55
EEE598: Final Project December 5, 2013 EEE598: Fall 2013 – Final Project Munaf Hussain Shaik (ASU ID: 1202751779) Alfonso Albason (ASU ID: 1206976273) Submission date: 12/05/2013

EEE598 Final Report v1

Embed Size (px)

Citation preview

Page 1: EEE598 Final Report v1

EEE598: Final ProjectDecember 5, 2013

EEE598: Fall 2013 – Final Project

Munaf Hussain Shaik (ASU ID: 1202751779)

Alfonso Albason (ASU ID: 1206976273)

Submission date: 12/05/2013

Page 2: EEE598 Final Report v1

1 Top-level architecture

Table of Contents1. Introduction.................................................................................................................................................4

2. Problem description....................................................................................................................................4

3. Top-level architecture.................................................................................................................................6

3.1 Filter choices...........................................................................................................................................63.1.1. High-pass filter................................................................................................................................6

3.1.2. Low-pass filter................................................................................................................................63.1.3. Notch filter......................................................................................................................................8

3.2 Bi-quad design........................................................................................................................................93.2.1. LPF..................................................................................................................................................9

3.2.2. HPF...............................................................................................................................................103.2.3. Notch filter....................................................................................................................................11

3.3 Z-domain analysis.................................................................................................................................124. Subsystem design and descriptions...........................................................................................................13

4.1 Amplifier...............................................................................................................................................134.1.1. Introduction...................................................................................................................................13

4.1.2. Design...........................................................................................................................................134.1.3. Schematics....................................................................................................................................13

4.1.4. Output waveforms – spec verification..........................................................................................144.2 Switch...................................................................................................................................................15

4.2.1. Introduction...................................................................................................................................154.2.2. Design...........................................................................................................................................15

4.2.3. Schematics....................................................................................................................................154.2.4. Output waveforms – spec verification..........................................................................................16

4.3 Digital blocks – gates, non-overlapping clock generator......................................................................174.3.1. Introduction...................................................................................................................................17

4.3.2. Design...........................................................................................................................................174.3.3. Schematics....................................................................................................................................17

4.3.4. Output waveforms – spec verification..........................................................................................194.4 High-pass filter – 2 kHz........................................................................................................................20

4.4.1. Introduction...................................................................................................................................204.4.2. Schematics....................................................................................................................................20

4.4.3. Output waveforms – spec verification..........................................................................................23

Page 3: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

2

4.5 Low-pass filter – 20 kHz.......................................................................................................................24

4.5.1. Introduction...................................................................................................................................244.5.2. Schematics....................................................................................................................................24

4.5.3. Output waveforms – spec verification..........................................................................................264.6 Notch filter – 32.99 kHz.......................................................................................................................27

4.6.1. Introduction...................................................................................................................................274.6.2. Schematics....................................................................................................................................27

4.6.3. Output waveforms – spec verification..........................................................................................305. System integration....................................................................................................................................31

5.1 Schematic of full filter..........................................................................................................................315.2 Results...................................................................................................................................................31

5.2.1. Filter gain......................................................................................................................................316. Performance..............................................................................................................................................33

6.1 Operation vs. supply.............................................................................................................................336.2 Layout area estimate.............................................................................................................................34

7. Conclusion................................................................................................................................................34

8. Appendix...................................................................................................................................................35

8.1 Appendix A: spectre Netlist..................................................................................................................358.2 Appendix B: References.......................................................................................................................41

List of FiguresFigure 1: Filter Transfer function..............................................................................................................................5

Figure 2: HPF Transfer function................................................................................................................................6

Figure 3: LPF Transfer function................................................................................................................................7

Figure 4: Notch filter Transfer function....................................................................................................................8

Figure 5: Bi-quad LPF implementation (2nd order)...................................................................................................9

Figure 6: Switched-cap implementation of LPF......................................................................................................10

Figure 7: Bi-quad HPF implementation (2nd order).................................................................................................10

Figure 8: Bi-quad notch filter implementation (2nd order).......................................................................................11

Figure 9: s- to Z-domain conversion.......................................................................................................................12

Figure 10: Amplifier schematic...............................................................................................................................13

Figure 11: Amplifier test bench & Iq......................................................................................................................13

Page 4: EEE598 Final Report v1

3 Top-level architecture

Figure 12: Amplifier gain vs. supply.......................................................................................................................14

Figure 13: Amplifier parameters vs. supply............................................................................................................14

