33
www.nanohub.org NCN EE606: Solid State Devices EE606: Solid State Devices Lecture 4: Solution of Schrodinger Equation Muhammad Ashraful Alam [email protected] Alam ECE606 S09 1

EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

www.nanohub.orgNCN

EE‐606: Solid State DevicesEE‐606: Solid State DevicesLecture 4: Solution of Schrodinger Equation

Muhammad Ashraful [email protected]

Alam  ECE‐606 S09 1

Page 2: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Outline

1) Time‐independent Schrodinger Equation1) Time independent Schrodinger Equation

2) Analytical solution of toy problems

3) B d t li t t3) Bound vs. tunneling states

4) Conclusions

5) Additional Notes: Numerical solution of Schrodinger Equation

Reference: Vol. 6, Ch. 2 (pages 29‐45) 

Alam  ECE‐606 S09 2

Page 3: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Motivation

PeriodicStructure

EE

Alam  ECE‐606 S09 3

Page 4: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Time‐independent Schrodinger Equation

2 2

( )d dU x iΨ Ψ− + Ψ =

Assume

/( ) ( ) iEtx xt eΨ ψ −=20

( )2

U x im dx dt

+ Ψ =

2 2 ( )iEt iEt iEtd iE

( , ) ( )x xt eΨ ψ=

2 2

20

( ) ( ) ( ) ( )2

iEt iEt iEtd x U x x i xm

iEe e edxψ ψ ψ

− − −− + =

2 2

20

( )2

d U x Em dx

ψ ψ ψ− + =

20

2 2

2 ( ) 0md E Ud

ψ ψ+ − =

Alam  ECE‐606 S09 4

2 2 ( )dx

ψ

Page 5: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Time‐independent Schrodinger Equation

20

2 2

2 ( ) 0md E Udx

ψ ψ+ − =

If E >U, then ….

22

2 0ddx

kψ ψ+ =[ ]02m Uk

E −≡ ( ) ( ) ( )x Asin kx B cos kxψ = +

dx ikx ikxA e A e−+ −≡ +

If U E th

( ) x xx De Eeα αψ − += +2

22 0d

dxαψ ψ− =[ ]02m U E

α−

If U>E, then ….

Alam  ECE‐606 S09 5

dxα ≡

Page 6: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

A Simple Differential Equation

2 2

20

( )2

d U x Em dx

ψ ψ ψ− + =

• Obtain U(x) and the boundary conditions for a given problem.

• Solve the 2nd order equation – pretty basic

• Interpret as the probability of finding an electron at x2 *ψ ψ ψ=• Interpret  as the probability of finding an electron at x

• Compute anything else you need, e.g., 

ψ ψ ψ=

* dp dxi dx

Ψ Ψ∞ ⎡ ⎤= ⎢ ⎥⎣ ⎦∫

0

* dE dxi dt

Ψ Ψ∞ ⎡ ⎤= −⎢ ⎥⎣ ⎦∫

Alam  ECE‐606 S09 6

0 i dx⎣ ⎦∫0 i dt⎣ ⎦

Page 7: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Outline

1) Time‐independent Schrodinger Equation1) Time independent Schrodinger Equation

2) Analytical solution of toy problems

3) B d t li t t3) Bound vs. tunneling states

4) Conclusions

5) Additional Notes: Numerical solution of Schrodinger Equation

Alam  ECE‐606 S09 7

Page 8: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Full Problem Difficult: Toy Problems First

PeriodicPeriodicStructure

E

Case 3:Free electronE >> U

Case 1:Electron in finite well E < U

Case 2:Electron in infinite wellE << U

Alam  ECE‐606 S09 8

E  << U

Page 9: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Five Steps for Analytical Solution

d 2ψdx 2 + k 2ψ = 01)

2N unknowns for N regions

( ) 0xψ = −∞ =

dx for N regions

2) Reduces 2 unknowns( ) 0xψ = +∞ =

B Bx x x xψ ψ− += =

=

Reduces 2 unknowns

3)Set 2N 2 equations forB B

B Bx x x x

d ddx dxψ ψ

− += =

=

Set 2N‐2  equations for 2N‐2 unknowns (for continuous U)

