80
EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) V C f osc f min f max slope = K vco Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range Well-defined K vco ^ ^ Noise coupling from V C into PLL output is directly proportional to K vco . ^

EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

Embed Size (px)

Citation preview

Page 1: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 1

Voltage-Controlled Oscillator (VCO)

VC

fosc

fmin

fmax

slope = Kvco

Desirable characteristics:

• Monotonic fosc vs. VC characteristic with adequate frequency range

• Well-defined Kvco

^

^

Noise coupling from VC into PLL output is directly proportional to Kvco.

^

Page 2: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 2

Oscillator Design

loop gain

Barkhausen’s Criterion:

If a negative-feedback loop satisfies:

then the circuit will oscillate at frequency 0.

Page 3: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 3

Inverters with Feedback (1)

V1 V2

V1

V2 1 inverter

feedback

V1

V2

2 inverters

feedback

1 stable equilibrium point

3 equilibrium points: 2 stable, 1 unstable(latch)

1 inverter:

V1 V2

2 inverters:

Page 4: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 4

Inverters with Feedback (2)

3 inverters forming an oscillator:

1 unstable equilibrium point due to phase shift from 3 capacitors

V1 V2

V1

V2

Let each inverter have transfer function

Loop gain:

Applying Barkhausen’s criterion:

Page 5: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 5

Ring Oscillator Operation

VA VB VC

tp tp tp

VA

VB

VC

VA

tp

tp

tp

Page 6: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 6

Variable Delay Inverters (1)

VC

Vin Vout

Current-starved inverter:Inverter with variable load capacitance:

Vin Vout

VC

Page 7: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 7

Variable Delay Inverters (2)

R R

Vin+ Vin- Vin+ Vin-

Vout-Vout+

IfastIslow

RG RG

ISS

VC

+

_

Interpolating inverter:

• tp is varied by selecting weighted sum of fast and slow inverter.

• Differential inverter operation and differential control voltage

• Voltage swing maintained at ISSR independent of VC.

Page 8: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

VA

VB

VC

VD

tp

tp

tp

tp

VA

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 8

Differential Ring Oscillator

additional inversion (zero-delay)

VA

+

Use of 4 inverters makes quadrature signals available.

VB

+

−VC

+

−VD

+

−VA

+

Page 9: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 9

Resonance in Oscillation Loop

r

r

1

At dc:

Since Hr(0) < 1, latch-up does not occur.

At resonance:

Page 10: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 10

LC VCO

Vin Vout

Vin

Vout

CL

realizes negative resistance

2L

CC

Page 11: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 11

A. Reverse-biased p-n junction

+ –VR

VR

Cj

B. MOSFET accumulation capacitance

+

VBG

varactor = variable reactance

Variable Capacitance

VBG

Cg

accumulationregion

inversionregion

p-channel

n diffusion in n-well

Page 12: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 12

LC VCO Variations

2L

CC

2L

CC

2L

CC

ISS

2L

CC

ISIS

Page 13: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 13

1. ideal capacitor load

2. CML buffer load

Effect of CML Loading

1.

3.8 1 nH

400 fF 400 fF

Cg = 108fF

1 nH 3.8

400 fF 400 fF 108 fF108 fF

2.

Page 14: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 14

Substantial parallel loss at high frequencies weakens VCO’s tendency to oscillate

(note p < z)where:

CML Buffer Input Admittance (1)

Page 15: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 15

Yin magnitude/phase: Yin real part/imaginary part:

magnitude

phase

imaginary

real

Contributes 2k additional parallel resistance

CML Buffer Input Admittance (2)

Page 16: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 16

imaginary

real

Contributes negative parallel resistance

Cg = 108 fF

3.8 nH

3.8 1 nH

400 fF 400 fF

CML Buffer Input Admittance (3)

3. CML tuned buffer load

Page 17: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 17

Loading VCO with tuned CML buffer allows negative real part at high frequencies more robust oscillation!

ideal capacitor load

CML buffer load

CML tuned buffer load

CML Buffer Input Admittance (4)

Cg = 108 fF

3.8 nH

3.8 1 nH

400 fF 400 fF

Page 18: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 18

Differential Control of LC VCO

Differential VCO control is preferred to reduce VC noise coupling into PLL output.

