000 2500 3000 3500 4000 AGING TIME (hr)

    Fig. 3 . Effec t of Aging Time a t 870°C on t h e Hardness of L-405.

    Typical mic ros t ruc tu ra l changes are presented i n Fig. 4. The

    s o l u t ion-annealed microstructure i s e s s e n t i a l l y a single-phase matrix wi th s c a t t e r e d heterogeneous carbide d ispers ions , probably t h e M G C type.

    Transgranular t e a r wi th considerable deformation w a s observed. This

    condi t ion i s t y p i c a l of a ma te r i a l wi th high f r a c t u r e toughness. Specimens aged a t 870°C f o r 50 hr f r ac tu red in t e rg ranu la r ly wi th

    considerable deformation; however, s l i g h t t ransgranular tear was a l s o observed. This behavior i s a t t r i b u t e d i n p a r t t o t h e p r e c i p i t a t i o n of an i r r e g u l a r , blocky carbide i n t h e g ra in matrices and m almost con-

    t inuous sphero ida l carbide i n t h e g ra in boundaries, as shown i n Fig. 5. The r e s u l t s of Yukawa and Sato'' (at 700 and 800°C) ind ica t e t h a t t h e

    I I N . Yukawa and K. Sato, "The c o r r e l a t i o n Between Microstructure and S t r e s s Rupture Proper t ies of a Co-Cr-ITi-W (13s-25) Alloy," Japan I n s t . Metals - 9 9 (Supplement) (1968).

    Trans . -

  • 10

    Photcr 98586

    50

    - 1c

    In - ? 0

    W

    500

    4000

    INTER109 SECTIONS FRKTURE SECTIONS OXIDIZED SURFACES

    Fig. I+. Microstructural Changes i n L-605 Aged in A i r a t 870°C and Impact Teslxd at 315°C. Etchant : 100 ml H20 i- 40 ml CF13COOH + L+O ml HC1 + 15 ml lI2SO4 + 25 e; FeCI.3. 500X. Reduced 16.5%.

  • Fig. 5. L-605 Aged for 50 h r a t 870°C i n A i r and Impact Tested a t 315°C. + 25 g FeC13. 2OCOX.

    Etchant: l C 0 ml H20 + A0 ml- CH3COOH f 40 m l HC1 f 15 m l HzSO,:

    bl-ocky carbide is of t h e M23C6 type, which i n i t i a l l y p r e c i p i t a t e s i n t h e grarin boundaries and subsequently wi th in t h e g ra ins . More important,

    however, i s t h a t t h e present s tud ie s , conducted a t a s l i g h t l y g r e a t e r

    temperature ( 8 7 O o C ) , have shown t h a t a cobal t - tungsten Laves phase a l s o

    p r e c i p i t a t e d (discont inuously) near t h e g r a i n boundaries during the

    50-hr aging t reatment and i n p a r t i s responsible for t h e in t e rg ranu la r f a i l u r e s and loss of toughness. These r e s u l t s are i l l u s t r a t e d i n Figs. 5 and 6. t h e i n i t i a l p r e c i p i t a t i o n of t h e Laves phase adjacent t o t h e grain boundaries.

    The mic ros tmc tu re i l l u s t r a t i n g t h e 50-hr age i n F i g . 6 shows

    &ing for lof) h r r e su l t ed i n f u r t h e r d i s s o l u t i o n o r t ransformation of the g r a i n boundary sphero ida l carbide t o a finer carbide d i spe r s ion

  • 3.2

    PHOTO 97101

    F3.g. 6. Electron Micrographs Illustrating t h e Aging Behavior o f 1;-605 at 870°C. ( c ) Aged 4000 h r , 5000X.

    ( a > Aged 50 hr, SOOOX. (b) Aged 500 hr, 5000x. (d) Aged 4000 h r , 12,500X.