Det (coefficient matrix)=0And find E by graphical 

i l l ti

4) 2( , ) 1x E dxψ∞

−∞=∫5)

f f i

Alam  ECE‐606 S09 9

or numerical solution for wave function

Page 10: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Case 1: Bound‐levels in Finite Well (steps 1,2)

U(x)E

E

2) Boundarysin cosA kx B kxψ = +

1)

( ) 0

2) Boundary conditions

x xα α+

x xDe Neα αψ − ++=

1)

( ) 0( ) 0xx

ψψ

= −∞ == +∞ =

x xMe Ceα αψ − ++=

100 a

Page 11: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step3: Continuity of wave‐function

B Bx x x xψ ψ− += =

= C BC kAα=

= −3)

B Bx x x x

d ddx dxψ ψ

− += =

= sin( ) cos( )cos( ) sin( )

a

a

A ka B ka DekA ka kB ka De

α

αα

+ =

=

sin cosA kx B kxψ = +

cos( ) sin( )kA ka kB ka Deα− = −

xCeαψ = xDe αψ −=

Alam  ECE‐606 S09 110 a

Page 12: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step 3: Continuity of Wavefunction

C B=C kAα = −

sin( ) cos( ) aA ka B ka De α−+ =

cos( ) sin( ) akA ka kB ka De αα −− = −

0 0 00 01 1 A

k⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎢ ⎥ ⎢ ⎥

sin( ) co0 0 0

0 000

s( )cos( ) sin( ) /

a

a

BCka ka e

ka ka e k D

αα

α−

⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥=⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎣⎦ ⎦

−⎝ ⎠

Alam  ECE‐606 S09 12

00cos( ) sin( ) /ka ka e k Dα ⎣ ⎣⎦ ⎦−⎝ ⎠

Page 13: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step 4: Bound‐level in Finite Well

det (Matrix)=0

02

0

2 (1 ) 2tan( )2 1

mUaUEξ ξ

α ξ ξ αξ

−= ≡ ≡

O l k i E

02 1 Uξ

U0 Only unknown is E

(i) Use Matlab function 

0

0 a

( )(ii) Use graphical method

Alam  ECE‐606 S09 13

0 a

Page 14: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step 4: Graphical Method for Bound Levels

2 5x x= +2 (1 )ξ ξ

2 5y x= +21y x= 0

2 (1 )2

a ( )1

t n aξ ξξ

α ξ−

=−

E1xy

ζ=E/U

E1x0

x

Alam  ECE‐606 S09 14

Page 15: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step 4: Graphical Method for Bound Levels

E/U

ζ= E1E1

ζ=E/U

0 a

Alam  ECE‐606 S09 15

0 a

Page 16: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step 5: Wave‐functionsxC αψ xD α−

sin cosA kx B kxψ = +

0 0 01 1 A⎛ ⎞ ⎡ ⎤ ⎡ ⎤

xCeαψ = xDe αψ =

sin( ) co

0 0 00 0 0

0 0s( )

1 1

a

AB

ka ka e Ck

α

α−

⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥=⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟

00cos( ) sin( ) /aka DDe kka αα −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎣⎦ ⎦− −⎝ ⎠

0 01 1 B⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎢ ⎥ ⎢ ⎥

cos(0 0

sin )) 0 (a

C kAD kae Aka α

α−

⎜ ⎟ ⎢ ⎥ ⎢ ⎥= −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

1

( )

0 00 0

i (

1

)

1

ak

BC kAD A kα

α

−⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Alam  ECE‐606 S09 16

cos( ) sin( )0 akaD A kae α−⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

Page 17: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Step 5: Calculating Wave‐function

xCeαψ = xDe αψ −=sin cosA kx B kxψ = +

11 1 0 00 0

BkAC α

−⎛ ⎞−⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥0 0

sin( )cos( ) 0 a

kAA kakaD

Ce α

α−

⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

2

1dxψ∞

= ⇒∫( ) ( )

