35
EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 1 EE247 Lecture 17 DAC Converters (continued) DAC dynamic non-idealities DAC design considerations Self calibration techniques – Current copiers – Dynamic element matching DAC reconstruction filter ADC Converters • Sampling – Sampling switch induced distortion – Sampling switch charge injection EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 2 Summary of Last Lecture D/A converters continued: Current based DACs-unit element versus binary weighted R-2R type DACs Static performance Component matching-systematic & random errors Component variations Gaussian pdf INL for both unit-element and binary-weighted DACs σ DNL= σ ε x2 B/2-1 DNL for unit-element σ DNL= σ ε DNL for binary-weight DAC: σ DNL= σ ε x2 B/2 Practical aspects of current-switched DACs Segmented current-switched DACs

EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 1

EE247Lecture 17

DAC Converters (continued)• DAC dynamic non-idealities• DAC design considerations• Self calibration techniques

–Current copiers–Dynamic element matching

• DAC reconstruction filterADC Converters• Sampling

–Sampling switch induced distortion–Sampling switch charge injection

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 2

Summary of Last Lecture

D/A converters continued:– Current based DACs-unit element versus binary weighted– R-2R type DACs– Static performance

• Component matching-systematic & random errors– Component variations Gaussian pdf – INL for both unit-element and binary-weighted DACs σDNL= σε x2B/2-1

– DNL for unit-element σDNL= σε– DNL for binary-weight DAC: σDNL= σε x2B/2

– Practical aspects of current-switched DACs

– Segmented current-switched DACs

Page 2: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 3

DAC Dynamic Non-Idealities• Finite settling time

– Linear settling issues: (e.g. RC time constants)

– Slew limited settling• Spurious signal coupling

– Coupling of clock/control signals to the output via switches

• Timing error related glitches– Control signal timing skews

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 4

Dynamic DAC Error: Timing Glitch

• Consider binary weighted DAC transition 011 100

• DAC output depends on timing

• Plot shows situation where the control signals for LSB & MSB– LSB/MSBs on time– LSB early, MSB late– LSB late, MSB early

1 1.5 2 2.5 30

5

10

Idea

l

1 1.5 2 2.5 30

5

10

Ear

ly

1 1.5 2 2.5 30

5

10

Time

Late

Page 3: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 5

Glitch Energy• Glitch energy (worst case) proportional to: dt x 2B-1

• dt error in timing & 2B-1 associated with half of the switches changing state

• LSB energy proportional to: T=1/fs

• Need dt x 2B-1 << T or dt << 2-B+1 T

• Examples:

<< 488<< 1.5<< 2

121610

120

1000

dt [ps]Bfs [MHz]

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 6

DAC Dynamic Errors• To suppress effect of non-idealities:

– Retiming of current source control signals• Each current source has its own clocked latch

incorporated in the current cell • Minimization of latch clock skew by careful

layout ensuring simultaneous change of bits

– To minimize control and clock feed through to the output via G-D of the switches• Use of low-swing digital circuitry

Page 4: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7

DAC Implementation Examples• Untrimmed segmented

– T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC December 1986, pp. 983

– A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” JSSC March 2001, pp. 315

• Current copiers:– D. W. J. Groeneveld et al, “A Self-Calibration Technique for

Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517

• Dynamic element matching:– R. J. van de Plassche, “Dynamic Element Matching for High-

Accuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 8

2μ tech., 5Vsupply6+2 segmented8x8 array

Page 5: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 9

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 10

Current-Switched DACs in CMOS( )

( )

( )

( )

M 1

M 2 M 1 M 3 M 1

M 4 M 1 M 5 M 1

M 2

M 1

M 1

M 1

M 1M 1

M 1M 1

2GS th1

GS GS GS GS

GS GS GS GS2

2GS th2 1

GS th

1m

GS th2

m2 1 1 m

2m

3 1 1 m

V VI kV V 4RI , V V 7RIV V 9RI , V V 10RI

4RI1V VI k I

V V2I

gV V

4RgI I I 1 4Rg12

7RgI I I 1 7Rg12

I

−== − = −= − = −

⎛ ⎞−−= = ⎜ ⎟−⎝ ⎠=

−⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠

→ ( )

( )

M 1M 1

M 1M 1

2m

4 1 1 m

2m

5 1 1 m

9RgI I 1 9Rg12

10RgI I I 1 10Rg12

⎛ ⎞= ≈ −−⎜ ⎟

⎝ ⎠⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠

Iout

•Assumption: RI is small compared to transistor gate overdriveDesirable to have gm small