  • 13

    i n t h e matr ix . Grain boundaries and adjacent areas , however, contained

    an increased amount of Laves phase. YUkawa,12 Jenkins,13 and Wlodek14 showed t h a t blocky M ~ ~ C F , transforms t o MgC and t h a t a f t e r 100 h r a t

    temperatures above 800cC, t h e Laves phase, (Co, N i ) , ( C r , W ) , p r e c i p i t a t e s near t h e gra in boundaries a s elongated p l a t e l e t s and subsequently as

    i n t e rg ranu la r p a r t i c l e s .

    ment w i t h t h e r e s u l t s of t h e previous inves t iga t ions . For s impl ic i ty ,

    t h e Laves phase w i l l be designated C02W.

    The results of t h e present s tudy a r e i n agree-

    Continued aging f o r times t o 4000 h r at 870°C merely r e s u l t e d i n a f i n e d ispers ion of t he Mc;C carbide and an increased amount of CozW, which

    p r e c i p i t a t e d i n the g ra in boundaries, on t w i n boundaries, and probably on s tacking f a u l t s . A t an intermediate aging time of 500 h r , t h e behavior

    i s i l l u s t r a t e d i n Fig. 6. The Laves phase thickened and coarsened with

    t i m e and depleted t h e m t r i x of some components. For example, chemical ana lys i s showed t h a t t h e tungsten concentrat ion i n t h e matrix decreased

    from 14.81 t o 7.46 w t $ during 1000 Inr at 870°C. f r a c t u r e toughness and apparent loss of d u c t i l i t y a r e a t t r i b u t e d pr in- c i p a l l y to t h e p r e c i p i t a t i o n of t h e Laves phase i n the gra in boundaries.

    Tine d r a s t i c loss of

    Aged a t 760°C

    The f r a c t u r e toughness r e s u l t i n g from aging i n argon a t 760°C i s

    shown i n Fig. '7 f o r an impact t e s t temperature of 316°C. The g r e a t e s t

    l o s s of f r a c t u r e toughness due t o aging a t 760°C again occurred during the i n i t i a l 50 hr . The 100-hr age, however, did not r e s u l t i n a recovery

    a f f r a c t u r e toughness. Instead, t h e toughness gradual ly decreased wi th

    aging time at a r a t e less than f o r specimens aged a t 8'70°C. i s a t t r i b u t e d t o t h e slower p r e c i p i t a t i o n r a t e of t h e embr i t t l i ng laves

    phase a t 760" C.

    This behavior

    Metallographic examination supported the contention t h a t

    - I%. Yukawa and K. S a b , "The Corre la t ion Between f i c r o s t r u e t u r e

    and Stress Rqtu re Proper t ies of a Co-Cr-Ni-W (HS-25) Alloy, " Trans. Japan Ins t . Metals 2, -- (Supplement) !1968) ~

    I3E. 3. Jenkins, Embrittlement of Hsynes Alloy No. 25 During Brazing, Report PJo . 817-13'3(7, Haynes S t e l l i t e Company, Kcikomo, Indiana, (May 21, 1958).

    "S. T. Wlodek, Einbrittlement of a Co-Cr-W ( L - 4 0 5 ) Alloy, R-61-FPD-538 (Dee. 1, ~ 3 h l ) .

  • 1 4

    ORNL- DWG 70- 2462

    2 5 40* 2 5 lo3 2 5 to4 AGING TIME Ihr)

    Fig. 7. Effect of Time on t h e Fracture Toughness of T,-605 Aged in Argon a t 760°C and Tested a t 3 1 6 ° C .

    t h e r e was v a s t l y l e s s k v e s phase i n t h e g ra in boundarks of specimens

    aged a t ’760°C f o r equal periods mid t h a t f o r -times t o 500 h r consi.d.erably more cleavage f a l l u r e was present. A comparison of Fig, 8 w i . t h Fig. L

    w i l l i l l u s t r a t e t hese observations. In add i t ion , it i s seen t h a t aging i.n sir oxidizes t h e surface of L-605 p r i n c i p a l l y a t t h e gr-ain bo-undaries to depths t h a t increase with t i m e ; however, these e f f e c t s are not considered se r ious i n terms of impact r e s h t a n c e -

    A shortage of specimens prevented agi.ng treatments longer than 1000 hr

    a t 769°C. However, t h e necessi.ty o f huw-ing longer term behavior r e s u l t e d i n t h e extyapolation shown i n Fig. ‘7. I-t i s app%i-ent t h a t t h e f m c t u r e

    toughness decreased a t a rapid rake , and thal; specimens aged f o r 448 h r (Fig. 8) exhibited. t o t a l i n t e rg ranu la r frac-Lure. it was concluded., -there- f o r e , that L-605 aged for g r e a t e r periods than 11100 h r a t ‘760°C wou1.d be b r i t t l e , be sens i t i ve t o impac-t loading, and frackure a t impact energies be-tween 20 and 30 f t - l b .