Figure 14: T-gate switch schematic.........................................................................................................................15

Figure 15: T-gate switch test bench.........................................................................................................................16

Figure 16: Switch Ron simulation - Ron = 428 Ohms............................................................................................16

Figure 17: Non-overlapping clock generator schematic..........................................................................................17

Figure 18: Inverter schematic..................................................................................................................................18

Figure 19: NOR gate schematic...............................................................................................................................18

Figure 20: Non-overlapping clock generation.........................................................................................................19

Figure 21: Non-overlapping clocks - zoomed.........................................................................................................19

Figure 22: HPF continuous-time (CT) implementation...........................................................................................20

Figure 23: Non-optimized switch version of HPF...................................................................................................21

Figure 24: HPF implementation with optimized switch usage................................................................................22

Figure 25: HPF gain plot.........................................................................................................................................23

Figure 26: HPF implementation with non-optimized switches...............................................................................24

Figure 27: LPF implementation with optimized switch implementation................................................................25

Figure 28: LPF gain plot (@ 20kHz).......................................................................................................................26

Figure 29: Notch filter - CT implementation...........................................................................................................27

Figure 30: Notch filter implementation with non-optimized switches....................................................................28

Figure 31: Notch filter implementation with switch optimization..........................................................................29

Figure 32: Notch filter gain response......................................................................................................................30

Figure 33: Filter transfer characteristics..................................................................................................................31

Figure 34: Filter transfer characteristics shown on a linear frequency axis............................................................32

Figure 35: Filter transfer function vs. supply..........................................................................................................33

Figure 36: Sweep showing all required parameters vs. supply...............................................................................34

List of TablesTable 1: Project specifications...................................................................................................................................4

Page 5: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

4

1. IntroductionThe purpose of the project is to design, simulate and verify an audio-band filter. The application for such an

audio band filter can be found in voice communication systems such as cordless phones, mobile phones, Walkie-

talkies etc. The major purpose of the filter is to suppress non-audio frequencies – especially the carrier signal at

32.99 kHz.

The technology used for this project is tsmc35 which has transistors at a process node of 400nm. A crystal

oscillator of 3.6864 MHz is also assumed to be available. Also, it is assumed that a current reference of 5µA is

available along with a reference voltage at V DD

2.

The filter has been implemented using standard switched-capacitor topologies and cascade based design

methodology. It has been simulated in Cadence using SpectreRF (PSS, PAC).

2. Problem descriptionThe filter for the project has been designed according to the following specifications:

Table 1: Project specifications

Specification Value Units

Supply voltage 2.7 – 3.3 V

Supply current 4 mA

Passband 2 – 20 kHz

Passband ripple +/- 2 dB

Passband gain variation -2/3 dB

Low frequency rolloff 40 dB/dec

Carrier frequency 32.99 kHz

Page 6: EEE598 Final Report v1

5 Top-level architecture

We have chosen to implement the filter as 3 parts: High-pass filter (@ 2kHz), Low-pass filter (@ 20kHz) and a

notch filter (@ 32.99 kHz).

Page 7: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

6

The implemented transfer function has the following AC gain characteristics:

Figure 1: Filter Transfer function

All the filters have been implemented using standard Tow-Thomas bi-quad topology. This can be implemented

using switched-capacitor implementation using 2 amplifiers per 2nd order section. This project requires 4 such

sections (at least 8 amplifiers).

Page 8: EEE598 Final Report v1

7 Top-level architecture

3. Top-level architecture

3.1 Filter choices

3.1.1. High-pass filterThe low-pass filter at 2 kHz has been designed as a 2nd order Butterworth filter. The filter transfer function

(prototype) for maximally flat high-pass response is:

H HPF (s )= s2

s2+√2 ⋅s+1

The bode plots for the above transfer function is as follows:

Figure 2: HPF Transfer function

A Butterworth filter has been chosen as it gives a flat response and linear gain drop in stop band.

3.1.2. Low-pass filter

Page 9: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

8

The low-pass filter at 20 kHz has been designed as a 4th order Chebyshev filter. The filter transfer function

(prototype) for a fast transition band is:

H LPF (s )= 1.064s2+0.3508 ⋅s+1.064

⋅ 0.3563s2+0.8466 ⋅ s+0.3563

The bode plots for the above transfer function is as follows:

Figure 3: LPF Transfer function

A Chebyshev filter has been chosen as it gives a flat transition band. A flat transition band is important in this

case as this filter is adjacent to a notch filter at a frequency very close to the transition band.

