66
10/4/2015 Module 3.3 COGNITIVE THEORIES http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 1/66 Module 3.3 COGNITIVE THEORIES "Experiential Learning Theories" Site: University of the Philippines Open University: Course: EDS_103_1T_201516Theories of Learning Book: Module 3.3 COGNITIVE THEORIES Printed by: Reyes Maria Joanna Rose Date: Sunday, 4 October 2015, 9:45 AM

EDS 103 Module 3.3 Information Processing Theories- … · Module!3.3!COGNITIVE!THEORIES!!!!! "Experiential,Learning,Theories"!! Site:! University!of!the!Philippines!Open!University:!!

  • Upload
    buiminh

  • View
    221

  • Download
    5

Embed Size (px)

Citation preview

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 1/66

 

   

 

 Module  3.3  COGNITIVE  THEORIES    

     "Experiential  Learning  Theories"    Site:   University  of  the  Philippines  Open  University:    Course:  EDS_103_1T_2015-­‐16-­‐Theories    of    Learning    Book:   Module  3.3  COGNITIVE  THEORIES  Printed  by:  Reyes  Maria  Joanna  Rose  Date:  Sunday,  4  October  2015,  9:45  AM                                                                      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 2/66

 

           

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 3/66

 

 

 

Table  of  contents  

1.  INTRODUCTION;    Objectives  

2.  INFORMATION    PROCESSING    APPROACH  

2.1  Resources  to  study  

 2.2  Bite-­‐size  notes  

2.3  Study  Questions    

3  Theory  in  Action    

4  Discussions  

5  Suggestions  for  your  eJournal  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 4/66

 

 

 

1   INTRODUCTION;  Objectives    

-­‐What  principles  underlie  information  processing  theories?  

-­‐  How  important  is  attention,  and  how  does  it  affect  learning?    -­‐What  are  the  different  memory  stores?  -­‐How  are  memories  made,  stored,  and  retrieved?  -­‐How  may  we  improve  memory  storage  and  retrieval?    -­‐How  is  perception  explained  by  information  processing  theories  of  learning?  -­‐How  may  learning  events,  in  and  out  of  school,  be  explained  in  terms  of  cognitive  processes  according  to  the  information  processing   theory?      LEARNING  OBJECTIVES    After  studying  the  four  sections  of  this  module,  you  should  be  able  to:    

-­‐discuss  the  basic  assumptions  that  underlie  the  four  major  learning  theories—behavioral,  social,  constructivist,  and  cognitive;    

-­‐propose  theoretically  principled  explanations  for  the  way  students  respond  to  learning  events;  

-­‐use  core  concepts  of  learning  theories  to  analyze  teaching-­‐learning  events  and  predict  learning  outcomes;    

-­‐propose  theoretically  justified  approaches  to  improve  pedagogy.    INTRODUCTION    Towards  the  late  20th  century,  the  emphasis  in  psychology  began  to  veer  towards  the  cognitive  view.  From  behavior,  the  focus  gradually   shifted  to  thought  processes,  with  particular  interest  on  memory  (Huitt,  2003).  The  emergence  of  the  cognitive  perspectives  of  learning  was   partly  due  to  the  failure  of  behaviorism  to  sufficiently  explain  complex  phenomena,  e.g.,  language  learning  and  problem  solving,  as  well  as   differential  responses  of  people  to  a  common  stimulus.    While  behaviorists  view  learning  as  consequences  of  responses  to  stimuli  impinged  on  man,  cognitivists  view  learning  as  consequences  of  man’s  active  attendance  to  and  reorganization  of  information  into  meaningful  knowledge,  coupled  with  an  innate  desire  to  understand  the  world  (Schunk,  2012,  165).  The  principal  concern  of  proponents  of  cognitive  theories  are  internal  (mental)  processes  that  intervene  between  stimuli  and  responses.  The  outcomes  of  processing  information  include  remembering,  concept-­‐formation,  reasoning,  problem-­‐solving,  and  a  host  of  other  complex  knowledge  or  skills.              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 5/66

 

       

   -­‐-­‐-­‐  Learning  is  a  change  in  people’s  mental  structures  instead  of  changes  in  observable  behavior.   -­‐-­‐-­‐    In  brief,  cognitive  theory  asserts  that  learning  invokes  changes  in  people’s  mental  structures  instead  of  changes  in  observable  behavior;  i.e.,learning  is  a  mental  process.    KEY  ASSUMPTIONS  OF  COGNITIVE  LEARNING  THEORY    -­‐Learners  are  active  seekers  and  processors  of  information.  They  manipulate,  monitor  and  strategize  processes  applied  to  information.      -­‐Prior  learning  influences  how  new  understanding  develops.    -­‐The  capacity  to  process  information  gradually  progresses,  thus  allowing  learners  to  increasingly  acquire  knowledge  and  skills  (Santrock,  2011).    MAIN  COGNITIVE  APPROACHES  TO  LEARNING  

-­‐SOCIAL  LEARNING–  Learning  is  influenced  by  the  interactions  among  behavior,  environment,  and  the  individual    

 

-­‐INFORMATION-­‐PROCESSING  APPROACH  -­‐  Attention,  memory,  thinking,  and  other  cognitive  processes  characterize  how  people  learn    

 

-­‐CONSTRUCTIVIST  APPROACH  -­‐  the  development  of  knowledge  and  understanding  involves  the  process  of  construction  

 -­‐-­‐-­‐-­‐-­‐Cognitive  constructivist  approach  –  emphasizes  cognition/  mental  processes.  -­‐-­‐-­‐-­‐-­‐Social  constructivist  approach  –emphasizes  the  collaborative  and  other  social  processes.  (Holzman,  in  Santrock  2011,  p.  218)      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 6/66

 

   

 

 

2  INFORMATION  PROCESSING  APPROACH  

In  this  module,  we  shall  focus  our  attention  on  the  information  processing  approach  to  learning.    Information  processing  theories  put  an  emphasis  on  the  structures  and  functions  of  mental  processes,  specifically  memory.    INFORMATION  PROCESSING  THEORIES    -­‐structure  of  mental  processes/  memory  -­‐functions  of  mental  processes/  memory    -­‐  COGNITIVE  RESOURCES  (capacity  and  speed  and  cognitive  skills)    =  determinants  of  MEMORY  =  biology  and  experience  contribute  to  growth  in  cognitive  resources  (Bjorklund,  2011).    The  theory  assumes  that  human  learning  is  analogous  to  computer  processing;  i.e.,  information  is  received,  stored  in  memory,  and  retrieved       as  needed.  As  individuals  gain  maturity  and  experience,  both  the  capacity  and  speed  of  information  processing  capabilities  grow.  In   information-­‐processing  theory,  capacity  and  speed  comprise  cognitive  resources,  which  are  posited  to  be  strong  determinants  of  memory  and  other  cognitive  skills  (Santrock,  2011,  p.  255).    

Cognition  -­‐  thought  Memory  -­‐  the  storage  and  retrieval  of  information  (SOURCE:  Huitt,  2003)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐    "Both  biology  and  experience  contribute  to  growth  in  cognitive  resources  (Bjorklund,  2011).  Think  about  how  much  faster  you  can   process  information  in  your  native  language  than  in  a  second  language.  [Changes]  in  the  brain  …  provide  a  biological  foundation  for   increased  cognitive  resources  (Zelazo  &  Lee,  2011).  As  children  grow  and  mature,  important  biological  developments  occur  both  in   brain  structures,  such  as  changes  in  the  frontal  lobes,  and  at  the  level  of  neurons,  such  as  the  blooming  and  pruning  of  connections   between  neurons  that  produces  fewer  but  stronger  connections  (Nelson,  2011).  Also…  myelination  (the  process  that  covers  the  axon    with  a  myelin  sheath)  increases  the  speed  of  electrical  impulses  in  the  brain.  Myelination  continues  at  least  through  adolescence  (Paus,   2009)"  

-­‐-­‐Excerpt  from  Santrock,  2011,  p.  255    Stage  theory  (Atkinson  and  Shriffin),  levels-­‐of-­‐processing  theory  (Craik  and  Lockhart),  parallel-­‐distributed  processing  model,  and   connectionism  (RumelHart  and  McClellans)  are  among  the  widely  accepted  information  processing  models  in  cognitive  psychology.  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 7/66

 

 

 

 

 

2.1  Resources  to  study    STUDY:  (REFER  TO  PAGE  15  FOR  THE  NOTES)  (The  list  includes  very  basic  resources  for  beginners.)    