  • 0

    Lo

    9

    W

    W

    0

    3

    cn Z

    t- 0

    W

    cn

    E! w QI 3 c- 0 6

    LL LL

    cn z

    0

    e

    0

    W

    cn 11c

    LL W

    I- 0

    z

  • 16

    Aged below 760°C -- The e f f e c t of aging temperature on the f r a c t u r e toughness of' L-605

    i s shown i n Fig , 9. A t temperatures gene ra l ly above 7 O O 0 C , aging i n a i r

    o r an i n e r t atmosphere f o r 500 h r or longer w i l l cause ernbrittlement.

    aging temperatures of 650°C OT lower, t h e f r a c t u r e toughness (240 f t - l b )

    f o r an aging time of 448 h r i s t h e same as f o r t h e solution-annealed

    condition.

    Yukawa and Satol* ind ica t e s t h a t ti1ous.xnd.s o f hours a r e necessary for.

    embr i t t l i ng phase t o p r e c i p i t a t e a t t h e s e lm temperatures The f r a c t u r e

    mode of' specimens aged at, t h e l m e r temperatures i s t ransgranular (high energy) t e a r wi th considerable deforimtion.. A t y p i c a l high-energy t e a r

    fracture shown i n Fig. 1.0 was obtained. a f t e r aging at 650°C and testing

    a t 316°C.

    A t

    The time-tempe7nati~re-transfoz.-f~tioil diagrani derived by

    Reentry Heating Effects

    Reentry heat ing caused by t h e e a r t h ' s atmosphere was s i m u l a k d by

    heat ing aged specimens t o 1.1 . lO"C f o r 200 see.

    f o r LO00 h r at 870°C were impact t e s t e d a t 1080°C. Nine specimens showed f r a c t u r e toughnesses i n the range 18.0 t o 20.5 f t - l b , and one he ld a-t 1110°C f o r 400 sec showed 21.0 f t - l b . These values are about whst would

    be expected by extrapolahion of t h e cume f o r 4000 h r aging i n E'ig. 2 (p. 9 ) . Thus, r een t ry heat ing tines of 200 t o 400 sec are apparently not s u f f i -

    c i e n t l y long for toughness recovery.

    For example, spechens aged

    Tensile Tests

    The s t r a i n r a t e s associated wi th normal t e n s i l e t e s t s a r e many times

    l e s s than those encountered during jmpact loading. However, t h e conclu-

    si.ons regarding t h e ernbrittlement of 1,-605 due t o aging are t h e sane as those obtained f r o m t h e impact tests. The L-605 a.3.7.oy-, over the w i d e range of aging conditions s tudied, r e t a i n e d s u f f i c i e n t t e n s i l e s t r eng th

    and ductl1it.y for many conventional ( tensi . le) applicatj .ons a t temperatures above 540" C.

    The e f f e c t o f aging t i m e and temperature on the -'ierisile behavior ol" L-605 i s i3_lust,rated i n P'igs. II. and 1 2 . The increase i n y i e l d and u l t i - mate t e n s i l e s t r eng th occurring d-iiring t h e i n i t i a l 500 h r of aging a t

  • E7

    ORNL-DWG 70-2463 280 -

    Fig. 9. Effec t o f Aging Temperature on t h e Fracture Toughness of L A 0 5 Aged i n Argon f o r U+8 hr and Tested a t 316°C.