Page 10: EEE598 Final Report v1

9 Top-level architecture

3.1.3. Notch filterThe notch filter at 32.99 kHz has been designed as a 2th order Butterworth filter. The filter transfer function

(prototype) is:

H Notch ( s)= s2+1s2+√2 ⋅s+1

The bode plots for the above transfer function is as follows:

Figure 4: Notch filter Transfer function

Care has been taken in the actual design to be able to put together all the filter blocks accounting for additional

attenuation from the other stages.

Page 11: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

10

3.2 Bi-quad designAll the bi-quad based filters can be converted for switched capacitor implementation by replacing R’s with

switch-capacitor. Also, the filters can be scaled to higher frequencies from prototype operation as follows:

F c=1

2 ⋅ π ⋅R ⋅C

The value of R is assumed to be 1 M Ω and F clk=3.6864 MHz, thus

CR=271.71 fF

3.2.1. LPF

Figure 5: Bi-quad LPF implementation (2nd order)

For the LPF, FC=20 kHz. Thus,

C= 12⋅ π ⋅1 M ⋅20 k

≈ 8 pF

CR=271.71 fF

Q ⋅R⇒CR

Q

Page 12: EEE598 Final Report v1

11 Top-level architecture

3.2.1.1. Switch-cap implementation of LPF

Figure 6: Switched-cap implementation of LPF

The number of switches has also been optimized by re-using switches with same clock phases and terminal

connections.

3.2.2. HPF

Page 13: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

12

Figure 7: Bi-quad HPF implementation (2nd order)

For the LPF, FC=2 kHz. Thus,

C= 12⋅ π ⋅1M ⋅2 k

≈ 80 pF

CR=271.71 fF

Q ⋅R⇒CR

Q

3.2.3. Notch filter

Page 14: EEE598 Final Report v1

13 Top-level architecture

Figure 8: Bi-quad notch filter implementation (2nd order)

For the LPF, FC=32.99 kHz. Thus,

C= 12⋅ π ⋅1M ⋅32.99 k

≈ 4.8 pF

CR=271.71 fF

Q ⋅R⇒CR

Q

The notch filter and HPF have also been implemented in switched capacitor form in a similar fashion as the LPF.

Page 15: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

14

3.3 Z-domain analysiss to Z conversion

Figure 9: s- to Z-domain conversion

Since the sampling frequency F s=3.6864 MHz is much greater than the highest frequency of interest

F c=32.99 kHz, the system is oversampled at OSR=111.743.

1s

→CR

C⋅ z−1

1−z−1

−1s

→−CR

C⋅ 1

1−z−1

Page 16: EEE598 Final Report v1

15 Top-level architecture

4. Subsystem design and descriptions

4.1 Amplifier

4.1.1. IntroductionThe amplifier for the current design/application has to be capable of driving a 1 M Ω resistor or a capacitor of

value CR=271.71 fF. A folded cascode amplifier would be a good choice because the output impedance of the

amplifier is very high and would suit this application.

4.1.2. DesignThe amplifier designed for this project is a standard nMOS input folded-cascode amplifier enabled by a reference

current of 5 μA. The amplifier has a typical gain of 65 dB and GBW of about 80 MHz with a quiescent current of

approximately 300 μA.

4.1.3. Schematics

Figure 10: Amplifier schematic

Page 17: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

16

Figure 11: Amplifier test bench & Iq

4.1.4. Output waveforms – spec verification

Figure 12: Amplifier gain vs. supply

Page 18: EEE598 Final Report v1

17 Top-level architecture

Figure 13: Amplifier parameters vs. supply

4.2 Switch

4.2.1. IntroductionThe switch is the most important component of a Switch-cap circuit. A transmission gate switch has been chosen

for this design as it enables use with wide input signal range.

4.2.2. Design

A transmission gate switch has been designed with an RON<500 Ω. The nMOS is of size 5 μ

400 n and pMOS is of

size 10 μ400 n .

4.2.3. Schematics

Page 19: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

18

Figure 14: T-gate switch schematic

Figure 15: T-gate switch test bench

Page 20: EEE598 Final Report v1

19 Top-level architecture

4.2.4. Output waveforms – spec verification

Figure 16: Switch Ron simulation - Ron = 428 Ohms

Page 21: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

20

4.3 Digital blocks – gates, non-overlapping clock generator

4.3.1. IntroductionIn order for the switched capacitor circuit to function properly, we require non-overlapping clocks. These non-

overlapping clock phases are generated using cross-coupled NOR gates with delay.

