EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

Embed Size (px)

Citation preview

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    1/42

    Time-Frequency analysis of

    biophysical time series

    Arnaud Delorme

    SCCN, UCSD

    CERCO, CNRS

    Nov 18th 2010, 12th EEGLAB workshop

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    2/42

    Frequency analysis

    1 second

    4-7 Hz Theta

    9-11 Hz Alpha

    18-21 Hz Beta

    30-60 Hz Gamma

    0.5-2 Hz Delta

    synchronicity of cellexcitation determines

    amplitude and rhythmof the EEG signal

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    3/42

    Frequency analysis

    Delta

    Theta

    Alpha

    Beta

    Low Delta

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    4/42

    Stationary signals

    TimeTime

    Time Time

    Magn

    itude

    Magnitude

    Mag

    nitude

    Magnitude

    Slide courtesy of Petros Xanthopoulos, Univ. of Florida

    10 Hz2 Hz

    2+10+20 Hz20 Hz

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    5/42

    Stationary signal

    Time

    Magnitude

    Magnitude

    Frequency (Hz)

    2 Hz + 10 Hz + 20Hz

    Stationary

    By looking at the Power spectrum of the signal we can recognize three frequency

    Components (at 2,10,20Hz respectively).

    Power spectrum

    Slide courtesy of Petros Xanthopoulos, Univ. of Florida

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    6/42

    Figure, courtesy of Ravi Ramamoorthi & Wolberg

    Freq. decomp. Sum of freq.Time

    domain

    Time

    Frequency

    Forward

    transform

    Inverse

    transform

    Frequency

    domain

    du

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    7/42

    *

    Time

    EEGa

    mplitud

    e

    Sinusoid

    Gaussian

    Tapered

    sinusoid

    Performing Fourier

    transform by using

    a time movingwindow

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    8/42

    Spectral phase and amplitude

    Real

    Imaginary

    Real

    Imag.

    Fk(f,t)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    9/42

    Real

    Imag.

    Real

    Imaginary

    Spectral phase and amplitude

    Fk(f,t)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    10/42

    Discrete Fourrier Transform function

    function X = dft(x)

    [N,M] = size(x);

    n = 0:N-1;

    for k=n

    X(k+1) = exp(-j*2*pi*k*n/N)*x;end

    Loop on frequency

    Real part

    Cosine component

    Imaginary part

    Sine component

    Multiply with signal

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    11/42

    Average of squared absolute values

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    12/42

    Spectral power

    0 Hz 10 Hz 20 Hz 30 Hz 40 Hz 50 Hz

    Powe

    r(dB)

    Frequency (Hz)

    Average of squared amplitude

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    13/42

    Average of squared amplitudes

    Overlap 50%

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    14/42

    padding

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    15/42

    Spectrogram or ERSP

    0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

    5 Hz

    10 Hz

    20 Hz

    30 Hz

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    16/42

    Spectrogram or ERSP

    0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

    5 Hz

    10 Hz

    20 Hz

    30 Hz

    5 Hz

    10 Hz

    20 Hz

    30 Hz

    0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

    Average of

    squaredvalues

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    17/42

    Complex number

    Scaled to dB 10Log10(ERSP)

    Power spectrum and

    event-related spectral perturbation

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    18/42

    Absolute versus relative power

    Absolute = ERS

    Relative = ERSP (dB or %)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    19/42

    Difference between FFT and wavelets

    FFT Wavelet

    Frequency

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    20/42

    Wavelets factor

    Wavelet (0)= FFT Wavelet (1)

    1Hz

    2Hz

    4Hz

    6Hz

    8Hz

    10Hz

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    21/42

    Time-frequency resolution trade off

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    22/42

    FFT

    In between

    Pure wavelet

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    23/42

    The Uncertainty Principle

    A signal cannot be localizedarbitrarily well both in time/position and in frequency/

    momentum.There exists a lower bound tothe Heisenbergs product:

    tf 1/(4)

    f = 1Hz, t = 80 msec orf = 2Hz, t = 40 msec

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    24/42

    Modified wavelets

    Wavelet (0.8) Wavelet (0.5) Wavelet (0.2)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    25/42

    Inter trial coherence

    amplitude 0.5 phase 0

    amplitude 1 phase 90

    amplitude 0.25 phase 180

    COHERENCE = mean(phase vector)

    Norm 0.33

    POWER = mean(amplitudes2 )

    0.44 or 8.3 dB

    same time, different trials

    Trial1

    Tr

    ial2

    Trial3

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    26/42

    Slide courtesy of Stefan Debener

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    27/42

    Normalized

    (no amplitude information)

    Phase ITC

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    28/42

    Power and inter trial coherence

    Attend left-stim left Attend left-stim right

    dB

    ITC: trials synchronization

    5

    Difference

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    29/42

    Plot IC ERSP

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    30/42

    Mask IC ERSP

    0.01

    Pure green denotes

    non-significant points

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    31/42

    Plot IC ERSP

    Increase# freq bins

    padratio = 1 padratio = 2

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    32/42

    To visualize both low and high frequencies

    freqs = exp(linspace(log(1.5), log(100), 65));

    cycles = [ linspace(1, 8, 47) ones(1,18)*8 ];

    Cycles

    Frequencies

    1 2 3 4 5 6

    1 2 3 4 5 6

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    33/42

    Component time-frequency

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    34/42

    Cross-coherence amplitude and phase

    2 components, comparison on the same trials

    Coherence amplitude 1

    Phase coherence 0

    Coherence amplitude 1

    Phase coherence 90

    Coherence amplitude 1Phase coherence 180

    Trial1

    Trial2

    Trial3

    COHERENCE = mean(phase vector)Norm 0.33

    Phase 90 degree

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    35/42

    Only phase information component a

    Only phase information component b

    Phase coherence (default)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    36/42

    Cross-coherence amplitude

    and phase

    Animal picture Distractor picture

    Phase(

    degree)

    Amplitude(0-1)

    5 6

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    37/42

    Cortex

    Two EEG channels

    A

    Scalp channel coherence source confounds!

    BC

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    38/42

    Cortex

    CA B

    MANY EEG channels

    source dynamics!

    Independent EEG

    Components

    Separate out

    SynchronizationMeasure their

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    39/42

    Niquist frequency: Aliasing

    1 cycle

    e.g. 100 Hz sampled at 120 Hz

    Signal (100 Hz) Sampling (120 Hz)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    40/42

    Advanced

    time-frequency functions Tftopo(): allow visualizing time-frequency

    power distribution over the scalp

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    41/42

    Plot data spectrum using EEGLAB

    winsize, 256 (change FFT window length)

    nfft, 256 (change FFT padding)overlap, 128 (change window overlap)

  • 8/3/2019 EEGLAB2010 AD Nov18 Time Frequency Dec Om Positions

    42/42

    Exercise

    ALLStart EEGLAB, from the menu loadsample_data/eeglab_data_epochs_ica.set

    or your own data (epoch, reject noise if notdone already)

    NoviceFrom the GUI, Plot spectral decompositionwith 100% data and 50% overlap (overlap).Try reducing window length (winsize) andFFT length (nfft)

    IntermediateSame as novice but using a command line

    call to thepop_spectopo() function. Use GUIthen history to see a standard call (eegh).

    AdvancedSame as novice but using a command linecall to the spectopo() function.

    Overlap 50%

    Padding