    Fig. 1Q. Frac ture Mode of L-605 Aged i n Argon a t 650°C for 448 h r and Impact Tested a t 3 1 6 ° C . HGL + 15 ml H2SO4 i- 40 m l HNO3 + 25 g FeC13, e lec t ropol i shed . Reduced 15%.

    Etchant: 100 ml H 2 0 + 40 ml CH3COOH + 40 ml 500X.

  • ORNL- DIVG 70- 2464 ~ . . . ~ . . . .. .. .. ....

    ULTIMATE TENSILE STRENGTH

    1

    ....._I (x1031

    ~ ....

    ULTIMATE TENSILE S1-HENGTH

    TEMPERA1 URE ~~

    ~

    YIELD ! j T R E N G T t i - - ( 0 . 2 70 OFFSET)

    -

    0 1000 2000 3000 4000

    ( b ) TESTED AT 540°C

    AGING TIME (hrl

    Fig. 11. The Effect of Aging Time and Temperature an the Tensi le Propert ies of L-505 Tested a t Room Temperature and a t 540°C.

  • ORNL- OWG 70- 2465

    1

    I I 700 800

    I 9 00 4000 600

    A G I N G TEMPERATURE ("C)

    ( U ) TESTED AT ROOM TEMPERATURE

    -.

    I I I 800 900 1000 600 700

    AGING TEMPERATURE ('C)

    ( b ) TESTED AT 540T

    Fig. 1 2 . The Effect of Aging Temperature on the Yield Strength (0.2% Offset) of L-505 Tested at Room Temperature and a t 540°C.

  • 20

    8 7 0 ° C i s a t t r i b u t e d to p r e c i p i t a t i o n of carbides ( M 2 j C b and M6C) Between 500 and 4030 h r t h e raves phase (Co2W) coarsened and t h e

    increased (overaging) i n both the gra in boundaries and matr ices ,

    and Co2W. quan t i ty

    r e s u l t ing

    i n a decrease i n t h e y i e l d a.nd ul t imate t e n s i l e streng-Lhs a t both room temperature and 540°C.

    deplet ion of tungsten from t h e matrix.

    of both t h e Laves phase (Co2W) and carbides (MZ3C6 and M b C ) also r e s u l t e d i n severe l o s s of t e n s i l e d u c t i l i t y , as i l l -ustra , ted i.n Fig. 13.

    This l o s s of s t r eng th i s a t t r i b u t e d i n p a r t t o t h e Continued p r e c i p i t a t i o n and groWth

    Tle ul t imate t e n s i l e s t r eng th decreased during the i n i t i a l 500 hr

    as a r e s u l t of aging at 815 and 7 6 0 ° C (Fig. 1.1). :€owever, t h e yi.eld

    s t r eng th (0.2% o f f s e t ) increased s l igh t , ly with a loss of t e n s i l e d l l c t i l i t y

    (FTg- 13).

    both y i e l d and ul t imate t ens5 le s t r eng ths and a f u r t h e r loss of d u c t i l i t y .

    Tfle following is offered as an explanation f o r tinis behavior.

    Aging f o r 1.000 h r at 760 a,nd 815°C r e s u l t e d i n an increase i n

    Aging at 7 6 0 ° C f o r 500 h r promoted p r e c i p i t a t i o n of b C 3 , M 2 3 C 6 ,

    MbC, a-C6,W, p-Co3W, and CozW (ref. YI), where t h e underlined phases a r e metastable. 1ni.tial.ly the C'L-CO3W phase 7.s coherent wi th t h e matrj.x, but

    a f te r lorig aging times i-t transforms -Lo t h e noncoherent i3-Co3W phase. l5 Aging times longer than 1000 h r a t 760°C: r e s u l t e d i n g r e a t e r ul t imate tensi-le and y i e l d s t r eng ths because a t 'chis lcxw temperature t h e aging

    r eac t ions are still incomplete. Microskructures i l l u s t r a t i n g t h e e f f e c t

    of aging t i m e a t 760°C are shown i n Fig. 14. r e s u l t e d i n g r e a t e r p r e c i p i t a t i o n a.nd embrittlement , a s e-xhibited by t h e in t e rg ranu la r f r a c t u r e s . Aging a t 815" C v K L 1 probably r e s u l t i n Lhe same

    behavior as exhibi ted af; 7 6 0 ° C bu t a t greater rtites. A t 8 7 0 ° C not only do the aging r e a c t j ons and hence embrittlement