4.3.2. DesignThe design is shown below.

4.3.3. Schematics

Figure 17: Non-overlapping clock generator schematic

Page 22: EEE598 Final Report v1

21 Top-level architecture

Figure 18: Inverter schematic

Figure 19: NOR gate schematic

Page 23: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

22

4.3.4. Output waveforms – spec verification

Figure 20: Non-overlapping clock generation

Figure 21: Non-overlapping clocks - zoomed

Page 24: EEE598 Final Report v1

23 Top-level architecture

4.4 High-pass filter – 2 kHz

4.4.1. IntroductionThe High-pass filter has been designed as a 2nd order Butterworth bi-quad. The design and parameter values have

been discussed above.

The output gain plot shows the gain to be −6dB because the output is available during one clock phase. Thus,

the average value of output is half of the actual output voltage.

4.4.2. SchematicsThe design makes use of standard capacitors and the MOS switches and amplifier discussed above.

4.4.2.1. Continuous-time implementation

Figure 22: HPF continuous-time (CT) implementation

Page 25: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

24

4.4.2.2. Switched-capacitor implementation

Figure 23: Non-optimized switch version of HPF

Page 26: EEE598 Final Report v1

25 Top-level architecture

Figure 24: HPF implementation with optimized switch usage

Page 27: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

26

4.4.3. Output waveforms – spec verification

Figure 25: HPF gain plot

The output gain plot shows the gain to be −6dB because the output is available during one clock phase. Thus,

the average value of output is half of the actual output voltage. This is taken care of by designing the subsequent

stages accordingly.

Page 28: EEE598 Final Report v1

27 Top-level architecture

4.5 Low-pass filter – 20 kHz

4.5.1. IntroductionThe High-pass filter has been designed as a 2nd order Butterworth bi-quad. The design and parameter values have

been discussed above.

The output gain plot shows the gain to be −6dB because the output is available during one clock phase. Thus,

the average value of output is half of the actual output voltage.

4.5.2. SchematicsThe design makes use of standard capacitors and the MOS switches and amplifier discussed above.

4.5.2.1. Switched-capacitor implementation

Figure 26: HPF implementation with non-optimized switches

Page 29: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

28

Figure 27: LPF implementation with optimized switch implementation

Page 30: EEE598 Final Report v1

29 Top-level architecture

4.5.3. Output waveforms – spec verification

Figure 28: LPF gain plot (@ 20kHz)

The peak at 20kHz is intentional as the notch filter has been designed to have a wide notch bandwidth and has an

attenuation of 10 dB at 20 kHz. The notch characteristics are shown in the subsequent section.

Page 31: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

30

4.6 Notch filter – 32.99 kHz

4.6.1. IntroductionThe High-pass filter has been designed as a 2nd order Butterworth bi-quad. The design and parameter values have

been discussed above.

The output gain plot shows the gain to be −6dB because the output is available during one clock phase. Thus,

the average value of output is half of the actual output voltage.

The design makes use of a CDS style last gain stage as it is important to have the output available during both

clock phases.

4.6.2. SchematicsThe design makes use of standard capacitors and the MOS switches and amplifier discussed above.

4.6.2.1. Continuous-time implementation

Figure 29: Notch filter - CT implementation

Page 32: EEE598 Final Report v1

31 Top-level architecture

4.6.2.2. Switched-capacitor implementation

Figure 30: Notch filter implementation with non-optimized switches

Page 33: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

32

Figure 31: Notch filter implementation with switch optimization

Page 34: EEE598 Final Report v1

33 Top-level architecture

4.6.3. Output waveforms – spec verification

Figure 32: Notch filter gain response

Page 35: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

34

5. System integration

5.1 Schematic of full filter

5.2 Results

5.2.1. Filter gain

Page 36: EEE598 Final Report v1

35 Top-level architecture

Figure 33: Filter transfer characteristics

Page 37: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

36

Figure 34: Filter transfer characteristics shown on a linear frequency axis

Page 38: EEE598 Final Report v1

37 Top-level architecture

6. Performance

6.1 Operation vs. supply

Figure 35: Filter transfer function vs. supply

Page 39: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

38

Figure 36: Sweep showing all required parameters vs. supply

6.2 Layout area estimateSum of area of all transistors = 2640 μm2 ⇒ which is approximately 20% of total transistor area (Source, Drain,

Contacts etc.)