1.  Cognitive  Psychology  (MacLeod,  2007).  2.  Information  Processing  Theory  (Schraw  &  McCrudden,  2013/  Education.com)      3.  Types  of  Memory;  4.  Memory  Processes  (Mastin,  2010)  

5.  Chapter  6:  Memory  (Dewey)    Part  Two:  Different  Types  of  Memory:  6.  The  Atkinson-­‐Shiffrin  Model    7.  Criticisms  of  the  Three-­‐Box  Model    8.   Iconic  Memory  9.  Echoic  Memory    10.  Working  Memory    11.  Rehearsal  12.  The  Magical  Number  Seven  plus  or  minus  Two    13.   Varieties  of  Secondary  Memory  14.  Declarative  vs.  Procedural  Memory  15.  Implicit  vs  Explicit  Memory  16.  Priming  17.  Summary:  Different  Types  of  Memory    18.  An  Overview  of  Memory  and  How  it  Works  (Cherry/  about.com)  19.  What  Is  Short-­‐Term  Memory?  20.  What  Is  Long-­‐Term  Memory?    21.  What  is  Episodic  Memory?  22.  What  Is  Procedural  Memory?  23.  Memory  Retrieval:  Retrieving  Information  from  Memory    24.  What  Is  Clustering?  25.  Explanations  for  Forgetting:  Reasons  Why  We  Forget    26.  Information  processing  and  memory:  Theory  and  applications  (Lutz  &  Huitt,  2003)    27.  Information  Processing  (Anders,  2008)  28.  Levels  of  Processing  (Craik  &  Lockhart)    29.  Information  Processing  Theory  (George  A  Miller)      30.  Top-­‐Down  VS  Bottom-­‐Up  Processing  (Sincero)  31.  The  Information  Processing  Approach  to  Cognition  (Huitt,  2003)    32.  Information  Processing  Theories  -­‐  Section  III  (Brogan,  2009)      33.  Primacy/Recency  Effect  (Sousa)              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 8/66

 

       

   

Demonstrating  the  Primacy  Effect    

           

             

Video:   (Cherry)  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 9/66

 

     

2.2  Bite-­‐size  notes    EXECUTIVE  (CONTROL)  PROCESSES  INVOLVED  IN  THE  MECHANISMS  OF  COGNITIVE  CHANGE  

-­‐Attention:  focusing  mental  resources  

 -­‐Perception:  pattern  recognition  to  make  meaning  from  stimuli/  environmental  inputs;  requires  inputs  to  be  held  in  sensory  register  and   compared  with  prior  knowledge  from  LTM.    -­‐Rehearsal:  retaining  information  through  repetition    -­‐Encoding  (LTM):  making  connections  to  create  meaningful  context  in  long-­‐term  memory  (LTM)  to    -­‐Forgetting:  failure  to  recall  –  debatable  if  merely  due  to  a  lack  of  good  retrieval  cues  

-­‐-­‐Complex  cognition  -­‐  imaging  (visually  representing  information),  decision-­‐making,  metacognition,  self-­‐regulation,  and   motivational  strategies,  most  of  which  are  discussed  in  greater  depth  in  the  chapter  on  complex  cognition.  

 MEMORY  “Memory  is  the  retention  of  information  over  time…    Memory  anchors  the  self  in  continuity.    Without  memory  you  would  not  be  able  to   connect  what  happened  to  you  yesterday  with  what  is  going  on  in  your  life  at  present.  Today  educational  psychologists  emphasize  that  it  is  important  to  view  memory  not  in  terms  of  how  children  add  something  to  their  memory  but  rather  how  they  actively  construct  their  memory   (Ornstein  &  Light,  2010;  Ornstein  &  others,  2010).”  

(Source:  Santrock,  2011,  p.  263)    TYPES  OF  MEMORY  STORES  

-­‐Sensory  memory    

-­‐Working  memory    

-­‐ Long-­‐term  memory    MAJOR  COMPONENTS  OF  INFORMATION  PROCESSING  

-­‐attention    

-­‐perception  -­‐short-­‐term  (working)  memory    -­‐ long-­‐term  memory              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 10/66

 

         

     

 Source:  Santrock,  2011,  p.  263      

Episodic  and  semantic  memories  compared,  at  a  glance  

     ATTENTION  Attention  strongly  determines  how  well  information  is  processed  cognitively.  An  important  aspect  about  attention  that  we  should  take  note   of  is  the  aspect  of  limited  capacity.  Hence,  individuals  have  to  allocate  this  limited  resource.    TYPES  OF  ALLOCATION  OF  ATTENTION  

-­‐Selective  attention  –  selective  focus  on  a  specific,  relevant  aspect  of  environmental  stimuli,  ignoring  the  irrelevant  stimuli  (e.g.,  listen   to  one  speaker  in  midst  of  several  people  talking)  

-­‐Divided  attention  –  paying  attention  to  more  than  one  event  simultaneously,  multitasking  (e.g.,  listening  to  music  and  studying  a   lesson)  

 -­‐Sustained  attention  vigilance;  maintaining  focus  over  a  sustained  period  of  time,  a  problem  characterizing  children  with  ADHD    -­‐Executive  attention  –deployment  of  attention  to  effectively  engage  in  cognitive  tasks  such  as  planning,  allocating  attention  to  goals,  error   detection  and  compensation,  monitoring  progress.    

Source:  Santrock,  2011,  p.  258  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 11/66

 

       

2.3  Study  Questions    

-­‐How  did  the  cognitivist  perspective  evolve  from  the  behaviorist  perspective?  What  pushed  its  development?    

-­‐What  basic  assumptions/general  principles  underlie  information  processing  theories?    

-­‐Describe  Atkinson  and  Shiffrin’s  stage  theory  model  of  memory.  

 

   http://en.wikiversity.org/wiki/Invariant_Tasks:_Principles_for_Learning    

-­‐How  does  Atkinson  and  Shiffrin’s  model  explain  mechanisms  of  change  in  learning?  What  are  the  different  memory   stores?  How  are  memories  made,  stored,  and  retrieved?  -­‐Compare  the  duration  and  capacities  of  short-­‐term  and  long-­‐term  memories.    -­‐ How  may  we  improve  memory  storage  and  retrieval?  -­‐What  are  some  criticisms  to  the  Atkinson-­‐Shiffrin  model?    -­‐Briefly  compare  the  different  models  of  information  processing:  -­‐-­‐Stage  model  -­‐-­‐Dual  Coding  Theory  -­‐-­‐Schema  theory,  parallel  distributed  processing,  and  connectionist  models  

 

-­‐Describe  how  the  following  operate  in  information  processing:  -­‐-­‐Encoding  -­‐-­‐Structuring  and  Organizing  -­‐-­‐   Storage  and  retrieval    

-­‐Explain  the  argument  that  attention  is  a  limited  resource.  What  are  its  implications  for  learning?    

-­‐Which  attentional  allocations  (see  list  above)  are  most  important  for  the  effortful  control  that  is  necessary  to  effectively  engage  in  complex  tasks?  Adapted  from  Santrock,  2011,  p.  258    

-­‐Describe/  Compare  the  different  types  of  memory.  

 

 

 

 

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 12/66

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Source:  

http://www.human-­‐memory.net/types.html    

-­‐Why  do  we  fail  to  remember  (store)  information  (what  we  have  experienced,  sensed,  or  perceived)?  Why  do  fail  to  recall  (retrieve)   what  we  have  previously  stored  in  memory?  

 

-­‐Define  each  of  the  following-­‐-­‐  attention,  chunking,  clustering,  priming-­‐-­‐and  describe  their  roles  in  processing  information  (in  the   formation  of  memory  or  learning).    

-­‐Explain  primary  effects  and  recency  effects.    

-­‐Using  principles  from  information-­‐processing  theories,  how  can  we  make  learning  more  efficient  and  effective?  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 13/66

 

       

3  Theory  in  Action    

-­‐Examine  the  strategies  in  the  following  resources.   Identify  the  underlying  principle/s  behind  each  strategy—why/how  does  each   work?  -­‐-­‐12  Great  Memory  Strategies  For  Better  Grades    -­‐-­‐Using  Memory  Effectively  -­‐-­‐20  Ways  to  Improve  Your  Memory    -­‐Attempt  to  quickly  memorize  the  two  sets  of  letters  below.  Which  set  was  easier  to  remember?  Did  you  realize  that  both  sets   contained  the  same  letters,  except  that  the  second  set  has  been  organized  in  manageable  (5  words  versus  30  letters)  and  meaningful  chunks  (meaningful  words  versus  nonsense  letters)?    

-­‐E  L  I  M  S  W  O  R  R  O  M  O  T  T  E  G  R  O  F  K  O  O  B  Y  T  I  C    

-­‐CITY,  BOOK,  FORGET,  TOMORROW,  SMILE.    -­‐Why  is  it  important  to  organize  large  amounts  of  information  in  “manageable”  chunks?      -­‐ Why  do  phone  numbers  almost  always  have  7  digits?  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 14/66

 

       

4  Discussions  

The  forum  is  open  for  any  related  discussion  and  must  not  be  limited  to  the  following  suggestion/s.   You  may  generate  your  own  questions/   discussion  threads.    1.  What  implications  do  differences  in  declarative  and  procedural  knowledge  have  for  instruction?  Where  should  our  emphasis  be  as   far  as  learning  is  concerned?    2.  Consider  the  different  ways  attention  is  allocated  (selective,  divided,  sustained,  and  executive).  Cite  how  each  operated  in  learning   situations.  Use  your  understanding  of  these  processes  to  explain  how  learning  is  either  enhanced  or  impaired  in  the  situations  you   cited.  Make  recommendations  when  appropriate.    3.  How  may  we  use  our  understanding  of  primacy-­‐recency  effect  in  the  classroom?    4.  Plan  ways  to  improve  your  current  (a)  teaching  practice  and  (b)  learning  strategies  by  applying  some  principles  from  this  module.   (c)   Identify  the  principle.