20 2 2 2 2

0

ax x

a

dx

e dx Asin kx B sin kx dx e dC xDα α

ψ−∞

∞ −

−∞

⎡ ⎤+ + +⎣ ⎦

∫ ∫ ∫

Alam  ECE‐606 S09 17

Page 18: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Aside: Infinite Quantum Well

d 2ψ + k 2ψ = 0 [ ]02 −m E Ukdx 2 + k ψ = 0 [ ]

≡k

)cos(sin kxBkxA +=ψ1) Solutions:

( ) ( ) ( )0 0 0 0x Asin k Bcos kψ = = = +

2) Boundary conditions

( ) ( ) ( )0 0 0 0x Asin k Bcos kψ = = = +

( ) ( ) ( )0x a Asin ka Asin nψ π= = = =

2 2 2

202n

nEm a

π=02 n

n

m Enkaπ

= =

Alam  ECE‐606 S09 18

02m aa

Page 19: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Five steps for Analytical Solution: Follow rules

d 2ψdx 2 + k 2ψ = 01)

2N unknowns for N regions

( ) 0xψ = −∞ =

dx for N regions

2) Reduces 2 unknowns( ) 0xψ = +∞ =

B Bx x x xψ ψ− += =

=

Reduces 2 unknowns

3)Set 2N 2 equations forB B

B Bx x x x

d ddx dxψ ψ

− += =

=

Set 2N‐2  equations for 2N‐2 unknowns (for continuous U)

Det(coefficient matix)=0And find E by graphical 

i l l ti

4) 2( , ) 1x E dxψ∞

−∞=∫5)

f f i

Alam  ECE‐606 S09 19

or numerical solution for wave function

Page 20: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Practical examples: Si/Ag and Si/SiO2

SiO2 SiSi

Alam  ECE‐606 S09 20

Speer et. al, Science 314, 2006.

Page 21: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Outline

1) Time‐independent Schrodinger Equation1) Time independent Schrodinger Equation

2) Analytical solution of toy problems

3) B d t li t t3) Bound vs. tunneling states

4) Conclusions

5) Additional Notes: Numerical solution of Schrodinger Equation

Alam  ECE‐606 S09 21

Page 22: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Case 2: Solution for  Particles with E>>U

2d 2ψdx 2 + k 2ψ = 0 [ ]02m E U

k−

≡ E

U(x) ~ 01) Solution ( ) ( ) ( )

ik ik

x Asin kx Bcos kxψ = +U(x) 0ikx ikxA e A e−

+ −≡ +

2) Boundary condition ( ) positive going wave

= negative going wave

ikx

ikx

x A e

A e

ψ +

−−

=

Alam  ECE‐606 S09 22

Page 23: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Free Particle …

( ) ( ) ( )x Asin kx Bcos kxψ = +

E

( ) ( ) ( )ikx ikx

x Asin kx Bcos kx

A e A e

ψ−

+ −

+

≡ +

E

( ) positive going wave

= negative going wave

ikx

ikx

x A e

A e

ψ +

=

2 2 2* A or Aψ ψψ= =U(x) ~ 0

Probability:

negative going waveA e−

A or Aψ ψψ + −Probability:

or -* dp dx k kΨ Ψ∞ ⎡ ⎤= =⎢ ⎥∫Momentum:

Alam  ECE‐606 S09 23

0

or -p dx k ki dx

Ψ Ψ= =⎢ ⎥⎣ ⎦∫Momentum:

Page 24: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Case 3:  Bound vs. Tunneling State

1 1ik x ik xAe Be−+Boundary conditions

1 1ik x ik xCe Me−+ 1 1ik x ik xDe Ne−+y

N=0

5 unknowns (C M A B D)5 unknowns (C,M,A,B,D)

4 equations from x=0 and x=a interfaces

No bound levels

Ratios of D/C is ofInterest

Alam  ECE‐606 S09 24

Interest.

Page 25: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Practical Example: Oxide Tunneling

Alam  ECE‐606 S09 25

Page 26: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Conclusions

1) We have discussed the analytical solution of Schrodinger equation for simple potentials. Such potential arises in wide variety of practical systems.

2) Numerical solution is very powerful, but it is easy to get wrong results if one is not careful.