Complete area of transistors = 13200 μ m2

Area of Capacitors (at 5fF/µm2) ≈ 72900 μ m2 (includes additional area for contacts, routing etc.)

Total Area ≈ 90000 μ m2 ⇒ 300 μm×300 μm

7. ConclusionThus, the complete filter has been designed and simulated according to the given specifications.

Iq

Page 40: EEE598 Final Report v1

39 Top-level architecture

8. Appendix

8.1 Appendix A: spectre Netlist// Generated for: spectre// Generated on: Nov 27 21:37:11 2013// Design library name: EEE598_Amp// Design cell name: filter_test// Design view name: schematicsimulator lang=spectreglobal 0 vdd!include "/home/eda/cadence/ic5141/tools/dfII/samples/artist/ahdlLib/quantity.spectre"parameters Ron=1k Roff=100M Fin=3.6864M vdd=3 vcm=vdd/2include "/home/ncsu-cdk-1.5.1/models/spectre/standalone/tsmc35P.m"include "/home/ncsu-cdk-1.5.1/models/spectre/standalone/tsmc35N.m"

// Library name: EEE598_Amp// Cell name: amp_101// View name: schematicsubckt amp_101 Vinm Vinp Vout C0 (Vout 0) capacitor c=750.00f I0 (vdd! net0184) isource dc=5u type=dc P11 (net075 Vbp2 vdd! vdd!) tsmc35P w=3.6u l=800n as=3.6e-12 \ ad=3.6e-12 ps=9.2u pd=9.2u m=1 region=sat P12 (Vbn Vbp1 net075 vdd!) tsmc35P w=3.6u l=400n as=3.6e-12 ad=3.6e-12 \ ps=9.2u pd=9.2u m=1 region=sat P13 (net0110 Vbp1 net071 vdd!) tsmc35P w=3.6u l=400n as=3.6e-12 \ ad=3.6e-12 ps=9.2u pd=9.2u m=1 region=sat P14 (net071 Vbp2 vdd! vdd!) tsmc35P w=3.6u l=800n as=3.6e-12 \ ad=3.6e-12 ps=9.2u pd=9.2u m=1 region=sat P10 (net0101 Vbp2 vdd! vdd!) tsmc35P w=30u l=400n as=3e-11 ad=3e-11 \ ps=62.0u pd=62.0u m=1 region=sat P8 (net093 Vbp2 vdd! vdd!) tsmc35P w=30u l=400n as=3e-11 ad=3e-11 \ ps=62.0u pd=62.0u m=1 region=sat P7 (Vout Vbp1 net093 vdd!) tsmc35P w=20u l=1u as=2e-11 ad=2e-11 \ ps=42.0u pd=42.0u m=1 region=sat P9 (net0163 Vbp1 net0101 vdd!) tsmc35P w=20u l=1u as=2e-11 ad=2e-11 \ ps=42.0u pd=42.0u m=1 region=sat P2 (net095 Vbp2 vdd! vdd!) tsmc35P w=3.6u l=800n as=3.6e-12 ad=3.6e-12 \ ps=9.2u pd=9.2u m=1 region=sat P1 (Vbp2 Vbp1 net095 vdd!) tsmc35P w=3.6u l=400n as=3.6e-12 ad=3.6e-12 \ ps=9.2u pd=9.2u m=1 region=sat P0 (Vbp1 Vbp1 vdd! vdd!) tsmc35P w=1.8u l=2.8u as=1.8e-12 ad=1.8e-12 \ ps=5.6u pd=5.6u m=1 region=sat N15 (Vbn Vbn 0 0) tsmc35N w=1.2u l=8u as=1.2e-12 ad=1.2e-12 ps=4.4u \ pd=4.4u m=1 region=sat N16 (net0110 Vbn net0108 0) tsmc35N w=1.2u l=400n as=1.2e-12 \ ad=1.2e-12 ps=4.4u pd=4.4u m=1 region=sat N17 (net0108 net0110 0 0) tsmc35N w=1.2u l=400n as=1.2e-12 ad=1.2e-12 \ ps=4.4u pd=4.4u m=1 region=sat N8 (net0101 Vinp net0104 0) tsmc35N w=36.0u l=400n as=3.6e-11 \