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 15/66

 

       

 1.  COGNITIVE  PSYCHOLOGY  (MACLEAOD,  2007)    (http://www.simplypsychology.org/cognitive.html)    Cognition  –  knowing    -­‐refers  to  the  study  of  human  mental  processes  and  their  role  in  thinking,  feeling  and  behaving.    -­‐focuses  on  the  way  humans  process  information  HUMAN  INFORMATION  PROCESS-­‐  looking  at  how  we  treat  information  that  comes  in  to  the  person  (what  behaviorists  would  call  stimuli),  and  how  this  treatment  leads  to  responses    -­‐interested  in  the  variables  that  mediate  between  stimulus/input  and  response/output.    -­‐a  study  about  internal  processes  including  perception,  attention,  language,  memory  and  thinking.        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 16/66

 

         COGNITIVE  PSYCHOLOGY  -­‐nomothetic  idiographic  approach  -­‐-­‐nomothetic  –  laws  and  generalization  -­‐-­‐idiographic  –  own  or  private    -­‐reductionist  approach  -­‐-­‐reductionist  –  the  belief  that  human  behavior  can  be  explained  by  breaking  it  down  into  smaller  component  parts.  -­‐-­‐-­‐the  best  way  to  understand  why  we  behave  as  we  do  is  to  look  closely  at  the  very  simplest  parts  that  make  up  our  systems,  and  use  the  simplest  explanations  to  understand  how  they  work.  -­‐-­‐-­‐This  means  that  all  behaviour,  no  matter  how  complex  can  be  reduced  to  simple  cognitive  processes,  like  memory  or  perception.      Cognitive  approach  is  a  scientific  one  that  is  why  psychologist  use  laboratory  experiment  to  test  it.    COGNITIVE  PSYCHOLOGY  FACTORS  -­‐Dissatisfaction  with  the  behaviorist  approach  in  its  simple  emphasis  on  external  behavior  rather  than  internal  processes.      -­‐The  development  of  better  experimental  methods.      -­‐Comparison  between  human  and  computer  processing  of  information.      INFORMATION  PROCESSING  APPROACH  1.  Information  made  available  from  the  environment  is  processed  by  a  series  of  processing  systems  (e.g.  attention,  perception,  short-­‐term  memory);    2.  These  processing  systems  transform,  or  alter  the  information  in  systematic  ways;    3.The  aim  of  research  is  to  specify  the  processes  and  structures  that  underlie  cognitive  performance;    4.Information  processing  in  humans  resembles  that  in  computers.    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 17/66

 

     MEDIATIONAL  PROCESSES    The  behaviorists  approach  only  studies  external  observable  (stimulus  and  response)  behaviour  which  can  be  objectively  measured.  They  believe  that  internal  behaviour  cannot  be  studied  because  we  cannot  see  what  happens  in  a  person’s  mind  (and  therefore  cannot  objectively  measure  it).    In  comparison,  the  cognitive  approach  believes  that  internal  mental  behaviour  can  be  scientifically  studied  using  experiments.  Cognitive  psychology  assumes  that  a  mediational  process  occurs  between  stimulus/input  and  response/output.                                                                                                              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 18/66

 

           

COGNITIVE  PSYCHOLOGY  HISTORY  -­‐revolutionarize  in  the  late  1950’s  and  1960’s    -­‐dominant  approach  in  1970’s  (perspective)    -­‐Piaget  and  Tolman    -­‐arrival  of  computer  -­‐  allowed  psychologists  to  try  to  understand  the  complexities  of  human  cognition  by  comparing  it  with  something  simpler  and  better  understood  i.e.  an  artificial  system  such  as  a  computer.    -­‐  The  idea  of  information  processing  was  adopted  by  cognitive  psychologists  as  a  model  of  how  human  thought  works.    

-­‐Norbert  Wiener  (1948)  published  Cybernetics:  or  Control  and  Communication  in  the  Animal  and  the  Machine,  introducing  terms  such  as  input  and  output.    -­‐Tolman  (1948)  work  on  cognitive  maps  –  training  rats  in  mazes,  showed  that  animals  had  internal  representation  of  behavior.    -­‐Birth  of  Cognitive  Psychology  often  dated  back  to  George  Miller’s  (1956)  “The  Magical  Number  7  Plus  or  Minus  2.”    -­‐Newell  and  Simon’s  (1972)  development  of  the  General  Problem  Solver.    -­‐In  1960,  Miller  founded  the  Center  for  Cognitive  Studies  at  Harvard  with  famous  cognitive  developmentalist,  Jerome  Bruner.    -­‐Ulric  Neisser  (1967)  publishes  "Cognitive  Psychology",  which  marks  the  official  beginning  of  the  cognitive  approach.    -­‐Process  models  of  memory  Atkinson  &  Shiffrin’s  (1968)  Multi  Store  Model.    -­‐Cognitive  approach  highly  influential  in  all  areas  of  psychology  (e.g.  biological,  social,  behaviorism,  development  etc.).                                        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 19/66

 

     

KEY  FEATURES  -­‐Mediational  Processes  -­‐Information  Processing  -­‐Computer  Analogy  -­‐Introspection  (Wundt)  -­‐Nomothetic  (studies  the  group)  -­‐Schema  -­‐Machine  Reductionism    BASIC  ASSUMPTIONS  -­‐Cognitive  psychology  is  a  pure  science,  based  mainly  on  laboratory  experiments.    -­‐Behavior  can  be  largely  explained  in  terms  of  how  the  mind  operates,  i.e.  the  information  processing  approach.    -­‐The  mind  works  in  a  way  similar  to  a  computer:  inputting,  storing  and  retrieving  data.    -­‐Mediational  processes  occur  between  stimulus  and  response.    STRENGTHS  -­‐Scientific  -­‐Highly  applicable  (e.g.  therapy,  EWT)  -­‐Combines  easily  with  approaches:  behaviorism  +  Cog  =  Social  Learning  Biology  +  Cog  =  Evolutionary  Psy  

-­‐Many  empirical  studies  to  support  theories    LIMITATIONS  -­‐Ignores  biology  (e.g.  testosterone)  -­‐Experiments  -­‐  low  ecological  validity  -­‐Humanism  -­‐  rejects  scientific  method  -­‐Behaviorism  -­‐  can’t  objectively  study  unobservable  behavior  -­‐Introspection  is  subjective  -­‐Machine  reductionism    METHODOLOGY  -­‐Lab  Experiments  -­‐Introspection  (Wundt)  -­‐Memory  Psychology  -­‐Interviews  (Kohlberg,  Piaget)  -­‐Case  Studies  (KF,  HM  )  -­‐Observations  (Piaget)  -­‐Computer  Modeling                    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 20/66

 

       METHODOLOGY  -­‐Moral  Development  (Kohlberg,  Piaget)  -­‐Eyewitness  Testimony  -­‐Memory  -­‐Forgetting  -­‐Selective  Attention  -­‐Perception  -­‐Child  Development  (Piaget)  -­‐Language  Acquisition  -­‐Cognitive  Behavioral  Therapy  -­‐Learning  Styles  (Kolb)  -­‐Information  Processing  -­‐Cognitive  Interview  -­‐Education  (Vygotsky,  Bruner,  Piaget)  -­‐Abnormal  Behavior  (e.g.  Depression    CRITICAL  EVALUATION  B.F.  Skinner  criticizes  the  cognitive  approach  as  he  believes  that  only  external  stimulus  -­‐  response  behavior  should  be  studied  as  this  can  be  scientifically  measured.    Therefore,  mediation  processes  (between  stimulus  and  response)  do  not  exist  as  they  cannot  be  seen  and  measured.  Skinner  continues  to  find  problems  with  cognitive  research  methods,  namely  introspection  (as  used  by  Wilhelm  Wundt)  due  to  its  subjective  and  unscientific  nature.    Humanistic  psychologist  Carl  Rogers  believes  that  the  use  of  laboratory  experiments  by  cognitive  psychology  have  low  ecological  validity  and  create  an  artificial  environment  due  to  the  control  over  variables.  Rogers  emphasizes  a  more  holistic  approach  to  understanding  behavior.    The  information  processing  paradigm  of  cognitive  psychology  views  that  minds  in  terms  of  a  computer  when  processing  information.  However,  there  are  important  difference  between  humans  and  computers.  The  mind  does  not  process  information  like  a  computer  as  computers  don’t  have  emotions  or  get  tired  like  humans.    Behaviorism  assumes  that  people  are  born  a  blank  slate  (tabula  rasa)  and  are  not  born  with  cognitive  functions  like  schemas,  memory  or  perception.    The  cognitive  approach  does  not  always  recognize  physical  (re:  biological  psychology)  and  environmental  (re:  behaviorism)  factors  in  determining  behavior.    Cognitive  psychology  has  influenced  and  integrated  with  many  other  approaches  and  areas  of  study  to  produce,  for  example,  social  learning  theory,  cognitive  neuropsychology  and  artificial  intelligence  (AI).                

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 21/66

 

       2.  INFORMATION  PROCESSING  THEORY  (SCHRAW  &  MCCRUDDENT,  2013/EDUCATION.COM)  (http://www.education.com/reference/article/information-­‐processing-­‐theory/)    INFORMATION  PROCESSING  MODEL  -­‐used  as  a  metaphor  for  successful  learning  because  it  is  well  supported  by  research  and  provides  a  well-­‐articulated  means  for  describing  the  main  cognitive  structures  (memory  systems)  and  processes  (strategies)  in  the  learning  cycle.    THREE  MAIN  COMPONENTS  OF  INFORMATION  PROCESSING  THEORY  1.  sensory  memory  2.  working  memory  3.  long-­‐term  memory    1.  SENSORY  MEMORY  -­‐together  with  working  memory  enable  people  to  manage  limited  amoutns  of  incoming  information  during  initial  processing    2.  WORKING  MEMORY  -­‐together  with  sensory  memory  enable  people  to  manage  limited  amoutns  of  incoming  information  during  initial  processing    3.  LONG-­‐TERM  MEMORY  -­‐serves  as  repository  for  knowledge.    1.  SENSORY  MEMORY  -­‐Sensory  memory  processes  incoming  sensory  information  for  very  brief  periods  of  time,  usually  on  the  order  of  1/2  to  3  seconds.  -­‐The  main  purpose  of  sensory  memory  is  to  screen  incoming  stimuli  and  process  only  those  stimuli  that  are  most  relevant  at  the  present  time.  -­‐information  processing  in  sensory  memory  usually  occurs  too  quickly  for  people  to  consciously  control  what  they  attend  to  -­‐attention  allocation  and  sensory  processing  are  fast  and  unconscious.  -­‐Information  that  is  relevant  to  the  task  at  hand,  and  information  that  is  familiar  and  therefore  subject  to  automatic  processing,  are  the  most  likely  types  of  information  to  be  processed  in  sensory  memory  and  forwarded  to  the  working  memory  buffer.    -­‐Information  that  is  highly  relevant  may  receive  some  degree  of  controlled,  conscious  processing  if  it  is  crucial  to  a  task  (e.g.,  attending  to  salient  information  such  as  animals  along  the  road  while  driving  at  high  speed).    -­‐Controlled  processing  in  sensory  memory  would  be  likely  further  to  reduce  the  limited  amount  of  information  that  can  be  processed  at  any  given  moment.    Attention  allocation:  fast  and  unconcious  Sensory  Processing:  fast  and  unconcious  Information  relevant  to  the  task  at  hand  and  familiar:  subject  to  automatic  processing  Information  highly  relevant:    controlled  and  conscious  processing        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 22/66