3) S l i b d l l bl i diff t d t3) Solving bound level problem is different compared to the solution of tunneling problem. The corresponding recipes should be followed carefully.

Alam  ECE‐606 S09 26

Page 27: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Outline

1) Time‐independent Schrodinger Equation1) Time independent Schrodinger Equation

2) Analytical solution of toy problems

3) B d t li t t3) Bound vs. tunneling states

4) Conclusions

5) Additional Notes: Numerical solution of Schrodinger Equation

Alam  ECE‐606 S09 27

Page 28: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Numerical solution of Schrodinger Equation

d 2ψdx 2 + k 2ψ = 0 [ ]02k m E U( x ) /≡ −dx 2

U0(x)

k > 0α = ik α = ik

Alam  ECE‐606 S09 28

x

Page 29: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

(1) Define a grid …

U(x)2 2

( )d EU xψ ψ ψ− + = U(x)20

(2

) Em dx

U x ψ ψ+

UU1

ψ3

x

a

Alam  ECE‐606 S09 29

x0 1 2 3 N+1 N

Page 30: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

Aside: Finite difference – Connecting neighbors

( ) ( )2 2

00 2

d a da ...xx aψ ψψ ψ= + + ++( ) ( )

0 0

00 22x a x adx dxψ ψ

= =

( ) ( )2 2d a d ψψ( ) ( )

0 0

00 22x a x a

d a da ...dx d

xx

x aψ ψψ ψ

= =

= − + −−

2

( ) ( ) ( )0

22

20 00 2x a

x dax a adx

xψψ ψψ=

+ −+ − =

d 2ψdx 2

i

= ψ i−1 − 2ψ i +ψ i+1

a2

Alam  ECE‐606 S09 30

i

Page 31: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

(2) Express equation in Finite Difference Form

( )2

2 ( )Udt xa Eψ ψ ψ− + =2

t ≡( )0 2 ( )Ut xa Edx

ψ ψ+ =

d 2ψ ψ i 1 − 2ψ i +ψ i+1

0 202

tm a

d ψdx 2

i

= ψ i−1 2ψ i +ψ i+1

a2

( )2 EUt t tψ ψ ψ ψ⎡ ⎤− + + − =⎣ ⎦( )0 1 0 0 12i ii i iEUt t tψ ψ ψ ψ− +⎡ ⎤+ + =⎣ ⎦

ψ(0) = 0 ψ(L) = 0N unknowns

x

ψ( )

i 1 i i 1

Alam  ECE‐606 S09 31

0 x1 2 N+1 i-1 i i+1

Page 32: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

(3) Define the matrix …

−t0ψ i−1 + 2t0 + ECi( )ψ i − t0ψ i+1[ ]= Eψ i (i = 2, 3…N-1)

( )0 0 0 1 0 22 Ci it t E t Eψ ψ ψ ψ− + + − =⎡ ⎤⎣ ⎦ (i = 1)

( )2t t E t Eψ ψ ψ ψ− + + − =⎡ ⎤⎣ ⎦ (i = N)( )0 1 0 0 12N Ci N N it t E t Eψ ψ ψ ψ− +− + + − =⎡ ⎤⎣ ⎦ (i = N)

Hψ = Eψ−t0 (2t0 + EC1) −t0

⎡ ⎢ ⎢ ⎢ ⎢ ⎢

⎤ ⎥ ⎥ ⎥ ⎥ ⎥

−t0 (2t0 +ECi) −t0 = E

N x N N x 1⎣

⎢ ⎢ ⎢ ⎢ ⎢ ⎦

⎥ ⎥ ⎥ ⎥ ⎥

Alam  ECE‐606 S09 32

Page 33: EE 606: Solid State Devices Lecture 4: of Schrodinger Equation

(4) Solve the Eigen‐value Problem

U(x)Hψ = Eψ wrong U(x)Hψ = Eψ wrong

ε3

ε4Eigenvalueproblem; easily l d i h

ε1

ε2

3solved with MATLAB & nanohub tools

x

a

Alam  ECE‐606 S09 33

1 x32 4 N (N-1)