Example: 5 unit element current sources

VDD

I1 I2 I3 I4

Rx4I Rx3I Rx2I

M1 M2 M3 M4 I5M5

RxI

Page 6: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 11

Current-Switched DACs in CMOSExample: INL of 3-Bit unit element DAC

Input

INL

[LS

B]

Example: 7 unit element current source DAC- assume gmR=1/100

• If switching of current sources sequential (1-2-3-4-5-6-7)INL= +0.25LSB

• If switching of current sources symmetrical (4-3-5-2-6-1-7 )INL = +0.09, -0.058LSB INL reduced by a factor of 2.6

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7

Sequential current source switchingSymmetrical current source switching

0

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 12

Current-Switched DACs in CMOSExample: DNL of 7 unit element DAC

Input

DN

L [L

SB

]

Example: 7 unit element current source DAC- assume gamer=1/100

• If switching of current sources sequential (1-2-3-4-5-6-7)DNLmax= + 0.15LSB

• If switching of current sources symmetrical (4-3-5-2-6-1-7 )DNLmax = + 0.15LSB DNL unchanged

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5 6 7

Sequential current source switchingSymmetrical current source switching

Page 7: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 13

More recent published DAC using symmetrical switching built in 0.35μ/3V analog/1.9V digital, area x10 smaller compared to previous example

(5+5)

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 14

• Layout of Current sources -each current source made of 4 devices in parallel each located in one of the 4 quadrants

• Thermometer decoder used to convert incoming binary digital control for the 5 MSB bits

• Dummy decoder used on the LSB side to match the latency due to the MSB decoder

Page 8: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 15

• Current source layout– MSB current sources layout

in the mid sections of the four quad

– LSB current sources on the periphery

– Two rows of dummy current sources added to create identical environment for devices in the center versus the ones on the outer sections

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 16

• Note that each current cell has its clocked latch and clock signal laid out to be close to its switch to ensure simultaneous switching of current sources

• Special attention paid to the final latch to have the cross point of the complementary switch control signal such that the two switches are not both turned off during transition

Page 9: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 17

• Measured DNL/INL with current associated with the cells as a variable

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 18

Page 10: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 19

I

I/2 I/2

Current Divider

16bit DAC (6+10)- MSB DAC uses calibrated current sources

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 20

Page 11: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 21

I

I/2 I/2

Ideal Current Divider

Current Divider Accuracy

I

I/2+dId /2

Real Current Divider

M1& M2 mismatched

d1 d 2d

d d1 d 2

d d

WLd

thWLd GS th

I II

2

dI I II I

ddI 2dV

I V V

+=

−=

⎡ ⎤⎛ ⎞= × +⎢ ⎥⎜ ⎟

− ⎝ ⎠⎣ ⎦

I/2-dId /2

M1 M2M1 M2

Problem: Device mismatch could severely limit DAC accuracy

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 22

Page 12: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 23

Dynamic Element Matching

( ) ( )

(1) ( 2 )2 22

1 1o

o

I II

2

1 1I2 2

I2

+=

− Δ + + Δ=

( )( )

(1) 1 o 11 2(1) 1 o 12 2

I I 1

I I 1

= + Δ

= − Δ

/ 2 error Δ1

I1

During Φ1 During Φ2

I2

fclk

Io

Io/2Io/2( )( )

( 2 ) 1 o 11 2( 2 ) 1 o 12 2

I I 1

I I 1

= − Δ

= + Δ

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 24

Page 13: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 25

Dynamic Element Matching

( )( )

( )( )( )214

1

2)1(

121)1(

3

121)1(

2

121)1(

1

111

1

1

Δ+Δ+=Δ+=

Δ−=

Δ+=

o

o

o

III

II

II ( )( )

( )( )( )214

1

2)2(

121)2(

3

121)2(

2

121)2(

1

111

1

1

Δ−Δ−=Δ−=

Δ+=

Δ−=

o

o

o

III

II

II

During Φ1 During Φ2

( )( ) ( )( )

( )21

2121

)2(3

)1(3

3

14

21111

4

2

ΔΔ+=

Δ−Δ−+Δ+Δ+=

+=

o

o

I

I

III

E.g. Δ1 = Δ2 = 1% matching error is (1%)2 = 0.01%

/ 2 error Δ1

I1

I2

fclk

Io

Io/2

/ 2 error Δ2

I3 I4

fclk

Io/4Io/4

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 26

• Bipolar 12-bit DAC using dynamic element matching built in 1976• Element matching clock frequency 100kHz• INL <0.25LSB!