Page 19: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 19

Ring Oscillator LC Oscillator

– slower

– low Q more jitter generation

+ Control voltage can be applied differentially

+ Easier to design; behavior more predictable

+ Less chip area

+ faster

+ high Q less jitter generation

– Control voltage applied single-ended

– Inductors & varactors make design more difficult and behavior less predictable

– More chip area (inductor)

Oscillator Type Comparison

Page 20: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 20

Random Processes (1)

Random variable: A quantity X whose value is not exactly known.

Probability distribution function PX(x): The probability that a random variable X is less than or equal to a value x.

0.5

1

x

PX(x)

Example 1:

Random variable

Page 21: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 21

0.5

1

x

PX(x)

x1 x2

Probability of X within a range is straightforward:

If we let x2-x1 become very small …

Random Processes (2)

Page 22: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 22

Probability density function pX(x): Probability that random variable X lies within the range of x and x+dx.

0.5

1

x

PX(x)

x

pX(x)

dx

Random Processes (3)

Page 23: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 23

Expectation value E[X]: Expected (mean) value of random variable X over a large number of samples.

Mean square value E[X2]: Mean value of the square of a random variable X2 over a large number of samples.

Variance:

Standard deviation:

Random Processes (4)

Page 24: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 24

Gaussian Function

x

2

1. Provides a good model for the probability density functions of many random phenomena.

2. Can be easily characterized mathematically .

3. Combinations of Gaussian random variables are themselves Gaussian.

Page 25: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 25

Joint Probability (1)

If X and Y are statistically independent (i.e., uncorrelated):

Consider 2 random variables:

Page 26: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 26

Consider sum of 2 random variables:

x

y

dx

dy = dz

determined by convolutionof pX and pY.

Joint Probability (2)

Page 27: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 27

*

Example: Consider the sum of 2 non-Gaussian random processes:

Joint Probability (3)

Page 28: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 28

3 sources combined:

*

Joint Probability (4)

Page 29: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 29

4 sources combined:

*

Joint Probability (5)

Page 30: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 30

Central Limit Theorem:Superposition of random variables tends toward normality.

Noise sources

Joint Probability (6)

Page 31: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 31

Fourier transform of Gaussians:

F

Recall:

F

F -1

Variances of sum of random normal processes add.

Page 32: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 32

Autocorrelation function RX(t1,t2): Expected value of the product of 2 samples of a random variable at times t1 & t2.

For a stationary random process, RX depends only on the time difference

for any t

Note

Power spectral density SX():

SX() given in units of [dBm/Hz]

Page 33: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 33

Relationship between spectral density & autocorrelation function:

Example 1: white noise

infinite variance(non-physical)

Page 34: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 34

Example 2: band-limited white noise

x

For parallel RC circuitcapacitor voltage noise:

Page 35: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 35

Random Jitter (Time Domain)

Experiment:

datasource

CDR(DUT) analyzer

CLK

DATA RCK

Page 36: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 36

Jitter Accumulation (1)

Free-runningoscillator output

Histogram plots

Experiment:Observe N cycles of a free-running VCO on an oscilloscope over a long measurement interval using infinite persistence.

NT

1 2 3 4

trigger

Page 37: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 37

Observation:As increases, rms jitter increases.

proportionalto 2

proportional to

Jitter Accumulation (2)

Page 38: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 38

Noise Spectral Density (Frequency Domain)

foscfosc+f

Sv(f)

f (log scale)

1/f2 region (-20dBc/Hz/decade)

Power spectral densityof oscillation waveform:

Single-sideband spectral density:

Ltotal includes both amplitude and phase noise

Ltotal(f) given in units of [dBc/Hz]

1/f3 region (-30dBc/Hz/decade)

Page 39: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 39

Noise Analysis of LC VCO (1)

active circuitry

C L R -R C L

+

_

vcinR

Consider frequencies near resonance:

noise from resistor

Page 40: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 40

Spot noise current from resistor: C L

+

_

vcinR

Noise Analysis of LC VCO (2)

Leeson’s formula (taken from measurements):

Where F and1/f3 are empirical parameters.

dBc/Hz

spot noise relative to carrier power

Page 41: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 41

Oscillator Phase Disturbance

Current impulse q/t

_+Vosc

t t

ip(t)

Vosc(t) Vosc(t)

Vosc jumps by q/C

• Effect of electrical noise on oscillator phase noise is time-variant.• Current impulse results in step phase change (i.e., an integration).

current-to-phase transfer function is proportional to 1/s

ip(t)

ip(t)

Page 42: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 42

Impulse Sensitivity Function (1)The phase response for a particular noise source can be determined at each point over the oscillation waveform.