    Increased aging time merely

    O c c u Y at g r e a t e r r a t e s (than at 815 and 7 4 O " C ) , but only M 2 3 C 6 , M,C, and C02W are found i n t h e microstructure.'5-17 The microstmctures of

    1 5 N . Yukawa and K. Sato, "The Correlation Between Micros'Cructure and S t r e s s Ruptirre Propert ies of a Co-Cr-Ni-W (HS-25) Alloy," Trans. Japan Ins t . Metals - 9, (Supplement ) (1968). -

    l6E. E. Jenkins ~ Embrittlement of Zaynes Alloy No. 25 Durin-, Report No. 817-1390, Haynes S t e l l i t e Company, Kokomo, Indiana ( k y 21, 1958).

    I 7 S e T. Wlodek, Embrittlement of a Co-Cr-W (L-605) Alloy, R-61-FPD-538 -- (kc, 1, 1.961).

  • 21

    Fig. l3. The Effect of Aging Time and Temperature on the Tensile D u c t i l i t y of L-fLIS Tested at Room Temperature and at 540°C.

  • 22

    0

    0)

    m

    cx) 0)

    0

    42

    0

    J3 c

    ..

    .%.

    .

  • 23

    L-605 aged f o r 30(3 h r a t 870, 815, and 760°C a r e compared i n Fig. 15. It i s qu i t e evident t h a t t h e morphology of t h e p r i n c i p a l phase changes

    with temperature.

    Specimens aged at 870°C for 4000 hr were heated to 1110°C f o r 200 sec

    t o s imulate r e e n t r y heat ing. Results of subsequent t e n s i l e t e s t s at 1080°C showed no recovery of d u c t i l i t y .

    promote d u c t i l i t y recovery i n 200 sec.

    The sol-utioning r a t e i s too s luggish t o

    COP?CLUS IONS

    Prolonged exposure of L-605 i n vacuum, argon, o r a i r a t temperatures

    ranging from 7c)O t o '300°C w i l l r e s u l t i n severe a l l o y embrittlement.

    maximum rate of embrittlement occurs a t 870 t o 900°C and always within t h e i n i t i a l 50 t o 100 hr.

    much less, but maxi.mum loss of toughness occurs wi th in t h e i n i t i a l 590 hr .

    The

    At lower temperatures t h e embr i t t l i ng rate i s

    The p r i n c i p a l ernbri t t l ing r eac t ion i s t h e p r e c i p i t a t i o n of t h e Laves

    phase, C02W. However, a t lower aging temperatures of 650 t o P;OO"C an added inducement t o embrittlement may w e l l be t h e p r e c i p i t a t i o n of carbides (MZ3C6, M6C, and M7C3), a-Co3W, and p-Co3W.

    of toughness occurred during the i n i t i a l 50 hr. f o r longer aging times w a s only s l i g h t l y l e s s than f o r specimens aged a t 870°C.

    subsequent t o an aging exposure a t 750 to 900°C for periods g rea t e r than

    5 0 hr i s severe ly reduced because f r a c t u r e can occur at luw impact energies .

    At '760°C t h e g r e a t e s t loss The loss of toughness

    Therefore, t h e a b i l i t y of E605 t o s u s t a i n impact without f a i l u r e

    The r e s u l t s of t e n s i l e tests a t room temperature and 540°C showed

    t h a t aged L-605 su f fe red a severe loss of t e n s i l e d u c t i l i t y .

    of' aged material were t o t a l l y in t e rg ranu la r because of g ra in boundary pre-

    c i p i t a t i o n . At lower aging temperatures, s u f f i c i e n t t e n s i l e d u c t i l i t y was

    r e t a ined a t 5L+O0C f o r app l i ca t ion a t and above t h i s temperature. However,

    severe loss of d u c t i l i t y was exhib i ted a t room temperature. A b r i e f rehea t ing a t l l l O " C , a s might be expected on r een t ry , did not r e s t o r e duet i Lity.