Page 14: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 27

DAC In the Big Picture

• Learned to build DACs– Convert the

incoming digital signal to analog

• DAC output staircase form

• Some applications require filtering of DAC output reconstruction filter

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 28

DAC Reconstruction Filter

• Need for and requirements depend on application

• Tasks:– Correct for sinc droop– Remove “aliases”

(stair-case approximation)

B fs/2

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DAC

Inpu

t

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

sinc

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DAC

Out

put

Frequency

Page 15: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 29

Reconstruction Filter Options

• Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2)

• Digital filter– Band limits the input signal prevent aliasing– Could also provide high-frequency pre-emphasis to

compensate in-band sinc amplitude droop associated with the inherent DAC S/H function

DigitalFilter DAC SC

FilterCT

Filter

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 30

DAC Reconstruction Filter Example: Voice-Band CODEC Receive Path

Ref: D. Senderowicz et. al, “A Family of Differential NMOS Analog Circuits for PCM Codec Filter Chip,” IEEE Journal of Solid-State Circuits, Vol.-SC-17, No. 6, pp.1014-1023, Dec. 1982.

fs= 1024kHz fs= 128kHz fs= 8kHz fs= 8kHz

fs= 8kHz fs= 128kHz fs= 128kHz

fs= 128kHz

fs= 8kHz

Page 16: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 31

SummaryD/A Converter

• D/A architecture – Unit element – complexity proportional to 2B- excellent DNL – Binary weighted- complexity proportional to B- poor DNL– Segmented- unit element MSB(B1)+ binary weighted LSB(B2)

complexity proportional (2B1-1) + B2 – DNL compromise between the two

• Static performance– Component matching

• Dynamic performance– Time constants, Glitches

• DAC improvement techniques – Symmetrical switching rather than sequential switching– Current source self calibration– Dynamic element matching

• Depending of the application, reconstruction filter may be needed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 32

Re-Cap

• ADC Converters:

– Need to build circuits that "sample“

– Need to build circuits for amplitude quantization

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

Page 17: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 33

MOS Sampling Circuits

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 34

Ideal Sampling• In an ideal world, zero

resistance sampling switches would close for the briefest instant to sample a continuous voltage vIN onto the capacitor C

Output Dirac-like pulses with amplitude equal to VINat the time of sampling

• In practice not realizable!

vIN vOUT

CS1

φ1

φ1

T=1/fS

Page 18: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 35

Ideal T/H Sampling

vIN vOUT

CS1

φ1

• Vout tracks input when switch is closed• Grab exact value of Vin when switch opens• "Track and Hold" (T/H) (often called Sample & Hold!)

φ1

T=1/fS

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 36

Ideal T/H Sampling

ContinuousTime

T/H signal(Sampled-Data

Signal)

Clock

Discrete-TimeSignal

time

Page 19: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 37

Practical SamplingIssues

vIN vOUT

CM1

φ1

• Switch induced noise power due to M1 finite channel resistance• Finite Rsw limited bandwidth finite acquisition time• Rsw = f(Vin) distortion• Switch charge injection & clock feedthrough• Clock jitter

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 38

kT/C Noise

• Switch resistance & sampling capacitor form a low-pass filter • Noise associated with the switch resistance results in Total noise

variance= kT/C @ the output (see noise analysis in Lecture 1)• In high resolution ADCs kT/C noise often dominates overall error

(power dissipation considerations).

vIN vOUT

C

S1RvIN vOUT

CM1

φ1 4kTRΔf

Page 20: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 39

Sampling Network kT/C Noise

Required Cmin as a Function of ADC Resolution

0.003 pF0.8 pF13 pF

206 pF52,800 pF

812141620

Cmin (VFS = 1V)B

For ADCs usually sampling capacitor size is chosen based on having thermal noise smaller or equal to quantization noise:

22 121212 ⎟

⎟⎠

⎞⎜⎜⎝

⎛ −≥→Δ≤FS

BB

BV

TkCC

Tk

For high resolution ADCs oversampling results in reduction of required value for C (will cover in oversampled converter lectures)

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 40

Acquisition Bandwidth• The resistance R of switch

S1 turns the sampling network into a lowpass filter with finite time constant:

τ = RC

• Assuming Vin is constant during the sampling period and C is initially discharged

vIN vOUT

CS1

φ1

R

( )τ/1)( tinout evtv −−=

Page 21: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 41

Switch On-Resistance

Example:B = 14, C = 13pF, fs = 100MHzT/τ >> 19.4, R << 40Ω

vIN vOUT

CS1

φ1

φ1

T=1/fS

R

( )

( )

12

12

Worst Case: 1

2 ln 2 1

1 12 ln 2 1

s

in outs

fin

in FS

B

Bs

V V tf

V eV V

T

Rf C

τ

τ

⎛ ⎞− = << Δ⎜ ⎟

⎝ ⎠

<< Δ=

<< −−

<< −−

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 42

Switch On-Resistance

( ) ( )

( )

( )( )

0

1,2

1 1

1 for

1

DS

D triodeDSD triode ox GS TH DS

ON DS V

ON

ox GS th ox DD th in

o

ox DD th

oON

in

DD th

dIW VI C V V VL R dV

R W WC V V C V V VL L

R WC V VL

RR VV V

μ

μ μ

μ

⎛ ⎞= − − ≅⎜ ⎟⎝ ⎠

= =− − −

=−

=− −

Switch MOS operating in triode mode:

Page 22: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 43

Sampling Distortion

in

DD th

outT V12 V V

in

v

v 1 e τ

⎛ ⎞− −⎜ ⎟⎜ ⎟−⎝ ⎠

=⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

Simulated 10bit ADC &T/τ = 10VDD – Vth = 2V VFS = 1VSampling Switch modeled:

Results in HD2=-41dBFS & HD3=-51.4dBFS

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 44

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

Doubling sampling time (or ½time constant)Results in:

HD2 improved from -41dBFS to -70dBFS ~30dB

HD3 improved from -51.4dBFS to -76.3dBFS ~25dB

Allowing enough time for the sampling network settling Reduces distortion due to switch R non-linear behavior

Page 23: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 45

Sampling DistortionEffect of Supply Voltage

10bit ADC & T/τ = 10VDD – Vth = 4V VFS = 1V

10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

• Effect of lower supply voltage on sampling distortionHD3 increases by (VDD1/VDD2)2

HD2 increases by (VDD1/VDD2)

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 46

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

• SFDR sensitive to sampling distortion -improve linearity by:

• Larger VDD • Higher sampling bandwidth

• Solutions:• Overdesign Larger

switchesIncreased switch

charge injectionIncreased nonlinear S

&D junction cap.• Maximize VDD/VFS

Decreased dynamic range if VDD const.

• Complementary switch• Constant & max. VGS ≠ f(Vin)

Page 24: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 47

Practical SamplingSummary So Far!

22 112

B

BFS

C k TV

⎛ ⎞−≥ ⎜ ⎟⎝ ⎠

( )1 for inON o o ox DD th

DD th

WVg g g C V VV V Lμ⎛ ⎞= − = −⎜ ⎟−⎝ ⎠

( )1 1

2 ln 2 1Bs

Rf C

<< −−

• kT/C noise

• Finite Rsw limited bandwidth

• gsw = f(Vin) distortion

• Switch charge injection • Clock jitter

vINvOUT

CM1

φ1

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 48

Complementary Switch

φ1φ1B

φ1

φ1B

gon

gop

goT =go

n + gopgo

•Complementary n & p switch advantages:•Increases the overall conductance•Linearize the switch conductance for the range Vtp< Vin <Vdd-Vtn

Page 25: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 49

Complementary Switch

φ1φ1B

φ1

φ1B

gon

gop

goT =go

n + gopgo

•Complementary n & p switch advantages:Increase in the overall conductanceLinearize the switch conductance for the range |Vth

p|< Vin < Vdd -|Vthn|

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 50

Complementary Switch IssuesSupply Voltage Evolution

• Supply voltage scales down with technology scaling• Threshold voltages do not scale accordingly

Ref: A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” JSSC May 1999, pp. 599.

Page 26: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 51

Complementary SwitchEffect of Supply Voltage Scaling

gon

gop

goT =go

n + gopgeffective

•As supply voltage scales down input voltage range for constant go shrinksComplementary switch not effective when VDD becomes comparable to Vth

φ1φ1B

φ1

φ1B

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 52

Boosted & Constant VGS Sampling

VGS=const.