Page 41: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

40

ad=3.6e-11 ps=74.0u pd=74.0u m=1 region=sat N11 (net0113 net0163 0 0) tsmc35N w=1.2u l=1u as=1.2e-12 ad=1.2e-12 \ ps=4.4u pd=4.4u m=1 region=sat N12 (net0163 Vbn net0105 0) tsmc35N w=2.4u l=400n as=2.4e-12 \ ad=2.4e-12 ps=6.8u pd=6.8u m=1 region=sat N7 (net0104 net0184 0 0) tsmc35N w=100.0000u l=400n as=1e-10 ad=1e-10 \ ps=202.000000u pd=202.000000u m=1 region=sat N13 (net0105 net0163 0 0) tsmc35N w=1.2u l=1u as=1.2e-12 ad=1.2e-12 \ ps=4.4u pd=4.4u m=1 region=sat N10 (Vout Vbn net0113 0) tsmc35N w=2.4u l=400n as=2.4e-12 ad=2.4e-12 \ ps=6.8u pd=6.8u m=1 region=sat N9 (net093 Vinm net0104 0) tsmc35N w=36.0u l=400n as=3.6e-11 \ ad=3.6e-11 ps=74.0u pd=74.0u m=1 region=sat N2 (Vbp2 net0184 0 0) tsmc35N w=1.2u l=400n as=1.2e-12 ad=1.2e-12 \ ps=4.4u pd=4.4u m=1 region=sat N1 (Vbp1 net0184 0 0) tsmc35N w=600n l=400n as=6e-13 ad=6e-13 ps=3.2u \ pd=3.2u m=1 region=sat N0 (net0184 net0184 0 0) tsmc35N w=600n l=400n as=6e-13 ad=6e-13 \ ps=3.2u pd=3.2u m=1 region=satends amp_101// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: not_gate// View name: schematicsubckt not_gate A Y N0 (Y A 0 0) tsmc35N w=3u l=400n as=3e-12 ad=3e-12 ps=8u pd=8u m=1 \ region=sat P0 (Y A vdd! vdd!) tsmc35P w=12.0u l=400n as=1.2e-11 ad=1.2e-11 \ ps=26.0u pd=26.0u m=1 region=satends not_gate// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: switch_mos// View name: schematicsubckt switch_mos S1 S2 Vctrl P0 (S2 VctrlZ S1 vdd!) tsmc35P w=10u l=400n as=1e-11 ad=1e-11 ps=22.0u \ pd=22.0u m=1 region=sat N0 (S2 Vctrl S1 0) tsmc35N w=5u l=400n as=5e-12 ad=5e-12 ps=12.0u \ pd=12.0u m=1 region=sat I4 (Vctrl VctrlZ) not_gateends switch_mos// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: notch_33k_opt// View name: schematicsubckt notch_33k_opt Vcm Vin Vout ph1 ph2 I172 (net0102 Vcm Vout) amp_101 I32 (net142 Vcm net84) amp_101 I31 (net169 Vcm net187) amp_101 C53 (net075 net079) capacitor c=(1/1.1)*271.27f C56 (net078 net077) capacitor c=(1/1.1)*271.27f C73 (net0129 net075) capacitor c=271.27f C74 (net0111 net075) capacitor c=(1/0.26)*271.27f

