EE303_Topic1_Rahal

Embed Size (px)

Citation preview

  • 8/9/2019 EE303_Topic1_Rahal

    1/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 1Copyright 2004 by Oxford University Press, Inc. 1

    Single-Time Constant Circuits,

    s-Domain Analysis: Poles, Zeros,

    and Bode Plots

    EE300 Electronics II

    First Week:

    Lectures 1-2

    Dr Mohamad Rahal

  • 8/9/2019 EE303_Topic1_Rahal

    2/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 2Copyright 2004 by Oxford University Press, Inc.

    Outline of Lecture

    • Evaluating the time constant

    • Classification of STC circuits

    • Frequency response of STC circuits• Step response of STC circuits

    • Pulse response of STC circuits

    • S-domain, Poles, Zeros, Bode plots and open-circuit time constant technique

  • 8/9/2019 EE303_Topic1_Rahal

    3/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 3Copyright 2004 by Oxford University Press, Inc.

    Figure D.1 The reduction of the circuit in (a) to the STC circuit in (c) through the repeated application of Thévenin’s theorem.

    STC Example 1

  • 8/9/2019 EE303_Topic1_Rahal

    4/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 4Copyright 2004 by Oxford University Press, Inc.

    Figure D.2 Circuit for Example D.2.

    STC Example 2

  • 8/9/2019 EE303_Topic1_Rahal

    5/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 5Copyright 2004 by Oxford University Press, Inc.

    Figure D.3 The response of the circuit in (a) can be found by superposition, that is, by summing the responses of the circuits in (d) and (e).

    STC Example 3

  • 8/9/2019 EE303_Topic1_Rahal

    6/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 6Copyright 2004 by Oxford University Press, Inc.

    Figure D.3 (Continued)

  • 8/9/2019 EE303_Topic1_Rahal

    7/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 7Copyright 2004 by Oxford University Press, Inc.

    Classification of STC Circuits

  • 8/9/2019 EE303_Topic1_Rahal

    8/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 8Copyright 2004 by Oxford University Press, Inc.

    Figure D.4 STC circuits of the low-pass type.

    Classification Examples of STC

    Circuits (low-pass)

  • 8/9/2019 EE303_Topic1_Rahal

    9/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 9Copyright 2004 by Oxford University Press, Inc.

    Figure D.5 STC circuits of the high-pass type.

    Classification Examples of STC

    Circuits (high-pass)

  • 8/9/2019 EE303_Topic1_Rahal

    10/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 10Copyright 2004 by Oxford University Press, Inc.

    Figure ED.1

    Time Constants?

     R L L   /)//( 21   )///()//( 2121   R R L L

  • 8/9/2019 EE303_Topic1_Rahal

    11/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 11Copyright 2004 by Oxford University Press, Inc.

    Figure D.6 (a) Magnitude and (b) phase response of STC circuits of the low-pass type.

    Low-pass Type

    )/(1)( 0  s

     K 

     sT 

    )/(1)(

    0   

     j

     K  jT 

         /10  

    2

    0)/(1)(

       

      K  jT 

    )/(tan)( 01       

  • 8/9/2019 EE303_Topic1_Rahal

    12/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 12Copyright 2004 by Oxford University Press, Inc.

    Low-pass Type: Bode Plots

    2

    0)/(1)(

       

      K  jT 

    For > 1

    At )( 0      dB K  jT 

    32

    1

    log20

    )(

    log20 

     

      

     

     

     

     

     

       

    At the phase is equal to -45 and at >>1 the

     phase is equal to -90 degrees with an a maximum error of 5.7

    degrees

    )( 0      )/( 0  

  • 8/9/2019 EE303_Topic1_Rahal

    13/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 13Copyright 2004 by Oxford University Press, Inc.

    High-pass Type

    0

    )( 

     s

     Ks sT 

    )/(1)(

    0      

     j

     K  jT 

         /10 

    2

    0   )/(1)(

       

      K  jT 

    )/(tan)( 01       

    Figure D.8 (a) Magnitude and (b) phase response of STC circuits of the high-pass type.

  • 8/9/2019 EE303_Topic1_Rahal

    14/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 14Copyright 2004 by Oxford University Press, Inc.

    Frequency Response Comparison

  • 8/9/2019 EE303_Topic1_Rahal

    15/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 15Copyright 2004 by Oxford University Press, Inc.

    Figure ED.3

    Exercise: Try @ Home

    Find the dc transmission and the corner frequency for the circuit

    Show above?

  • 8/9/2019 EE303_Topic1_Rahal

    16/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 16Copyright 2004 by Oxford University Press, Inc.

    Figure D.9 A step-function signal of height S .

    Step Response of STC Circuits

    )1()(    t 

    eS t  y

       t 

    Set  y

    )(

  • 8/9/2019 EE303_Topic1_Rahal

    17/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 17Copyright 2004 by Oxford University Press, Inc.

    Pulse Response of STC (Low-pass)

    Figure D.12 A pulse signal with height  P and width T .

    0

    35.0

    2.2   f  t t    f  r       

  • 8/9/2019 EE303_Topic1_Rahal

    18/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 18Copyright 2004 by Oxford University Press, Inc.

    Figure D.14 Pulse responses of three STC high-pass circuits.

    Pulse Response of STC (High-pass)

    T  P 

     P 

     

    100  

    T Percentage Sag

  • 8/9/2019 EE303_Topic1_Rahal

    19/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 19Copyright 2004 by Oxford University Press, Inc.