OFF ON

• Increase gate overdrive voltage as much as possible + keep VGSconstant

Switch overdrive voltage independent of signal level

Error due to finite RON linear (to 1st order)

Lower Ron lower time constant

• Gate voltage VGS =lowDevice offBeware of signal

feedthrough due to parasitic capacitors

Page 27: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 53

Constant VGS Sampling

(= voltage @ the switch input terminal)

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 54

Constant VGS Sampling Circuit

VP1100ns

M12

M8

M9

M6

M11VS1

1.5V1MHz

Chold

P

C1 C2

M1 M2

VDD=3V

M3

C3

M5

M4

P

This Example: All device sizes:10μ/0.35μAll capacitor size: 1pF (except for Chold)

P_N

Vg

Va Vb

Sampling switch & C

PB

Page 28: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 55

Clock Voltage Doubler

C1 C2

M10ff

M2Saturation

mode

VP1

PB

VDD=0 3V

P

a) Start–up

0 3V

0 3V 0 0

0 3V 0 (3V-VthM2)

Acquire charge C1 C2

M1Triode

M2off

VP1

PB

VDD=3V

P

3V 0

3V 0

3V 0 3V (3V-VthM2) (6V-Vth

M2)

b) Next clock phase

0 3V

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 56

Clock Voltage Doubler

C1 C2

M10ff

M2

VP1

PB

VDD=3V

P

0 3V

0 3V

3V ~6V

3V 0

c) Next clock phase

(6V-VthM2) (3V-Vth

M2) ~ 3V

M2Triode

Acquires charge

• Both C1 & C2 charged to

VDD after one clock cycle

Page 29: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 57

Clock Voltage Doubler

C1 C2

M1 M2

VP1Clock period: 100ns

PB

P_Boost

VDD

2VDD

0

VDD=3V

R1 R2

*R1 & R2=1GOhmdummy resistors added for simulation only

P

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 58

Constant VGS Sampler: Φ LOW

• Sampling switch M11 is OFF

• C3 charged to VDDInput voltage

source

M3Triode

C3

M12Triode

M4

OFF

VS11.5V1MHz

Chold1pF

~ 2 VDD(boosted clock)

VDD

VDD

OFF M11OFF

DeviceOFF

VDD=3V

Page 30: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 59

Constant VGS Sampler: Φ HIGH

• C3 previously charged to VDD

• M8 & M9 are on:C3 across G-S of M11

• M11 on with constant VGS = VDD

C31pF

M8

M9 M11

VS11.5V1MHz

Chold1pF

VDD

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 60

Constant VGS Sampling

Input Switch VGate

Input Signal

Chold Signal

Page 31: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 61

Complete Circuit

Ref: A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” JSSC May 1999, pp. 599.

Clock Multiplier

Switch

M7 & M13 for reliability

Remaining issues:

-VGS constant only for Vin <Vout

-Nonlinearity due to Vth dependence of M11on body-source voltage

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 62

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

Page 32: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 63

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

OFF

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 64

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

ON

M2 Constant currentconstant gds

M1 replica of M2 & same VGSas M2M1 alsoconstant gds

* Note: Authors report a requirement of 280MHz GBW for the opamp for 12bit 50Ms/s ADC

Page 33: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 65

Advanced Clock Boosting Technique

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Tech. Papers, pp. 314

Sampling Switch

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 66

Advanced Clock Boosting Technique

• clk low– Capacitors C1a & C1b charged to VDD– MS off– Hold mode

Sampling Switch

clk low

Page 34: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 67

Advanced Clock Boosting Technique

Sampling Switch

• clk high– Top plate of C1a & C1b connected to gate of sampling switch– Bottom plate of C1a connected to VIN– Bottom plate of C1b connected to VOUT– VGS & VGD of MS both @ VDD & ac signal on G of MS average of VIN &

VOUT

clk high

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 68

Advanced Clock Boosting Technique

• Gate tracks average of input and output, reduces effect of I·R drop at high frequencies

• Bulk also tracks signal ⇒ reduced body effect (technology used allows connecting bulk to S)

• Reported measured SFDR = 76.5dB at fin=200MHz

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Tech. Papers, pp. 314

Sampling Switch

Page 35: EE247 Lecture 17 - University of California, Berkeleyee247/fa06/lectures/L17c_f06.pdf · EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 7 DAC Implementation Examples • Untrimmed

EECS 247 Lecture 17: Data Converters © 2006 H.K. Page 69

Switch Off-Mode Feedthrough Cancellation

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314