EEE470chap7 Lecture 9 Symmetrical Faults

Embed Size (px)

Citation preview

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    1/35

    1

    Symmetrical Faults

    Chapter 7

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    2/35

    2

    Faults

    Shunt faults:

    Three phaseabc

    Line to line

    Line to ground

    2 Line to ground

    ba

    c

    ab

    c

    ab

    c

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    3/35

    3

    Faults

    Series faults

    One open phase:a

    bc

    2 open phasesa

    bc

    Increased phase

    impedance

    Z a

    b

    c

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    4/35

    4

    Why Study Faults?

    Determine currents and voltages in thesystem under fault conditions

    Use information to set protective devices

    Determine withstand capability thatsystem equipment must have:

    Insulating level

    Fault current capability of circuit breakers: Maximum momentary current

    Interrupting current

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    5/35

    5

    Symmetrical Faults

    t=0

    2 V

    i(t)

    Fault at t = 0AC

    R L

    )sin(2)( tVte

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    6/35

    6

    Symmetrical Faults

    For a short circuit at generator terminals at t=0

    and generator initially open circuited:

    dt

    di

    LRite )(

    dt

    diLRitVSin )(2

    by using Laplace transforms i(t) can be found

    (L is considered constant)

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    7/35

    7

    Symmetrical Faults

    ]/

    )()([2

    )(Tt

    eSintSin

    Z

    Vti

    2222)( XRLRZ

    R

    XTan

    R

    LTan

    11

    Where:

    R

    X

    R

    L

    T Time Constant

    ]/

    )()([2)(Tt

    eSintSinac

    Iti

    Where: Iac = acRMS fault current at t=0 (Examples)

    Note that for a 3-

    phase system will be

    different for each

    phase. Therefore, DC

    offset will be different

    for each phase

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    8/35

    8

    t = 0

    acI2

    iac

    Idc = 0

    ]/

    )()([2)(Tt

    eSintSinac

    Iti

    o

    90

    V2 e(t)

    o90

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    9/35

    9

    ]/

    )()([2)(Tt

    eSintSinac

    Iti

    0

    o90

    V2 e(t)

    t = 0

    iac02 acI

    02 acIidc

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    10/35

    10

    iac

    02 acI

    02 acI id

    c

    0

    22ac

    I

    t

    0

    o90

    ]/

    )()([2)(Tt

    eSintSinac

    Iti

    )(ti

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    11/35

    11

    Symmetrical Faults

    Iac and Idc are independent after t = 0

    22

    dcI

    acI

    RMSI

    Tt

    eacoIdcI

    2

    Substituting:

    Tte

    acI

    Tt

    eac

    Iac

    IRMSI

    221)222((max)

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    12/35

    12

    Asymmetry Factor

    IRMS(max) = K() Iac

    Asymmetry Factor = K()

    rx

    eK

    4

    21)(

    Where:

    = number of cycles

    (Example 7.1)

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    13/35

    13

    Example 7.1

    Fault at a time to produce maximum DC offset

    Circuit Breaker opens 3 cycles after fault inception

    IFault at t = 0AC

    R = 0.8 XL = 8

    V = 20 kVLN-

    +

    CB

    Find:

    1. Iac at t = 0

    2. IRMS Momentary at = 0.5 cycles

    3. IRMS Interrupting Current

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    14/35

    14

    Example 7.1

    a. RMSACkAI 488.2

    88.0

    20)0(

    22

    b.

    438.121)5.0(

    )10

    5.(4

    eKKAImomentary 577.3)488.2)(438.1(

    c.023.121)3(

    )10

    3(4 eKKAI ngInterrupti 545.2)488.2)(023.1(

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    15/35

    15

    AC DecrementIn the previous analysis we treated the

    generator as a constant voltage behind aconstant impedance for each phase. The

    constant inductance is valid for steady state

    conditions but for transient conditions, thegenerator inductance is not constant.