 

       2.  WORKING  MEMORY  -­‐Working  memory  is  a  term  that  is  used  to  refer  to  a  multi-­‐component  temporary  memory  system  in  which  information  is  assigned  meaning,  linked  to  other  information,  and  essential  mental  operations  such  as  inferences  are  performed.    -­‐All  individuals  experience  severe  limitations  in  how  much  mental  activity  they  can  engage  in  due  to  limited  cognitive  resources  (Kane  &  Engle,  2002).  Although  humans  differ  with  respect  to  available  cognitive  resources,  all  learners  experience  severe  limitations  regardless  of  their  skill  and  ability  level.  Often,  differences  between  one  learner  and  another  are  not  due  to  the  amount  of  resources,  but  how  efficiently  those  resources  are  used.    -­‐Automaticity  -­‐  being  able  to  perform  a  task  very  quickly  and  efficiently  due  to  repeated  practice  (Stanovich,  2003)  -­‐  Automated  activities  usually  require  few  cognitive  resources;    -­‐Selective  processing  -­‐  refers  to  the  act  of  intentionally  focusing  one's  limited  cognitive  resources  on  stimuli  that  are  most  relevant  to  the  task  at  hand.        

 Figure  1  ILLUSTRATION  BY  GGS  INFORMATION  SERVICES.  CENGAGE  LEARNING,  GALE.                          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 23/66

 

       BADDELEY’S  2001  MODEL  THREE  MAIN  COMPONENTS  OF  INFORMATION  PROCESSING  THEORY  1.  Executive  Control  System  2.  Articulary  Loop  3.  Visual-­‐Spatial  Sketch  Pad    1.  EXECUTIVE  CONTROL  SYSTEM  -­‐select  incoming  information  -­‐determine  how  to  best  process  that  information  -­‐construct  meaning  through  organization  and  inferences  -­‐transfer  the  information  to  long-­‐term  memory  or  choose  to  delete  that  information  from  the  memory  system  altogether.      Most  models  of  working  memory  assume  that  the  central  executive  is  the  place  where  humans  “make  conscious  meaning”  of  the  information  they  process  (Shah  &  Miyake,  1999).    2.  ARTICULARY  LOOP  -­‐maintain  and  further  process  verbal  information    3.  VISUAL-­‐SPATIAL  SKETCH  PAD  -­‐analogous  to  articulary  loop  in  that  it  maintains  and  further  processes  non-­‐verbal  and  visual  information.  -­‐information  is  lost  quickly  from  working  memory  (5  to  15  seconds)  unless  some  type  of  mental  rehearsal  occurs.  -­‐Barring  rehearsal  –  (ex.  Repeating  telephone  number)  information  is  either  forwarded  to  long-­‐term  memory  or  is  deleted  from  system    

 Table  1  ILLUSTRATION  BY  GGS  INFORMATION  SERVICES.  CENGAGE  LEARNING,  GALE    BADDELEY’S  MODEL  CRITICAL  ASSUMPTIONS  ABOUT  PROCESSING  OF  INFORMATION  IN  WORKING  MEMORY  1.  Each  of  the  three  subsystems  possesses  its  own  pool  of  limited  cognitive  resources.  -­‐This  means  that,  under  normal  information  processing  circumstances,  each  subsystem  performs  work  without  taxing  the  other  subsystems.    2.   The   executive   control   system   regulates   the   articulatory   loop   and   visual-­‐spatial  sketch  pad.        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 24/66

 

       3.  LONG-­‐TERM  MEMORY  -­‐Unlike  sensory  and  working  memory,  long-­‐term  memory  is  not  constrained  by  capacity  or  duration  of  attention  limitations.    -­‐The  role  of  long-­‐term  memory  is  to  provide  a  seemingly  unlimited  repository  for  all  the  facts  and  knowledge  in  memory.    -­‐Most  researchers  believe  that  long-­‐term  memory  is  capable  of  holding  millions  of  pieces  of  information  for  very  long  periods  of  time  (Anderson,  2000).    TWO  ASPECTS  OF  LONG-­‐TERM  MEMORY  a.  What  types  of  information  are  represented  b.  How  information  is  organized    Qualitatively  different  types  of  information  exist  in  long-­‐term  memory  and  that  information  must  be  organized,  and  therefore  quickly  accessible,  to  be  of  practical  use  to  learners.    -­‐Figure  1  shows  that  working  memory  and  long-­‐term  memory  are  connected  by  encoding  and  retrieval  processes.      -­‐Encoding  refers  to  a  large  number  of  strategies  that  move  information  from  temporary  store  in  working  memory  into  long-­‐term  memory.  -­‐-­‐Examples  include  organization,  inference,  and  elaboration  strategies,  which  will  be  discussed  later.    -­‐Retrieval  refers  to  processes  that  enable  individuals  to  search  memory  and  access  information  for  active  processing  in  working  memory.      -­‐Both  encoding  and  retrieval  greatly  facilitate  learning  when  information  in  long-­‐term  memory  is  organized  for  easy  access.    -­‐A  comparison  of  the  three  components  of  the  IPM  indicates  that  both  sensory  and  working  memory  are  relatively  short  term  in  nature  (see  Table  1).  Their  main  roles  are  to  screen  incoming  information,  assign  meaning,  and  relate  individual  units  of  information  to  other  units.      -­‐In  contrast,  the  main  role  of  long-­‐term  memory  is  to  serve  as  a  highly  organized  permanent  storage  system.      -­‐Sensory  and  working  memory  process  few  pieces  of  information  within  a  short  time  frame.  Automaticity  of  processing  and  selective  allocation  of  limited  cognitive  resources  greatly  increases  the  efficiency  of  information  processing.                    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 25/66

 

       -­‐Long-­‐term  memory  is  assumed  to  be  more  or  less  permanent  and  unlimited  in  terms  of  capacity.      -­‐The  main  processing  constraint  on  long-­‐term  memory  is  the  individual's  ability  to  quickly  encode  and  retrieve  information  using  an  efficient  organizational  system.      The  information  processing  model  provides  a  conceptual  model  which  explains  the  different  functions  and  constraints  on  human  memory.      The  IPM  also  has  had  a  major  impact  on  instructional  theory  and  practice.  Sweller  and  Chandler's  1994  work  developed  cognitive  load  theory  to  explain  how  different  instructional  and  learner  constraints  affect  optimal  information  processing.      The  crux  of  their  argument  is  that  each  task  imposes  some  degree  of  cognitive  load,  which  must  be  met  either  by  available  cognitive  resources  or  learner-­‐based  strategies  such  as  selective  attention  and  automaticity.      Reducing  cognitive  load  enables  individuals  to  learn  with  less  overall  mental  effort.      Cognitive  load  theory  has  been  especially  helpful  in  terms  of  planning  instruction  and  developing  learning  materials.      Others  researchers  such  as  Mayer  and  Moreno  (2003)  have  developed  frameworks  to  increase  learning  by  systematically  reducing  cognitive  load  through  better  design  of  learning  materials  and  more  strategic  use  of  limited  resources  by  students.    In  summary,  the  information  processing  model  postulates  a  three-­‐component  model  of  information  processing.  The  IPM  is  consistent  with  empirical  findings  and  provides  an  excellent  framework  for  understanding  principles  of  effective  learning,  which  are  considered  later  in  this  entry.      Sensory  and  working  memory  are  limited  with  respect  to  capacity  and  duration,  whereas  long-­‐term  memory  is  more  or  less  unlimited.      Information  processing  efficiency  is  increased  due  to  automaticity  and  selectivity.      Encoding  and  retrieval  of  information  in  long-­‐term  memory  is  increased  due  to  efficient  organizational  strategies.                        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 26/66

 

     IMPLICATIONS  OF  INFORMATION  PROCESSING  TO  INSTRUCTIONS  -­‐The  information  processing  model  provides  four  important  implications  for  improving  learning  and  instruction.      1.  Memory  stores  are  extremely  limited  in  both  sensory  and  working  memory.    The  two  main  strategies  that  effective  learners  use  to  cope  with  limited  capacity  are:      a.)  Selectively  focusing  their  attention  on  important  information    b.)Engaging  in  as  much  automated  processing  as  possible.      From  an  educational  perspective:    It  is  essential  for  students  to  become  automated  at  basic  skills  such  as  letter  and  word  decoding,  number  recognition,  and  simple  procedural  skills  such  as  handwriting,  multiplication,  and  spelling.      Automaticity  makes  available  limited  processing  resources  that  can  be  used  to  engage  in  labor  intensive  self-­‐regulation  (Butler  &  Winne,  1995;  Zeidner,  Boekaerts,  &  Pintrich,  2000;  Zimmerman,  2000)  and  comprehension  monitoring  (Schraw,  2001;  Sternberg,  2001).    2.  Relevant  prior  knowledge  facilitates  encoding  and  retrieval  processes.      Highly  effective  learners  possess  a  great  deal  of  organized  knowledge  within  a  particular  domain  such  as  reading,  mathematics,  or  science.      They  also  possess  general  problem-­‐solving  and  critical-­‐thinking  scripts  that  enable  them  to  perform  well  across  different  domains.      This  knowledge  guides  information  processing  in  sensory  and  working  memory  by  providing  easy-­‐to-­‐access  retrieval  structures  in  memory.      It  also  serves  as  the  basis  for  the  development  of  expertise  (Alexander,  2003;  Ericsson,  2003).  Thus,  helping  students  use  their  prior  knowledge  when  learning  new  information  promotes  learning.    3.    Automated  information  processing  increases  cognitive  efficiency  by  reducing  information  processing  demands.      Automaticity  is  an  important  aspect  of  effective  learning  for  two  reasons.  a.)  Being  automated  makes  it  easier  selectively  to  allocate  limited  resources  to  information  that  is  most  relevant  to  the  task  at  hand.  Unfortunately,  there  is  no  easy  road  to  automaticity  other  than  sustained,  regular  practice.      b.)  Automaticity  frees  limited  resources  that  can  be  used  for  other  activities  such  as  drawing  inferences  and  connecting  new  information  to  existing  information  in  memory.            