Impulse sensitivity function (ISF):

(normalized to signal amplitude)

change in phasecharge in impulse

t

Example 1: sine wave

t

Example 2: square wave

Note has same period as Vosc.

Page 43: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 43

Impulse Sensitivity Function (2)

Recall from network theory:

LaPlace transform:

Impulse response:

time-variant impulse response

Recall:

ISF convolution integral:

from q

can be expressed in terms of Fourier coefficients:

Page 44: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 44

Case 1: Disturbance is sinusoidal:

, m = 0, 1, 2, …

negligible significant only form = k

(Any frequency can be expressed in terms of m and .)

Impulse Sensitivity Function (3)

Page 45: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 45

I

2osc

Impulse Sensitivity Function (4)

Current-to-phase frequency response:

oscosc

osc 2osc 2osc

For

Page 46: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 46

osc 2osc

Case 2: Disturbance is stochastic:

Impulse Sensitivity Function (5)

MOSFET current noise:

thermalnoise

1/fnoise

A2/Hz

osc 2osc

thermal noise

1/f noise

Page 47: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 47

Impulse Sensitivity Function (6)

osc 2osc

due to 1/f noise

due to thermal noise

Total phase noise:

n

Page 48: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 48

Impulse Sensitivity Function (7)

noise corner frequency n

(log scale)

(dBc/Hz)

1/(3 region: −30 dBc/Hz/decade

1/(2 region: −20 dBc/Hz/decade

Page 49: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 49

t

t

Example 1: sine wave Example 2: square wave

Impulse Sensitivity Function (8)

Example 3: asymmetric square wave

t

will generate more 1/(3 phase noise

is higher will generate more 1/(2 phase noise

Page 50: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 50

Impulse Sensitivity Function (9)

Effect of current source in LC VCO:

Vosc+ _

Due to symmetry, ISF of this noise source contains only even-order coefficients − c0 and c2 are dominant.

Noise from current source will contribute to phase noise of differential waveform.

Page 51: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 51

Impulse Sensitivity Function (10)

ID varies over oscillation waveform Same period as

oscillation

Let

Then where

We can use

Page 52: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 52

ISF Example: 3-Stage Ring Oscillator

M1A M1B M2A M2B M3A M3B

MS1 MS2 MS3

R1A R1B R2A R2B R3A R3B+

Vout

fosc = 1.08 GHzPD = 11 mW

Page 53: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 53

ISF of Diff. Pairs

for each diff. pair transistor

Page 54: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 54

ISF of Resistors

for each resistor

Page 55: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 55

ISF of Current Sources

ISF shows double frequency due to source-coupled node connection.

for each current source transistor

Page 56: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 56

Phase Noise Calculation

Using: Cout = 1.13 pF

Vout = 601 mV p-p

qmax = 679 fC

= −112 dBc/Hz @ f = 10 MHz

Page 57: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 57

Phase Noise vs. Amplitude Noise (1)

osct

v

v Spectrum of Vosc would include effects of both amplitude noise v(t) and phase noise (t).

How are the single-sideband noise spectrum Ltotal() and phase spectral density S() related?

Page 58: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 58

Phase Noise vs. Amplitude Noise (2)

t t

i(t) i(t)

Vc(t) Vc(t)

Recall that an input current impulse causes an enduring phase perturbation and a momentary change in amplitude:

Amplitude impulse response exhibits an exponential decay due to the natural amplitude limiting of an oscillator ...

Page 59: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 59

+

Phase noise dominates at low offset frequencies.

Phase Noise vs. Amplitude Noise (3)

Page 60: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 60

osc

Phase & amplitude noise can’t be distinguished in a signal.

Sv()

Amplitude limiting will decrease amplitude noisebut will not affect phase noise.

Phase Noise vs. Amplitude Noise (4)

noiseless oscillation waveform

phase noise

component

amplitude noise

component

phase noise

amplitude noise

Page 61: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 61

Sideband Noise/Phase Spectral Density

noiseless oscillation waveform

phase noise

component

Page 62: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 62

Jitter/Phase Noise Relationship (1)

autocorrelation functions

Recall R and S() are a Fourier transform pair:

NT

Page 63: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 63

Jitter/Phase Noise Relationship (2)

Page 64: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 64

Let Let

Consistent with jitter accumulation measurements!