Page 42: EEE598 Final Report v1

41 Top-level architecture

C26 (net90 net92) capacitor c=(1/0.26)*271.27f C25 (net151 net90) capacitor c=271.27f C13 (net184 net88) capacitor c=271.27f C12 (net90 net86) capacitor c=271.27f C10 (net142 net84) capacitor c=4.5p C8 (net169 net187) capacitor c=4.5p C72 (net099 net078) capacitor c=271.27f C75 (net0123 net078) capacitor c=(1/0.26)*271.27f I236 (Vcm net078 ph1) switch_mos I173 (net079 Vout ph1) switch_mos I187 (net077 Vout ph2) switch_mos I186 (Vcm net077 ph1) switch_mos I224 (Vcm net099 ph1) switch_mos I229 (Vcm net075 ph2) switch_mos I105 (net86 net187 ph2) switch_mos I86 (net84 net184 ph2) switch_mos I85 (Vcm net86 ph1) switch_mos I83 (Vcm net88 ph2) switch_mos I64 (Vcm net92 ph1) switch_mos I54 (net88 net169 ph1) switch_mos I45 (Vcm net184 ph1) switch_mos I42 (Vcm net151 ph1) switch_mos I41 (Vin net151 ph2) switch_mos I40 (Vcm net90 ph1) switch_mos I39 (net92 net84 ph2) switch_mos I38 (net90 net142 ph2) switch_mos I227 (Vcm net078 ph1) switch_mos I231 (net075 net0102 ph1) switch_mos I226 (Vin net0129 ph1) switch_mos I176 (Vcm net079 ph2) switch_mos I232 (net075 net0102 ph1) switch_mos I228 (net078 net0102 ph2) switch_mos I239 (Vcm net0123 ph1) switch_mos I237 (net84 net0111 ph1) switch_mos I238 (Vcm net0111 ph2) switch_mos I225 (Vcm net0129 ph2) switch_mos I230 (Vin net099 ph2) switch_mos I235 (net078 net0102 ph2) switch_mos I233 (net84 net0123 ph2) switch_mos I234 (Vcm net075 ph2) switch_mosends notch_33k_opt// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: lpf_20k_opt// View name: schematicsubckt lpf_20k_opt Vcm Vin Vout ph1 ph2 I67 (net20 net2 ph2) switch_mos I71 (net121 net113 ph2) switch_mos I68 (Vcm net20 ph1) switch_mos I66 (Vin net11 ph2) switch_mos I65 (Vcm net11 ph1) switch_mos I76 (Vcm net44 ph1) switch_mos I75 (net117 net29 ph1) switch_mos I69 (Vcm net121 ph1) switch_mos I77 (Vcm net117 ph2) switch_mos I79 (Vcm net115 ph1) switch_mos

Page 43: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

42

I74 (net113 net44 ph2) switch_mos I80 (net115 net47 ph2) switch_mos I102 (net51 net66 ph2) switch_mos I101 (net54 net93 ph2) switch_mos I100 (Vcm net51 ph1) switch_mos I99 (net47 net132 ph2) switch_mos I98 (Vcm net132 ph1) switch_mos I95 (Vcm net130 ph1) switch_mos I93 (net78 net124 ph1) switch_mos I92 (Vcm net54 ph1) switch_mos I91 (Vcm net78 ph2) switch_mos I89 (Vcm net96 ph1) switch_mos I88 (net93 net130 ph2) switch_mos I87 (net96 Vout ph2) switch_mos I78 (net29 Vcm net47) amp_101 I73 (net2 Vcm net113) amp_101 I104 (net124 Vcm Vout) amp_101 I103 (net66 Vcm net93) amp_101 C22 (net29 net47) capacitor c=8p C19 (net2 net113) capacitor c=8p C24 (net20 net115) capacitor c=(1/1)*271.27f C23 (net44 net117) capacitor c=271.27f C20 (net11 net20) capacitor c=271.27f C21 (net20 net121) capacitor c=(1/4.3)*271.27f C32 (net124 Vout) capacitor c=8p C31 (net66 net93) capacitor c=8p C30 (net51 net96) capacitor c=(1/1.1)*271.27f C29 (net130 net78) capacitor c=271.27f C28 (net132 net51) capacitor c=271.27f C27 (net51 net54) capacitor c=(1/0.707)*271.27fends lpf_20k_opt// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: hpf_2k_opt// View name: schematicsubckt hpf_2k_opt Vcm Vin Vout ph1 ph2 I31 (net63 Vcm net81) amp_101 I32 (net36 Vcm net17) amp_101 I106 (net120 Vcm Vout) amp_101 C8 (net63 net81) capacitor c=92p C10 (net36 net17) capacitor c=92p C12 (net089 net19) capacitor c=271.27f C13 (net78 net21) capacitor c=271.27f C25 (net45 net089) capacitor c=271.27f C26 (net089 net25) capacitor c=(1/0.707)*271.27f C33 (net45 net27) capacitor c=271.27f C34 (net27 net29) capacitor c=(1/1)*271.27f C35 (net25 net27) capacitor c=(1/0.707)*271.27f C36 (net27 net33) capacitor c=271.27f I38 (net089 net36 ph2) switch_mos I39 (net25 net17 ph2) switch_mos I40 (Vcm net089 ph1) switch_mos I41 (Vin net45 ph2) switch_mos I42 (Vcm net45 ph1) switch_mos I45 (Vcm net78 ph1) switch_mos