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 27/66

 

           4.    Learning  strategies  improve  information  processing  because  learners  are  more  efficient  and  process  information  at  a  deeper  level  (Pressley  &  Harris,  2006;  Pressley  &  McDonald-­‐Wharton,  1997).      All  effective  learners  draw  from  a  repertoire  of  learning  strategies  in  a  flexible  manner.  Some  of  these  strategies  are  used  automatically,  while  some  require  controlled  processing  and  metacognitive  control  that  place  high  demands  on  limited  cognitive  resources.      Good  learners  use  a  wide  variety  of  strategies  and  use  them  in  a  highly  automatic  fashion.      Three  general  strategies  that  all  effective  learners  use  in  most  situations:  (Mayer  &  Moreno,  2003)  a.)  Organization  b.)  Inferences  c.)  Elaboration    a.)  Organization  refers  to  how  information  is  sorted  and  arranged  in  long-­‐term  memory.    Information  that  is  related  to  what  one  already  knows  is  easier  to  encode  and  retrieve  than  isolated  information.  In  some  cases,  individuals  already  possess  well  organized  knowledge  with  empty  slots  that  can  be  filled  easily  with  new  information.  Activating  existing  knowledge  prior  to  instruction,  or  providing  a  visual  diagram  of  how  information  is  organized,  is  one  of  the  best  ways  to  facilitate  learning  new  information.      b.)  Constructing  inferences  involves  making  connections  between  separate  concepts.      c.)  Elaboration  refers  to  increasing  the  meaningfulness  of  information  by  connecting  new  information  to  ideas  already  known.                                      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 28/66

 

     3.  TYPES  OF  MEMORY  (http://www.human-­‐memory.net/types.html)    THREE  STAGES  OF  MEMORY   (BY  ATKINSON-­‐  SHIFFRIN  MODEL)  (1968)  1.  Sensory  2.  Short  Term  3.  Long-­‐Term      PROCESS  OF  MEMORY  1.  Encoding  2.  Consolidation  3.  Storage    4.  Recall    PROCESS  OF  MEMORY  (BY  FERGUS  CRAIK  AND  ROBERT  LOCHART)  1.  Recall  –  something  is  memorized  2.  Continous  Scale  from  shallow  (perceptual)  to  3.  Deep  (Semantic)        

                                         

                 

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 29/66

 

     

 What  we  usually  think  of  as  �memory�  in  day-­‐to-­‐day  usage  is  actually  long-­‐term  memory,  but  there  are  also  important  short-­‐term  and  sensory  memory  processes,  which  must  be  worked  through  before  a  long-­‐term  memory  can  be  established.  The  different  types  of  memory  each  have  their  own  particular  mode  of  operation,  but  they  all  cooperate  in  the  process  of  memorization,  and  can  be  seen  as  three  necessary  steps  in  forming  a  lasting  memory.    This  model  of  memory  as  a  sequence  of  three  stages,  from  sensory  to  short-­‐term  to  long-­‐term  memory,  rather  than  as  a  unitary  process,  is  known  as  the  modal  or  multi-­‐store  or  Atkinson-­‐Shiffrin  model,  after  Richard  Atkinson  and  Richard  Shiffrin  who  developed  it  in  1968,  and  it  remains  the  most  popular  model  for  studying  memory.  It  is  often  also  described  as  the  process  of  memory,  but  I  have  used  this  description  for  the  processes  of  encoding,  consolidation,  storage  and  recall  in  the  separate  Memory  Processes  section.  It  should  be  noted  that  an  alternative  model,  known  as  the  levels-­‐of-­‐processing  model  was  proposed  by  Fergus  Craik  and  Robert  Lockhart  in  1972,  and  posits  that  memory  recall,  and  the  extent  to  which  something  is  memorized,  is  a  function  of  the  depth  of  mental  processing,  on  a  continuous  scale  from  shallow  (perceptual)  to  deep  (semantic).  Under  this  model,  there  is  no  real  structure  to  memory  and  no  distinction  between  short-­‐term  and  long-­‐term  memory.  

 SENSORY  MEMORY  Sensory  memory  is  the  shortest-­‐term  element  of  memory.  It  is  the  ability  to  retain  impressions  of  sensory  information  after  the  original  stimuli  have  ended.  It  acts  as  a  kind  of  buffer  for  stimuli  received  through  the  five  senses  of  sight,  hearing,  smell,  taste  and  touch,  which  are  retained  accurately,  but  very  briefly.  For  example,  the  ability  to  look  at  something  and  remember  what  it  looked  like  with  just  a  second  of  observation  is  an  example  of  sensory  memory.  The  stimuli  detected  by  our  senses  can  be  either  deliberately  ignored,  in  which  case  they  disappear  almost  instantaneously,  or  perceived,  in  which  case  they  enter  our  sensory  memory.  This  does  not  require  any  conscious  attention  and,  indeed,  is  usually  considered  to  be  totally  outside  of  conscious  control.  The  brain  is  designed  to  only  process  information  that  will  be  useful  at  a  later  date,  and  to  allow  the  rest  to  pass  by  unnoted.  As  information  is  perceived,  it  is  therefore  stored  in  sensory  memory  automatically  and  unbidden.  Unlike  other  types  of  memory,  the  sensory  memory  cannot  be  prolonged  via  rehearsal.    Sensory  memory  is  an  ultra-­‐short-­‐term  memory  and  decays  or  degrades  very  quickly,  typically  in  the  region  of  200  -­‐  500  milliseconds  (1/5  -­‐  1/2  second)  after  the  perception  of  an  item,  and  certainly  less  than  a  second  (although  echoic  memory  is  now  thought  to  last  a  little  longer,  up  to  perhaps  three  or  four  seconds).  Indeed,  it  lasts  for  such  a  short  time  that  it  is  often  considered  part  of  the  process  of  perception,  but  it  nevertheless  represents  an  essential  step  for  storing  information  in  short-­‐term  memory.                

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 30/66

 

       The  sensory  memory  for  visual  stimuli  is  sometimes  known  as  the  iconic  memory,  the  memory  for  aural  stimuli  is  known  as  the  echoic  memory,  and  that  for  touch  as  the  haptic  memory.  Smell  may  actally  be  even  more  closely  linked  to  memory  than  the  other  senses,  possibly  because  the  olfactory  bulb  and  olfactory  cortex  (where  smell  sensations  are  processed)  are  physically  very  close  -­‐  separated  by  just  2  or  3  synapses  -­‐  to  the  hippocampus  and  amygdala  (which  are  involved  in  memory  processes).  Thus,  smells  may  be  more  quickly  and  more  strongly  associated  with  memories  and  their  associated  emotions  than  the  other  senses,  and  memories  of  a  smell  may  persist  for  longer,  even  without  constant  re-­‐consolidation.    Experiments  by  George  Sperling  in  the  early  1960s  involving  the  flashing  of  a  grid  of  letters  for  a  very  short  period  of  time  (50  milliseconds)  suggest  that  the  upper  limit  of  sensory  memory  (as  distinct  from  short-­‐term  memory)  is  approximately  12  items,  although  participants  often  reported  that  they  seemed  to  "see"  more  than  they  could  actually  report.    Information  is  passed  from  the  sensory  memory  into  short-­‐term  memory  via  the  process  of  attention  (the  cognitive  process  of  selectively  concentrating  on  one  aspect  of  the  environment  while  ignoring  other  things),  which  effectively  filters  the  stimuli  to  only  those  which  are  of  interest  at  any  given  time.    SHORT-­‐TERM  (WORKING)  MEMORY  Short-­‐term  memory  acts  as  a  kind  of  �scratch-­‐pad�  for  temporary  recall  of  the  information  which  is  being  processed  at  any  point  in  time,  and  has  been  refered  to  as  "the  brain's  Post-­‐it  note".  It  can  be  thought  of  as  the  ability  to  remember  and  process  information  at  the  same  time.  It  holds  a  small  amount  of  information  (typically  around  7  items  or  even  less)  in  mind  in  an  active,  readily-­‐available  state  for  a  short  period  of  time  (typically  from  10  to  15  seconds,  or  sometimes  up  to  a  minute).  For  example,  in  order  to  understand  this  sentence,  the  beginning  of  the  sentence  needs  to  be  held  in  mind  while  the  rest  is  read,  a  task  which  is  carried  out  by  the  short-­‐term  memory.  Other  common  examples  of  short-­‐term  memory  in  action  are  the  holding  on  to  a  piece  of  information  temporarily  in  order  to  complete  a  task  (e.g.  �carrying  over�  a  number  in  a  subtraction  sum,  or  remembering  a  persuasive  argument  until  another  person  finishes  talking),  and  simultaneous  translation  (where  the  interpreter  must  store  information  in  one  language  while  orally  translating  it  into  another).  What  is  actually  held  in  short-­‐term  memory,  though,  is  not  complete  concepts,but  rather  links  or  pointers  (such  as  words,  for  example)  which  the  brain  can  flesh  out  from  it's  other  accumulated  knowledge.  However,  this  information  will  quickly  disappear  forever  unless  we  make  a  conscious  effort  to  retain  it,  and  short-­‐term  memory  is  a  necessary  step  toward  the  next  stage  of  retention,  long-­‐term  memory.  The  transfer  of  information  to  long-­‐term  memory  for  more  permanent  storage  can  be  facilitated  or  improved  by  mental  repetition  of  the  information  or,  even  more  effectively,  by  giving  it  a  meaning  and  associating  it  with  other  previously  acquired  knowledge.  Motivation  is  also  a  consideration,  in  that  information  relating  to  a  subject  of  strong  interest  to  a  person,  is  more  likely  to  be  retained  in  long-­‐term  memory.          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 31/66