    S-Domain Analysis

    )()()(

     sV  sV  sT 

    i

    o

    where both N(s) and D(s) are polynomials with real coefficients

    and an order of m and n respectively

    The order of the network is equal to n

    For real systems, the degree of N(s) (or m) is always less

    than or equal to that of D(s)(or n).

  • 8/9/2019 EE303_Topic1_Rahal

    20/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 20Copyright 2004 by Oxford University Press, Inc.

    Poles and Zeros

    where am is a multiplicative constant; Z1, Z2, …, Zm are the roots of the

    numerator polynomial (N(s)); P1, P2, …, Pn are the roots of the denominator

     polynomial (D(s)).

    Poles — roots of D(s)=0 {P 1 ,P 2  ,…, P n  } are the points on the s-  plane where |T| goes to ∞.

    Zeros — 

    roots of N(s)=0 {Z 1 ,Z 2  ,…, Z m  } are the points on the s-pl ane where |T| goes to 0.

    • The poles and zeros can be either real or complex. However, since the polynomial

    Coefficients are real numbers, the complex poles (or zeros) must occur in conjugate pairs.

    • A zero that is pure imaginary (± jωz) cause the transfer function T(jω) to be exactly zero

    (or have transmission null) at ω=ωz.

    • Real zeros will not result in transmission nulls.

    • For stable systems all the poles should have negative real parts.

    • For s much greater than all the zeros and poles, the transfer function may be approximated

    T(s)≅ am/sn-m . Thus the transfer function have (n-m) zeros at s=∞.

  • 8/9/2019 EE303_Topic1_Rahal

    21/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 21Copyright 2004 by Oxford University Press, Inc.

    Figure E.1 Bode plot for the typical magnitude term. The curve shown applies for the case of a zero. For a pole, the high-frequency asymptote should

     be drawn with a – 6-dB/octave slope.

    Bode Plot Magnitude

  • 8/9/2019 EE303_Topic1_Rahal

    22/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 22Copyright 2004 by Oxford University Press, Inc.

    Figure E.2 Bode plots for Example E.1.

    Bode Plots: Example 1

  • 8/9/2019 EE303_Topic1_Rahal

    23/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 23Copyright 2004 by Oxford University Press, Inc.

    Figure E.3 Bode plot of the typical phase term tan – 1 ( /a) when a is negative.

    Bode Plot Phase

  • 8/9/2019 EE303_Topic1_Rahal

    24/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 24Copyright 2004 by Oxford University Press, Inc.

    Figure E.4 Phase plots for Example E.2.

    Overall Phase of Example 1

  • 8/9/2019 EE303_Topic1_Rahal

    25/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 25Copyright 2004 by Oxford University Press, Inc.

    High Frequency Gain

    Figure 6.12 Frequency response of a direct-coupled (dc) amplifier. Observe that the gain does not fall off at low

    frequencies, and the midband gain A M extends down to zero frequency.

    Dc coupled

  • 8/9/2019 EE303_Topic1_Rahal

    26/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 26Copyright 2004 by Oxford University Press, Inc.

    Dominant Pole

    As a rule of thumb, a dominant pole exists if the lowest-

     frequency pole is at least two octaves (a factor of 4) away from the nearest pole or zero.

  • 8/9/2019 EE303_Topic1_Rahal

    27/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 27Copyright 2004 by Oxford University Press, Inc.

    Determining the Dominant Pole

    2 pole-2 zeros example

     NeglectingHigh-order 

    terms

  • 8/9/2019 EE303_Topic1_Rahal

    28/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 28Copyright 2004 by Oxford University Press, Inc.

    Open-Circuit (OC) Time Constants 1

  • 8/9/2019 EE303_Topic1_Rahal

    29/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 29Copyright 2004 by Oxford University Press, Inc.

    Open-Circuit (OC) Time Constants 2

  • 8/9/2019 EE303_Topic1_Rahal

    30/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 30Copyright 2004 by Oxford University Press, Inc.

    Open-Circuit (OC) Time Constants 3

  • 8/9/2019 EE303_Topic1_Rahal

    31/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 31Copyright 2004 by Oxford University Press, Inc.

    Using Open-Circuit Time Constants

    CS Example

    Figure 6.14 Circuits for Example 6.6: (a) high-frequency equivalent circuit of a MOSFET amplifier; (b) the equivalent circuit at midband

    frequencies; (c) circuit for determining the resistance seen by C  gs; and (d) circuit for determining the resistance seen byC  gd .

  • 8/9/2019 EE303_Topic1_Rahal

    32/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 32Copyright 2004 by Oxford University Press, Inc.

    CS Example OC Time Constant

    At G

    At D

  • 8/9/2019 EE303_Topic1_Rahal

    33/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 33Copyright 2004 by Oxford University Press, Inc.

    CS Example

  • 8/9/2019 EE303_Topic1_Rahal

    34/34

    Microelectronic Circuits - Fifth Edition Sedra/Smith 34Copyright 2004 by Oxford University Press, Inc.

    End of First Week 

    Lectures

    Home work: D.1, D.2, D.4, D.6, D.9,

    DD.16, E.5, E.7, E.10. Deadline 13/03/2010

    Materials can be found on the Y:\EE303-001

    Please check this folder on a daily/weekly basis