Jitter/Phase Noise Relationship (3)

Jitter from 1/( noise:2

Jitter from 1/( noise:3

^

^

^

^^

Page 65: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 65

Jitter/Phase Noise Relationship (4)

f

(dBc/Hz)

-100

-20dBc/Hzper decade

• Let fosc = 10 GHz• Assume phase noise dominated by 1/()2

Setting f = 2 X 106 and S =10-10:

Let = 100 ps (cycle-to-cycle jitter):

= 0.02ps rms (0.2 mUI rms)

Accumulated jitter:

2 MHz

Page 66: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 66

More generally:

f

(dBc/Hz)

fm

Nm

-20 dBc/Hzper decade

rms jitter increases by a factor of 3.2

Jitter/Phase Noise Relationship (5)

Let phase noise increase by 10 dBc/Hz:

Page 67: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 67

Jitter Accumulation (1)

Kpd

phasedetector

loopfilter

Kvco

VCOin out

vco

fb

Open-loop characteristic:

Closed-loop characteristic:

Page 68: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 68

Jitter Accumulation (2)

Recall from Type-2 PLL:

|G|

z p

|1 + G|

-40 dB/decade

(dBc/Hz)

1/(3 region: −30 dBc/Hz/decade

1/(2 region: −20 dBc/Hz/decade

1

80 dB/decade

As a result, the phase noise at low offset frequencies is determined by input noise...

Page 69: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 69

• fosc = 10 GHz• Assume 1-pole closed-loop PLL characteristic

Jitter Accumulation (3)

f

(dBc/Hz)

f0 = 2 MHz

-100-20dBc/Hzper decade

Page 70: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 70

For large :

= 0.02 ps rms cycle-to-cycle jitter

Jitter Accumulation (4)

f0 = 2 MHz

fosc = 10 GHz

For small :

(log scale)

= 1.4 ps rms Total accumulated jitter

Page 71: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 71

The primary function of a PLL is to place a bound on cumulative jitter:

(log scale)

(log scale)

proportional to (due to thermal noise)

proportional to

(due to 1/f noise)

Jitter Accumulation (5)

Page 72: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 72

L() for OC-192 SONET transmitter

Closed-Loop PLL Phase Noise Measurement

Page 73: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 73

Other Sources of Jitter in PLL

• Clock divider

• Phase detectorRipple on phase detector output can cause high-frequency jitter. This affects primarily the jitter tolerance of CDR.

Page 74: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 74

Jitter/Bit Error Rate (1)

Histogram showing Gaussian distribution

near sampling point

1UI

Bit error rate (BER) determined by and UI …

L R

Eye diagram fromsampling oscilloscope

Page 75: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 75

R

0 T

Probability of sample at t > t0 from left-hand transition:

Probability of sample at t < t0 from right-hand transition:

Jitter/Bit Error Rate (2)

Page 76: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 76

Total Bit Error Rate (BER) given by:

Jitter/Bit Error Rate (3)

Page 77: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 77

t0 (ps)

log BER

Example: T = 100ps

(64 ps eye opening)

(38 ps eye opening)

log(0.5)

Jitter/Bit Error Rate (4)

Page 78: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 78

Bathtub Curves (1)

The bit error-rate vs. sampling time can be measured directly using a bit error-rate tester (BERT) at various sampling points.

Note: The inherent jitter of the analyzer trigger should be considered.

Page 79: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 79

Bathtub Curves (2)

Bathtub curve can easily be numerically extrapolated to very low BERs (corresponding to random jitter), allowing much lower measurement times.

Example: 10-12 BER with T = 100ps is equivalent to an average of 1 error per 100s. To verify this over a sample of 100 errors would require almost 3 hours!

t0 (ps)

Page 80: EECS 270C / Spring 2014Prof. M. Green / U.C. Irvine 1 Voltage-Controlled Oscillator (VCO) VCVC f osc f min f max slope = K vco Desirable characteristics:

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 80

Equivalent Peak-to-Peak Total Jitter

BER

10-10

10-11

10-12

10-13

10-14

, T determine BERBER determines effectiveTotal jitter given by:

Areas sumto BER