 

     The  term  working  memory  is  often  used  interchangeably  with  short-­‐term  memory,  although  technically  working  memory  refers  more  to  the  whole  theoretical  framework  of  structures  and  processes  used  for  the  temporary  storage  and  manipulation  of  information,  of  which  short-­‐term  memory  is  just  one  component.  The  central  executive  part  of  the  prefrontal  cortex  at  the  front  of  the  brain  appears  to  play  a  fundamental  role  in  short-­‐term  and  working  memory.  It  both  serves  as  a  temporary  store  for  short-­‐term  memory,  where  information  is  kept  available  while  it  is  needed  for  current  reasoning  processes,  but  it  also  "calls  up"  information  from  elsewhere  in  the  brain.  The  central  executive  controls  two  neural  loops,  one  for  visual  data  (which  activates  areas  near  the  visual  cortex  of  the  brain  and  acts  as  a  visual  scratch  pad),  and  one  for  language  (the  "phonological  loop",  which  uses  Broca's  area  as  a  kind  of  "inner  voice"  that  repeats  word  sounds  to  keep  them  in  mind).  These  two  scratch  pads  temporarily  hold  data  until  it  is  erased  by  the  next  job.  Although  the  prefrontal  cortex  is  not  the  only  part  of  the  brain  involved  -­‐  it  must  also  cooperate  with  other  parts  of  the  cortex  from  which  it  extracts  information  for  brief  periods  -­‐  it  is  the  most  important,  and  Carlyle  Jacobsen  reported,  as  early  as  1935,  that  damage  to  the  prefrontal  cortex  in  primates  caused  short-­‐term  memory  deficits.  The  short-­‐term  memory  has  a  limited  capacity,  which  can  be  readily  illustrated  by  the  simple  expedient  of  trying  to  remember  a  list  of  random  items  (without  allowing  repetition  or  reinforcement)  and  seeing  when  errors  begin  to  creep  in.  The  often-­‐cited  experiments  by  George  Miller  in  1956  suggest  that  the  number  of  objects  an  average  human  can  hold  in  working  memory  (known  as  memory  span)  is  between  5  and  9  (7  �  2,  which  Miller  described  as  the  �magical  number�,  and  which  is  sometimes  referred  to  as  Miller's  Law).  However,  although  this  may  be  approximately  true  for  a  population  of  college  students,  for  example,  memory  span  varies  widely  with  populations  tested,  and  modern  estimates  are  typically  lower,  of  the  order  of  just  4  or  5  items.    The  type  or  characteristics  of  the  information  also  affects  the  number  of  items  which  can  be  retained  in  short-­‐term  memory.  For  instance,  more  words  can  be  recalled  if  they  are  shorter  or  more  commonly  used  words,  or  if  they  are  phonologically  similar  in  sound,  or  if  they  are  taken  from  a  single  semantic  category  (such  as  sports,  for  example)  rather  than  from  different  categories,  etc.  There  is  also  some  evidence  that  short-­‐term  memory  capacity  and  duration  is  increased  if  the  words  or  digits  are  articulated  aloud  instead  of  being  read  sub-­‐vocally  (in  the  head).  The  relatively  small  capacity  of  the  short-­‐term  memory,  compared  to  the  huge  capacity  of  long-­‐term  memory,  has  been  attributed  by  some  to  the  evolutionary  survival  advantage  in  paying  attention  to  a  relatively  small  number  of  important  things  (e.g.  the  approach  of  a  dangerous  predator,  the  proximity  of  a  nearby  safe  haven,  etc)  and  not  to  a  plethora  of  other  peripheral  details  which  would  only  interfere  with  rapid  decision-­‐making.                        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 32/66

 

       "Chunking"  of  information  can  lead  to  an  increase  in  the  short-­‐term  memory  capacity.  Chunking  is  the  organization  of  material  into  shorter  meaningful  groups  to  make  them  more  manageable.  For  example,  a  hyphenated  phone  number,  split  into  groups  of  3  or  4  digits,  tends  to  be  easier  to  remember  than  a  single  long  number.  Experiments  by  Herbert  Simon  have  shown  that  the  ideal  size  for  chunking  of  letters  and  numbers,  whether  meaningful  or  not,  is  three.  However,  meaningful  groups  may  be  longer  (such  as  four  numbers  that  make  up  a  date  within  a  longer  list  of  numbers,  for  example).  With  chunking,  each  chunk  represents  just  one  of  the  5  -­‐  9  items  that  can  be  stored  in  short-­‐term  memory,  thus  extending  the  total  number  of  items  that  can  be  held.    It  is  usually  assumed  that  the  short-­‐term  memory  spontaneously  decays  over  time,  typically  in  the  region  of  10  -­‐  15  seconds,  but  items  may  be  retained  for  up  to  a  minute,  depending  on  the  content.  However,  it  can  be  extended  by  repetition  or  rehearsal  (either  by  reading  items  out  loud,  or  by  mental  simulation),  so  that  the  information  re-­‐enters  the  short-­‐term  store  and  is  retained  for  a  further  period.  When  several  elements  (such  as  digits,  words  or  pictures)  are  held  in  short-­‐term  memory  simultaneously,  they  effectively  compete  with  each  other  for  recall.  New  content,  therefore,  gradually  pushes  out  older  content  (known  as  displacement),  unless  the  older  content  is  actively  protected  against  interference  by  rehearsal  or  by  directing  attention  to  it.  Any  outside  interference  tends  to  cause  disturbances  in  short-­‐term  memory  retention,  and  for  this  reason  people  often  feel  a  distinct  desire  to  complete  the  tasks  held  in  short-­‐term  memory  as  soon  as  possible.    The  forgetting  of  short-­‐term  memories  involves  a  different  process  to  the  forgetting  of  long-­‐term  memories.  When  something  in  short-­‐term  memory  is  forgotten,  it  means  that  a  nerve  impulse  has  merely  ceased  being  transmitted  through  a  particular  neural  network.  In  general,  unless  an  impulse  is  reactivated,  it  stops  flowing  through  a  network  after  just  a  few  seconds.    Typically,  information  is  transferred  from  the  short-­‐term  or  working  memory  to  the  long-­‐term  memory  within  just  a  few  seconds,  although  the  exact  mechanisms  by  which  this  transfer  takes  place,  and  whether  all  or  only  some  memories  are  retained  permanently,  remain  controversial  topics  among  experts.  Richard  Schiffrin,  in  particular,  is  well  known  for  his  work  in  the  1960s  suggesting  that  ALL  memories  automatically  pass  from  a  short-­‐term  to  a  long-­‐term  store  after  a  short  time  (known  as  the  modal  or  multi-­‐store  or  Atkinson-­‐Schiffrin  model).    However,  this  is  disputed,  and  it  now  seems  increasingly  likely  that  some  kind  of  vetting  or  editing  procedure  takes  place.  Some  researchers  (e.g.  Eugen  Tarnow)  have  proposed  that  there  is  no  real  distinction  between  short-­‐term  and  long-­‐term  memory  at  all,  and  certainly  it  is  difficult  to  demarcate  a  clear  boundary  between  them.  However,  the  evidence  of  patients  with  some  kinds  of  anterograde  amnesia,  and  experiments  on  the  way  distraction  affect  the  short-­‐term  recall  of  lists,  suggest  that  there  are  in  fact  two  more  or  less  separate  systems.              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 33/66

 

     LONG-­‐TERM  MEMORY    Long-­‐term  memory  is,  obviously  enough,  intended  for  storage  of  information  over  a  long  period  of  time.  Despite  our  everyday  impressions  of  forgetting,  it  seems  likely  that  long-­‐term  memory  actually  decays  very  little  over  time,  and  can  store  a  seemingly  unlimited  amount  of  information  almost  indefinitely.  Indeed,  there  is  some  debate  as  to  whether  we  actually  ever  �forget�  anything  at  all,  or  whether  it  just  becomes  increasingly  difficult  to  access  or  retrieve  certain  items  from  memory.    Short-­‐term  memories  can  become  long-­‐term  memory  through  the  process  of  consolidation,  involving  rehearsal  and  meaningful  association.  Unlike  short-­‐term  memory  (which  relies  mostly  on  an  acoustic,  and  to  a  lesser  extent  a  visual,  code  for  storing  information),  long-­‐term  memory  encodes  information  for  storage  semantically  (i.e.  based  on  meaning  and  association).  However,  there  is  also  some  evidence  that  long-­‐term  memory  does  also  encode  to  some  extent  by  sound.  For  example,  when  we  cannot  quite  remember  a  word  but  it  is  �on  the  tip  of  the  tongue�,  this  is  usually  based  on  the  sound  of  a  word,  not  its  meaning.    Physiologically,  the  establishment  of  long-­‐term  memory  involves  a  process  of  physical  changes  in  the  structure  of  neurons  (or  nerve  cells)  in  the  brain,  a  process  known  as  long-­‐term  potentiation,  although  there  is  still  much  that  is  not  completely  understood  about  the  process.  At  its  simplest,  whenever  something  is  learned,  circuits  of  neurons  in  the  brain,  known  as  neural  networks,  are  created,  altered  or  strengthened.  These  neural  circuits  are  composed  of  a  number  of  neurons  that  communicate  with  one  another  through  special  junctions  called  synapses.  Through  a  process  involving  the  creation  of  new  proteins  within  the  body  of  neurons,  and  the  electrochemical  transfer  of  neurotransmitters  across  synapse  gaps  to  receptors,  the  communicative  strength  of  certain  circuits  of  neurons  in  the  brain  is  reinforced.  With  repeated  use,  the  efficiency  of  these  synapse  connections  increases,  facilitating  the  passage  of  nerve  impulses  along  particular  neural  circuits,  which  may  involve  many  connections  to  the  visual  cortex,  the  auditory  cortex,  the  associative  regions  of  the  cortex,  etc.    This  process  differs  both  structurally  and  functionally  from  the  creation  of  working  or  short-­‐term  memory.  Although  the  short-­‐term  memory  is  supported  by  transient  patterns  of  neuronal  communication  in  the  regions  of  the  frontal,  prefrontal  and  parietal  lobes  of  the  brain,  long-­‐term  memories  are  maintained  by  more  stable  and  permanent  changes  in  neural  connections  widely  spread  throughout  the  brain.  The  hippocampus  area  of  the  brain  essentially  acts  as  a  kind  of  temporary  transit  point  for  long-­‐term  memories,  and  is  not  itself  used  to  store  information.  However,  it  is  essential  to  the  consolidation  of  information  from  short-­‐term  to  long-­‐term  memory,  and  is  thought  to  be  involved  in  changing  neural  connections  for  a  period  of  three  months  or  more  after  the  initial  learning.                    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 34/66