    Recall that for steady state conditions, the

    equivalent machine reactance is made upof 2 parts: a) Armature leakage reactance

    b) Armature reaction

    (See Phasor Diagram)

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    16/35

    16

    AC Decrement

    Steadystate model of generatorXL is leakage reactance

    XAR is a fictitious reactance and XAR>> XL

    XARis due to flux linkages of armature current with the fieldcircuit. Flux linkages can not change instantaneously.Therefore, if the generator is initially unloaded when afaultoccurs the effective reactance is XL which is referred to asSubtransient Reactance, x.

    AC

    EI

    R XL XAR

    Load

    I I

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    17/35

    17IL

    jILXL

    jILXAR(t)

    EIField

    Flux

    Armature Reaction

    Resultant

    Field

    ET

    XL XAR

    -

    +

    EI

    I=IL

    Load

    Loaded Generator

    I 0

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    18/35

    18

    EField

    Flux

    Armature Reaction = 0

    Resultant

    Field

    ET0

    t = 0 -

    XL XAR=0ET0

    -

    +

    E = E = E = ET0

    I=0

    Unloaded Generator

    I 0

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    19/35

    19

    XL XAR

    -

    +

    E = E = E = ET0

    I=0

    t=0

    EField

    Flux

    Armature Reaction = 0

    Resultant

    Field

    ET0 = 0

    Faulted Generator

    I I

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    20/35

    20

    XL XAR=0

    -

    +

    E = E = E = ET0

    I = I

    E = jIXL

    t=0+

    Field

    Flux

    Resultant

    Field

    ET = 0

    I

    Armature Reaction = 0

    I I

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    21/35

    21

    XL XAR

    -

    +

    E = E = E = ET0

    I = I

    E = jI(XL + XAR)

    t 3Cyc.

    Field

    Flux

    Resultant

    Field

    ET = 0

    I

    Armature Reaction = 0

    I I

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    22/35

    22

    XL XAR

    -

    +

    E = E = E = ET0

    I = I

    E = jI(XL + XAR)

    t =

    Field

    Flux

    Resultant

    Field

    ET = 0

    I

    Armature Reaction = 0

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    23/35

    23

    AC Decrement

    As fault current begins to flow, armature reaction willincrease with time thereby increasing the apparent

    reactance. Therefore, the ac component of the fault

    current will decrease with time to a steady state

    condition as shown in the figure below.

    "2I '2II2

    "2I

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    24/35

    24

    AC Decrement

    For a round rotor machine we only need toconsider the direct axis reactance.

    dX

    EI

    "

    "2"2 Subtransient

    dX

    EI

    '

    '2'2

    dX

    EI 22

    Transient

    Synchronous(steadystate)

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    25/35

    25

    AC Decrement

    Can write the ac decrement equation )])'()'"(2)( '" tSinIeIIeIItaci dT

    tdTt

    For an unloaded generator

    (special case):TEEEE '"

    Td: Subtransient time constant

    (function of amortisseur winding X/R)Td: Transient time constant

    (function of field winding X/R)

    Look at equation for t=0 and t=infinity

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    26/35

    26

    AC Decrement

    For t = 0

    )])'()'"(2)( '"

    tSinIeIIeIItaci dT

    tdTt

    For t =

    IIiac 2]00[2(max)

    "2])'()'"[(2(max) IIIIIIiac

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    27/35

    27

    ac and dc Decrement

    Transform ac decrement equation to phasor form

    /')'(")'"(

    _

    IdT

    t

    eIIdT

    t

    eIIacI

    dc decrement equation:

    A

    T

    t

    eSinIdc

    I

    )("2

    Where TA = Armature circuit time constant

    (Example 7.2)

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    28/35

    28

    Network Equivalent circuit

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    29/35

    29

    Network Equivalent circuit

    Lecture 9 Short circuit calculation

    Electrical netw ork can be represented by a Thvenin equivalent circuit, voltage source and

    series connected inductive reactance and a small resistance. The resistance is neglected

    most of the time.

    The voltage is the rated netw ork line to neutral voltage. The reactance is calculated f rom the

    short circuit current. The pow er company calculates the short circuit current at every

    substation.