Page 44: EEE598 Final Report v1

43 Top-level architecture

I54 (net21 net63 ph1) switch_mos I64 (Vcm net25 ph1) switch_mos I83 (Vcm net21 ph2) switch_mos I85 (Vcm net19 ph1) switch_mos I86 (net17 net78 ph2) switch_mos I105 (net19 net81 ph2) switch_mos I109 (Vcm net27 ph1) switch_mos I110 (net27 net120 ph2) switch_mos I111 (Vcm net29 ph1) switch_mos I113 (net29 Vout ph2) switch_mos I115 (net120 Vout ph1) switch_mos I122 (Vcm net33 ph1) switch_mos I123 (net33 net81 ph2) switch_mosends hpf_2k_opt// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: nor_gate// View name: schematicsubckt nor_gate A Y B N1 (Y B 0 0) tsmc35N w=3u l=400n as=3e-12 ad=3e-12 ps=8u pd=8u m=1 \ region=sat N0 (Y A 0 0) tsmc35N w=3u l=400n as=3e-12 ad=3e-12 ps=8u pd=8u m=1 \ region=sat P1 (net31 A vdd! vdd!) tsmc35P w=12.0u l=400n as=1.2e-11 ad=1.2e-11 \ ps=26.0u pd=26.0u m=1 region=sat P0 (Y B net31 vdd!) tsmc35P w=12.0u l=400n as=1.2e-11 ad=1.2e-11 \ ps=26.0u pd=26.0u m=1 region=satends nor_gate// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: non_ovl_mos// View name: schematicsubckt non_ovl_mos CLK PH1 PH2 I8 (CLK net21 PH2) nor_gate I9 (PH1 net24 net34) nor_gate I17 (net029 net030) not_gate I10 (net21 net26) not_gate I18 (net030 PH1) not_gate I11 (net26 net029) not_gate I15 (net32 net023) not_gate I16 (net24 net32) not_gate I7 (CLK net34) not_gate I19 (net024 PH2) not_gate I20 (net023 net024) not_gateends non_ovl_mos// End of subcircuit definition.

// Library name: EEE598_Amp// Cell name: filter_test// View name: schematicI5 (Vcm net020 Vout ph1 ph2) notch_33k_optI7 (Vcm net029 net020 ph1 ph2) lpf_20k_optI8 (Vcm Vin net029 ph1 ph2) hpf_2k_optC11 (Vout 0) capacitor c=1pI1 (net4 ph1 ph2) non_ovl_mos

Page 45: EEE598 Final Report v1

Shaik, AlbasonEEE598: Final Project

44

V3 (net4 0) vsource type=pulse val0=0.0 val1=vdd period=1/Fin rise=100p \ fall=100p width=0.5/FinV9 (Vin 0) vsource dc=vcm pacmag=1 type=dcV2 (Vcm 0) vsource dc=vcm type=dcV1 (vdd! 0) vsource dc=vdd type=dcsimulatorOptions options reltol=1e-3 vabstol=1e-6 iabstol=1e-12 temp=27 \ tnom=27 scalem=1.0 scale=1.0 gmin=1e-12 rforce=1 maxnotes=5 maxwarns=5 \ digits=5 cols=80 pivrel=1e-3 sensfile="../psf/sens.output" \ checklimitdest=psf dcOp dc write="spectre.dc" maxiters=150 maxsteps=10000 annotate=statusdcOpInfo info what=oppoint where=rawfilepss pss fund=3.6864M harms=2 errpreset=conservative tstab=10.1u+ annotate=statuspac pac sweeptype=absolute start=100 stop=100k dec=200+ values=[32.88k 32.99k 33k 33.11k 33.22k] maxsideband=1+ annotate=statusmodelParameter info what=models where=rawfileelement info what=inst where=rawfileoutputParameter info what=output where=rawfiledesignParamVals info what=parameters where=rawfileprimitives info what=primitives where=rawfilesubckts info what=subckts where=rawfilesave Vin Vout ph1 ph2 net020 saveOptions options save=all

Page 46: EEE598 Final Report v1

45 Top-level architecture

8.2 Appendix B: References VLSI Analog Signal Processing Circuits – Hongjiang Song

The Arts of VLSI Circuit Design – Hongjiang Song

Design of Analog Filters – Rolf Schaumann, Mac E. Van Valkenburg

Lecture notes for EEE598 by Dr. Hongjiang Song at ASU

Lecture notes for Analog Filter Design by Prof. David Johns and Prof. Ken Martin at University of

Toronto