 

     Unlike  with  short-­‐term  memory,  forgetting  occurs  in  long-­‐term  memory  when  the  formerly  strengthened  synaptic  connections  among  the  neurons  in  a  neural  network  become  weakened,  or  when  the  activation  of  a  new  network  is  superimposed  over  an  older  one,  thus  causing  interference  in  the  older  memory.  Over  the  years,  several  different  types  of  long-­‐term  memory  have  been  distinguished,  including  explicit  and  implicit  memory,  declarative  and  procedural  memory  (with  a  further  sub-­‐division  of  declarative  memory  into  episodic  and  semantic  memory)  and  retrospective  and  prospective  memory.    DECLARATIVE  (EXPLICIT)  &  PROCEDURAL  (IMPLICIT)  MEMORY    Long-­‐term  memory  is  often  divided  into  two  further  main  types:  explicit  (or  declarative)  memory  and  implicit  (or  procedural)  memory.  Declarative  memory  (�knowing  what�)  is  memory  of  facts  and  events,  and  refers  to  those  memories  that  can  be  consciously  recalled  (or  "declared").  It  is  sometimes  called  explicit  memory,  since  it  consists  of  information  that  is  explicitly  stored  and  retrieved,  although  it  is  more  properly  a  subset  of  explicit  memory.  Declarative  memory  can  be  further  sub-­‐divided  into  episodic  memory  and  semantic  memory.    Procedural  memory  (�knowing  how�)  is  the  unconscious  memory  of  skills  and  how  to  do  things,  particularly  the  use  of  objects  or  movements  of  the  body,  such  as  tying  a  shoelace,  playing  a  guitar  or  riding  a  bike.  These  memories  are  typically  acquired  through  repetition  and  practice,  and  are  composed  of  automatic  sensorimotor  behaviours  that  are  so  deeply  embedded  that  we  are  no  longer  aware  of  them.  Once  learned,  these  "body  memories"  allow  us  to  carry  out  ordinary  motor  actions  more  or  less  automatically.  Procedural  memory  is  sometimes  referred  to  as  implicit  memory,  because  previous  experiences  aid  in  the  performance  of  a  task  without  explicit  and  conscious  awareness  of  these  previous  experiences,  although  it  is  more  properly  a  subset  of  implicit  memory.    These  different  types  of  long-­‐term  memory  are  stored  in  different  regions  of  the  brain  and  undergo  quite  different  processes.  Declarative  memories  are  encoded  by  the  hippocampus,  entorhinal  cortex  and  perirhinal  cortex  (all  within  the  medial  temporal  lobe  of  the  brain),  but  are  consolidated  and  stored  in  the  temporal  cortex  and  elsewhere.  Procedural  memories,  on  the  other  hand,  do  not  appear  to  involve  the  hippocampus  at  all,  and  are  encoded  and  stored  by  the  cerebellum,  putamen,  caudate  nucleus  and  the  motor  cortex,  all  of  which  are  involved  in  motor  control.  Learned  skills  such  as  riding  a  bike  are  stored  in  the  putamen;  instinctive  actions  such  as  grooming  are  stored  in  the  caudate  nucleus;  and  the  cerebellum  is  involved  with  timing  and  coordination  of  body  skills.  Thus,  without  the  medial  temporal  lobe  (the  structure  that  includes  the  hippocampus),  a  person  is  still  able  to  form  new  procedural  memories  (such  as  playing  the  piano,  for  example),  but  cannot  remember  the  events  during  which  they  happened  or  were  learned.                  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 35/66

 

     Perhaps  the  most  famous  study  demonstrating  the  separation  of  the  declarative  and  procedural  memories  is  that  of  a  patient  known  as  �H.M.�,  who  had  parts  of  his  medial  temporal  lobe,  hippocampus  and  amygdala  removed  in  1953  in  an  attempt  to  cure  his  intractable  epilepsy.  After  the  surgery,  H.M.  could  still  form  new  procedural  memories  and  short-­‐term  memories,  but  long-­‐lasting  declarative  memories  could  no  longer  be  formed.  The  nature  of  the  exact  brain  surgery  he  underwent,  and  the  types  of  amnesia  he  experienced,  allowed  a  good  understanding  of  how  particular  areas  of  the  brain  are  linked  to  specific  processes  in  memory  formation.  In  particular,  his  ability  to  recall  memories  from  well  before  his  surgery,  but  his  inability  to  create  new  long-­‐term  memories,  suggests  that  encoding  and  retrieval  of  long-­‐term  memory  information  is  mediated  by  distinct  systems  within  the  medial  temporal  lobe,  particularly  the  hippocampus.  The  fact  that  he  was  able  to  learn  hand-­‐eye  coordination  skills  such  as  mirror  drawing,  despite  having  absolutely  no  memory  of  having  learned  or  practised  the  task  before,  also  suggested  the  existence  different  types  of  long-­‐term  memory,  which  are  now  known  as  declarative  and  procedural  memories    There  is  strong  evidence,  notably  by  studying  amnesic  patients  and  the  effect  of  priming,  to  suggest  that  implicit  memory  is  largely  distinct  from  explicit  memory,  and  operates  through  a  different  process  in  the  brain.  Studies  of  the  effects  of  amnesia  have  shown  that  it  is  quite  possible  to  have  an  intact  implicit  memory  despite  a  severely  impaired  explicit  memory.  Priming  is  the  effect  in  which  exposure  to  a  stimulus  influences  response  to  a  subsequent  stimulus,  so  that,  for  instance,  if  a  person  reads  a  list  of  words  including  the  word  �concert�,  and  is  later  asked  to  complete  a  word  starting  with  �con�,  there  is  a  higher  probability  that  they  will  answer  �concert�  than,  say,  �contact�,  �connect�,  etc.  Studies  from  amnesic  patients  indicate  that  priming  is  controlled  by  a  brain  system  separate  from  the  medial  temporal  system  that  supports  explicit  memory.    EPISODIC  &  SEMANTIC  MEMORY    Declarative  memory  can  be  further  sub-­‐divided  into  episodic  memory  and  semantic  memory.    Episodic  memory  represents  our  memory  of  experiences  and  specific  events  in  time  in  a  serial  form,  from  which  we  can  reconstruct  the  actual  events  that  took  place  at  any  given  point  in  our  lives.  It  is  the  memory  of  autobiographical  events  (times,  places,  associated  emotions  and  other  contextual  knowledge)  that  can  be  explicitly  stated.  Individuals  tend  to  see  themselves  as  actors  in  these  events,  and  the  emotional  charge  and  the  entire  context  surrounding  an  event  is  usually  part  of  the  memory,  not  just  the  bare  facts  of  the  event  itself.    Semantic  memory,  on  the  other  hand,  is  a  more  structured  record  of  facts,  meanings,  concepts  and  knowledge  about  the  external  world  that  we  have  acquired.  It  refers  to  general  factual  knowledge,  shared  with  others  and  independent  of  personal  experience  and  of  the  spatial/temporal  context  in  which  it  was  acquired.  Semantic  memories  may  once  have  had  a  personal  context,  but  now  stand  alone  as  simple  knowledge.  It  therefore  includes  such  things  as  types  of  food,  capital  cities,  social  customs,  functions  of  objects,  vocabulary,  understanding  of  mathematics,  etc.  Much  of  semantic  memory  is  abstract  and  relational  and  is  associated  with  the  meaning  of  verbal  symbols.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 36/66

 