    Example: A 500 kV netw ork short circuit current is 30kA. Calculate the Thvenin equivalent

    circuit and the short circuit current time function.

    Netw ork Thvenin Equivalent circuit is:

    AC VlnZnet

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    30/35

    30

    Network Equivalent circuit

    Vnet 500kV Ishort 30kA 2 60 Hz

    The network line to line voltage and the equivalent netw ork reactance and estimated small

    resistance

    Vln

    Vnet

    3288.675kV X

    net

    Vln

    Ishort

    9.623

    Rnet

    Xnet

    20 Estimated value Lnet

    Xnet

    25.524mH

    The supply voltage is:

    Vsup t ( ) 2 Vln sin t ( )

    Laplace transformation of the supply voltage is:

    2 Vln cos ( ) s sin ( )( )

    2

    s2

    2 Vln sin t ( ) has Laplace transform

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    31/35

    31

    Network Equivalent circuitLaplace transformation of the supply voltage is:

    2 Vln cos ( ) s sin ( )( )

    2

    s2

    2 Vln sin t ( ) has Laplace transform

    The system equation w hen the load current is neglected

    2 Vln cos ( ) s sin ( )( )

    2

    s2

    s Lnet Rnet inet

    Short c ircuit current in s domain is: inet s ( )2 Vln cos ( ) s sin ( )( )

    2

    s2

    s Lnet Rnet

    Inverse Laplace transform is:

    2 Vln cos ( )( )

    2

    s2

    s Lnet Rnet has inverse Laplace transform

    2 Vln cos ( ) Rnet sin t 2

    Lnet e

    Rnet t

    Lnet

    2

    Lnet cos t 2

    2

    2 Lnet2 2 Rnet2

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    32/35

    32

    Network Equivalent circuit

    Ish1 t ( )2 Vln cos ( ) Rnet sin t

    2 Lnet e

    R

    net

    t

    Lnet

    2

    Lnet cos t 2

    2

    2

    Lnet2

    2

    Rnet2

    2 Vln s sin ( )( )

    2 s2 s Lnet Rnet has inverse Laplace transform

    2 Vln sin ( ) Rnet cos t 2

    Rnet e

    Rnet t

    Lnet

    Lnet sin t 2

    2

    Lnet

    2

    2 R

    net

    2

    Ish2 t ( )2 Vln sin ( ) Rnet cos t

    2 Rnet e

    Rnet t

    Lnet

    Lnet sin t 2

    2

    Lnet2

    2

    Rnet2

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    33/35

    33

    Network Equivalent circuit

    The short circuit current time function

    IShort t ( ) Ish1 t ( ) Ish2 t ( )

    DC component of the current is

    IDC t ( )

    2 Vln cos ( ) Lnet e

    Rnet t

    Lnet

    Lnet2

    2

    Rnet2

    2 Vln sin ( ) Rnet e

    Rnet t

    Lnet

    Lnet2

    2

    Rnet2

    IDC t ( )2 Vln cos ( ) Lnet e

    Rnet t

    Lnet

    Lnet

    2

    2 Rnet

    2

    2 Vln sin ( ) Rnet e

    Rnet t

    Lnet

    Lnet

    2

    2 Rnet

    2

    IDC 0s 0deg ( ) 42.321kA IDC 0s 90deg ( ) 2.116 kA

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    34/35

    34

    Network Equivalent circuit

    t 0s 0.01ms 150ms Ishort_max 78.67kA IDC_max 42.321kA

    0 50 100 15050

    0

    50

    100

    IShort t 0.0deg ( )

    kA

    IDC t 0deg( )

    kA

    t

    ms

    Current and DC component maximum at 0deg

  • 8/4/2019 EEE470chap7 Lecture 9 Symmetrical Faults

    35/35

    35

    Network Equivalent circuit

    t 0s 0.01ms 150ms IShort_max 42.215kA

    0 50 100 150

    60

    40

    20

    020

    40

    60

    IShort t 90.0deg ( )

    kA

    t

    ms

    No DC component at 90deg