    A11 f r ac tu res

  • Fig. 15. Tensile Fractures and Kicroszructures of L-605 Aged for 533 hr and Tested at 540°C. ( a ) A& 2% 760"C, (3) aged st 815"C, end ( e ! aged a-t 870°C. Potentiostetically Etched. 13C:OX.

  • 25

    OmL-TM-3734

    INTERNAL DISTRIBUTION (?r+ copies)

    (3) Cent ra l Research Library ORNL - Y - 1 2 Technical Library

    Document Reference Sect ion ( 2 0 ) Laboratory Records Department

    Laboratory Records, OWL RC ORNL Patent Off ice G. M. Adamson, Jr. E. E. Bloom R. W. Carpenter D. A. Canonico F. L. Culler

  • 26

    AEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY, Washington, E 20545

    E. E. Hoffman E. E. Kinter M. Shaw J. M. Simmons E. E. S i n c l a i r A. Van Echo C. E. Weber

    AEC DIVISION OF SPACE NUCLEAR SYSTEMS, Washington, DC 20545

    R. E. Anderson 3. T, Carpentel, G. P. Dix D. S. Gabriel N . Goldenberg H. J a f f e W. K. Kern A. P. Litman G. A. Newby W . Remini F. Schulman F. C. Schwenk C. 0. Tarr

    AEC-RDT SITE REPRESENTATIVES, Oak Ridge National. Laboratory, P. 0. Rox X, Oak Ri.dge, TN 37830

    D. F. Cope D. C. Davis, Jr. C. L. Matthews

    AEC SAVANNAH RIVER OPERATIONS OFFICE, P. 0. Box A , Aiken, SC 29801

    F. E. Kruesi

    A I R FORCE MATERIALS LABOWATDHY, Wright-Patterson A i r Force Base, OH 45433

    L. N. Iijelm I. Per]-mutter

    ALVAC M.ET,clLS COMFAN'Y, P. 0. Box 759, Monroe, NC 28110

    W. M. l 'homs

    A I R FORCE SYSTEMS COMMAND (SCIZM), Andrews A i r Force Base, MD 29331

    G. R. Crane

    A I R FORCE WEAPONS LABOXATORY, Kir t land A i r Force Base, Albu.querque, NM 87117

    A. Noonan M. MacWilliams G. I,. Zi.gler

  • 27

    ARGON_RTE NATIONAL LABORATORY, 9700 S. Cass A v e n u e , krgonne, I L 60439 P. G. S h e w m o n

    ATOMICS INTERNATIONAL, P. 0. Box 309, Canoga Park, CA 9U% H. Pearlman

    BATTELLE MEMORIAL I N S T I T U T E , 505 K i n g A v e n u e , C o l u n i b u s , OH 43201 Defense M a t e r i a l s Information C e n t e r W. Pardue

    OR 97321 H a r u o Kato

    BUREAU OF MINES, ALBANY METALLURGY RESEARCH CENTER, P. 0. Box 70, A l b a n y ,

    CAHOT CORPORATION, STELLITE D I V I S I O N , Kokomo, IN 46901 T. K. R o c h e S. T. Wlodek

    DONALD W. DOUGLAS LABORATORIES, 2955 George Washington Way, R i c h l a n d , WA 99352

    D. Watrous

    P. 0. Box 8661, Philadelphia, PA 191Q1

    J . A. G a r a t e R. E . Schafer

    GEKERAL E L E C T R I C COMPANY, SPACE D I V I S I O N , I S O T O P E POWER SYSTEMS OPERATIONS,

    GEORGE C. MARSHALL SPACE S L I G H T CENTF,R, H u n t s v i l l e , A L 35812 W. Brooksbank R. J. S c h w i n g h a m e r

    G'ITL;F GENERAL ATOMIC, P. 0. B o x Gcj8, San D i e g o , CA 32112 It. B. Elsner L. Y a n g

    HUBTINGTON ALLOYS, H u n t i n g t o n , WV 25720

    J. M. Martin

    Timonium, MD 210'33

    G. Linkous J. McGraw N. Strazza

    I S O T O P E S , I N C . , NUCIEAR SYSTEMS D I V I S I O N , 110 W. T i m o n i u m R o a d ,

    JET PROPTJISION LABORATORY, 4800 O a k Grove Drive, Pasadena, CA 31103

    R. G. Ivanoff JOHNS HOPKINS UI!TFJERSITY, Department of Mechanics, B a l t i m o r e , MD 21218

    K. Fischell

    52-31, B l d g . 2W+, 3251 Hanover S t r ee t , Palo A l t o , CA 94304 T. E. Tietz

    LOCKHEED MISSILES AND SPACE COMPAWY, Lockheed Palo A l t o R e s e a r c h Laboratory,

  • 1 28

    LOS ALAMOS SCIENTIFIC LABORATORY, P. 0. Box 1663, I;os Alamos, NM 87544

    R. D. Baker K. Cooper T, Keenaii R. Mulford D. Pavone

    MONSANTO RESEARCH CORPORATION, MOUND LABORATORY, I). 0. Box 32, Miamisburg, OH 45342

    V. L, Avona W. T. Cave R. K. F l i t c r a f t E, W, Johnson J. E. S e l l e

    NASA, AMES RESFARCH CENTER, Moffett F i e l d , CA 94035

    H. Nelson A. Wilbur

    NASA, GODDRKD SPACE GLIGHT CENTER, Greenbelt , ME 20770

    J. Epstein

    NASA HFADQUARTERS , CODE RN, 600 Independence Avenue Washington, IK: 20545 G. Deutsch T. €3, Kerr

    NASA, LANGZZY RESEUCH CENTER, Langley S t a t i o n , Hampton, VA 2336.5 R. Brouns

    NASA, LENIS RESEARCH CENTER, 21000 Brookpart Road, Cleveland, OH 44135

    G. M. Ault R. Davis N. T. Saunders H. C. Slone

    NASA, MANNED SPACECRAFT CENTER, Mail Code E-P5, Houston, TX 77058 T. W. Redding

    NAVAL A I R SYSTEM COMMAND (AIR-52031B), Washington, DC 20360

    I. Machliri

    NAVAL UNDERSEA !&SEARCH AND DEVELOPMENT CENTER, Technical Library, Code 133, San Diego, CA 92132 Corrmnder

    NAVY FACILITIES ENGINEERING COMMAND, Department o f t h e Navy, Code 042, Washington, E 20390

    M. D. S t a n

  • NAVY SPACE SYSTEMS ACTIVITY, A i r Force Unit Post Off ice , Los Angeles, CA 90045 ATTN: R. V. Silverman, Code 40

    Commading Off icer

    PACIFIC NORTHWEST LABORATORY, P. 0. Box 550, Richland, WA 99352

    Direct o r

    RADIO CORPORATI071J OF AEJlERICA, AEC, E l ec t ron ic Components and Devices, 415 S. 5th S t r e e t , Harr ison, NJ 07029 M. J. Hegarty

    SATJDIA CORPORATION, P. 0. Box 5800, Albuquerque, NM 77115

    J. R. Holland J. McDonald P. D. O'Brien

    THF,RMO ELEXTP.ON CORPORATION, G5 F i r s t Avenue, Waltham, MA 02154

    L. Benker

    TFN SYSTEMS, One Space Park, Redondo Beach, CA 90278 J. Blurnenthal S. E. Bramer A. Hoffman I. Jones J. Ogren

    UNION C m I D E CORPORATION, 270 Park Avenue, New York, NY 10017 T. A. Nemzek J. A. Swartout

    WESTINGHOUSE ASTRONUCLFSLR M O R A T O R Y , P. 0. Box 10864, P i t t sburgh , PA 15231 W. G. Parker

    IJSAEC OAK R I I X E OPERATIONS, P. 0. Box E, Oak Ridge, TN 37830 R. J. Hart Research and Technical Support

    USAEC TECHNICAL INFORMATION CENTER, P. 0, Box 62, Oak R i d g e , TN 37830

    (a