       The  semantic  memory  is  generally  derived  from  the  episodic  memory,  in  that  we  learn  new  facts  or  concepts  from  our  experiences,    and  the  episodic  memory  is  considered  to    support  and  underpin  semantic  memory.  A  gradual  transition  from  episodic  to  semantic  memory  can  take  place,  in  which  episodic  memory  reduces  its  sensitivity  and  association  to  particular  events,  so  that  the  information  can  be  generalized  as  semantic  memory.    Both  episodic  memory  and  semantic  memory  require  a  similar  encoding  process.  However,  semantic  memory  mainly  activates  the  frontal  and  temporal  cortexes,  whereas  episodic  memory  activity  is  concentrated  in  the  hippocampus,  at  least  initially.  Once  processed  in  the  hippocampus,  episodic  memories  are  then  consolidated  and  stored  in  the  neocortex.  The  memories  of  the  different  elements  of  a  particular  event  are  distributed  in  the  various  visual,  olfactory  and  auditory  areas  of  the  brain,  but  they  are  all  connected  together  by  the  hippocampus  to  form  an  episode,  rather  than  remaining  a  collection  of  separate  memories.    For  example,  memories  of  people�s  faces,  the  taste  of  the  wine,  the  music  that  was  playing,  etc,  might  all  be  part  of  the  memory  of  a  particular  dinner  with  friends.  By  repeatedly  reactivating  or  �playing  back�  this  particular  activity  pattern  in  the  various  regions  of  the  cortex,  they  become  so  strongly  linked  with  one  another  that  they  no  longer  need  the  hippocampus  to  act  as  their  link,  and  the  memory  of  the  music  that  was  playing  that  night,  for  example,  can  act  as  an  index  entry,  and  may  be  enough  to  bring  back  the  entire  scene  of  the  dinner  party.    Our  spatial  memory  in  particular  appears  to  be  much  more  confined  to  the  hippocampus,  particularly  the  right  hippocampus,  which  seems  to  be  able  to  create  a  mental  map  of  space,  thanks  to  certain  cells  called  "place  cells".  Episodic  memory  does  also  trigger  activity  in  the  temporal  lobe,  but  mainly  in  order  to  ensure  that  these  personal  memories  are  not  mistaken  for  real  life.  This  difference  in  the  neurological  processing  of  episodic  and  semantic  memory  is  illustrated  by  cases  of  anterograde  amnesia  cases  (a  good  example  being  a  case  known  as  �C.L.�)  in  which  episodic  memory  is  almost  completely  lost  while  semantic  memory  is  retained.    A  further  category  of  declarative  memory,  referred  to  as  autobiographical  memory,  is  sometimes  distinguished,  although  really  it  is  just  one  area  of  episodic  memory.  Autobiographical  memory  refers  to  a  memory  system  consisting  of  episodes  recollected  from  an  individual�s  own  life,  often  based  on  a  combination  of  episodic  memory  (personal  experiences  and  specific  objects,  people  and  events  experienced  at  particular  times  and  places)  and  semantic  memory  (general  knowledge  and  facts  about  the  world).                    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 37/66

 

     One  specific  type  of  autobiographical  memory  is  known  as  a  "flashbulb  memory",  a  highly  detailed,  exceptionally  vivid  �snapshot�  of  a  moment  or  circumstances  in  which  surprising  and  consequential  (or  emotionally  arousing)  news  was  heard,  famous  examples  being  the  assassination  of  John  Kennedy,  the  terrorist  bombings  on  9/11,  etc.  Such  memories  are  believed  by  some  to  be  highly  resistant  to  forgetting,  possibly  due  to  the  strong  emotions  that  are  typically  associated  with  them.  However,  a  number  of  studies  also  suggest  that  flashbulb  memories  are  actually  not  especially  accurate,  despite  apparently  being  experienced  with  great  vividness  and  confidence.    RETROSPECTIVE  &  PROSPECTIVE  MEMORY    An  important  alternative  classification  of  long-­‐term  memory  used  by  some  researchers  is  based  on  the  temporal  direction  of  the  memories.    Retrospective  memory  is  where  the  content  to  be  remembered  (people,  words,  events,  etc)  is  in  the  past,  i.e.  the  recollection  of  past  episodes.  It  includes  semantic,  episodic  and  autobiographical  memory,  and  declarative  memory  in  general,  although  it  can  be  either  explicit  or  implicit.    Prospective  memory  is  where  the  content  is  to  be  remembered  in  the  future,  and  may  be  defined  as  �remembering  to  remember�  or  remembering  to  perform  an  intended  action.  It  may  be  either  event-­‐based  or  time-­‐based,  often  triggered  by  a  cue,  such  as  going  to  the  doctor  (action)  at  4pm  (cue),  or  remembering  to  post  a  letter  (action)  after  seeing  a  mailbox  (cue).    Clearly,  though,  retrospective  and  prospective  memory  are  not  entirely  independent  entities,  and  certain  aspects  of  retrospective  memory  are  usually  required  for  prospective  memory.  Thus,  there  have  been  case  studies  where  an  impaired  retrospective  memory  has  caused  a  definite  impact  on  prospective  memory.  However,  there  have  also  been  studies  where  patients  with  an  impaired  prospective  memory  had  an  intact  retrospective  memory,  suggesting  that  to  some  extent  the  two  types  of  memory  involve  separate  processes.                                        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 38/66

 

     4.  MEMORY  PROCESSES  (MASTIN,2010)  (http://www.human-­‐memory.net/processes.html)    We  have  already  looked  at  the  different  stages  of  memory  formation  (from  perception  to  sensory  memory  to  short-­‐term  memory  to  long-­‐term  memory)  in  the  section  on  Types  of  Memory.  This  section,  however,  looks  at  the  overall  processes  involved.    Memory  is  the  ability  to  encode,  store  and  recall  information.  The  three  main  processes  involved  in  human  memory  are  therefore  encoding,  storage  and  recall  (retrieval).  Additionally,  the  process  of  memory  consolidation  (which  can  be  considered  to  be  either  part  of  the  encoding  process  or  the  storage  process)  is  treated  here  as  a  separate  process  in  its  own  right.  Some  of  the  physiology  and  neurology  involved  in  these  processes  is  highly  complex  and  technical  (and  some  of  it  still  not  completely  understood),  and  lies  largely  outside  the  remit  of  this  entry  level  guide,  although  at  least  a  general  introduction  is  given  here.  More  information  on  the  architecture  of  the  human  brain,  and  the  neurological  processes  by  which  memory  is  encoded,  stored  and  recalled  can  be  found  in  the  section  on  Memory  and  the  Brain.                                                                    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 39/66

 

       MEMORY  ENCODING    Encoding  is  the  crucial  first  step  to  creating  a  new  memory.  It  allows  the  perceived  item  of  interest  to  be  converted  into  a  construct  that  can  be  stored  within  the  brain,  and  then  recalled  later  from  short-­‐term  or  long-­‐term  memory.  Encoding  is  a  biological  event  beginning  with  perception  through  the  senses.  The  process  of  laying  down  a  memory  begins  with  attention  (regulated  by  the  thalamus  and  the  frontal  lobe),  in  which  a  memorable  event  causes  neurons  to  fire  more  frequently,  making  the  experience  more  intense  and  increasing  the  likelihood  that  the  event  is  encoded  as  a  memory.  Emotion  tends  to  increase  attention,  and  the  emotional  element  of  an  event  is  processed  on  an  unconscious  pathway  in  the  brain  leading  to  the  amygdala.  Only  then  are  the  actual  sensations  derived  from  an  event  processed.    The  perceived  sensations  are  decoded  in  the  various  sensory  areas  of  the  cortex,  and  then  combined  in  the  brain�s  hippocampus  into  one  single  experience.  The  hippocampus  is  then  responsible  for  analyzing  these  inputs  and  ultimately  deciding  if  they  will  be  committed  to  long-­‐term  memory.  It  acts  as  a  kind  of  sorting  centre  where  the  new  sensations  are  compared  and  associated  with  previously  recorded  ones.  The  various  threads  of  information  are  then  stored  in  various  different  parts  of  the  brain,  although  the  exact  way  in  which  these  pieces  are  identified  and  recalled  later  remains  largely  unknown.  The  key  role  that  the  hippocampus  plays  in  memory  encoding  has  been  highlighted  by  examples  of  individuals  who  have  had  their  hippocampus  damaged  or  removed  and  can  no  longer  create  new  memories  (see  Anterograde  Amnesia).  It  is  also  one  of  the  few  areas  of  the  brain  where  completely  new  neurons  can  grow.  Although  the  exact  mechanism  is  not  completely  understood,  encoding  occurs  on  different  levels,  the  first  step  being  the  formation  of  short-­‐term  memory  from  the  ultra-­‐short  term  sensory  memory,  followed  by  the  conversion  to  a  long-­‐term  memory  by  a  process  of  memory  consolidation.  The  process  begins  with  the  creation  of  a  memory  trace  or  engram  in  response  to  the  external  stimuli.  An  engram  is  a  hypothetical  biophysical  or  biochemical  change  in  the  neurons  of  the  brain,  hypothetical  in  the  respect  that  no-­‐one  has  ever  actually  seen,  or  even  proved  the  existence  of,  such  a  construct.  An  organ  called  the  hippocampus,  deep  within  the  medial  temporal  lobe  of  the  brain,  receives  connections  from  the  primary  sensory  areas  of  the  cortex,  as  well  as  from  associative  areas  and  the  rhinal  and  entorhinal  cortexes.  While  these  anterograde  connections  converge  at  the  hippocampus,  other  retrograde  pathways  emerge  from  it,  returning  to  the  primary  cortexes.  A  neural  network  of  cortical  synapses  effectively  records  the  various  associations  which  are  linked  to  the  individual  memory.                          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 40/66

 

     There  are  three  or  four  main  types  of  encoding:  • Acoustic  encoding  is  the  processing  and  encoding  of  sound,  words  and  other  auditory  

input  for  storage  and  later  retrieval.  This  is  aided  by  the  concept  of  the  phonological  loop,  which  allows  input  within  our  echoic  memory  to  be  sub-­‐vocally  rehearsed  in  order  to  facilitate  remembering.  

• Visual  encoding  is  the  process  of  encoding  images  and  visual  sensory  information.  Visual  sensory  information  is  temporarily  stored  within  the  iconic  memory  before  being  encoded  into  long-­‐term  storage.  The  amygdala  (within  the  medial  temporal  lobe  of  the  brain  which  has  a  primary  role  in  the  processing  of  emotional  reactions)  fulfills  an  important  role  in  visual  encoding,  as  it  accepts  visual  input  in  addition  to  input  from  other  systems  and  encodes  the  positive  or  negative  values  of  conditioned  stimuli.  

• Tactile  encoding  is  the  encoding  of  how  something  feels,  normally  through  the  sense  of  touch.  Physiologically,  neurons  in  the  primary  somatosensory  cortex  of  the  brain  react  to  vibrotactile  stimuli  caused  by  the  feel  of  an  object.  

• Semantic  encoding  is  the  process  of  encoding  sensory  input  that  has  particular  meaning  or  can  be  applied  to  a  particular  context,  rather  than  deriving  from  a  particular  sense.    

It  is  believed  that,  in  general,  encoding  for  short-­‐term  memory  storage  in  the  brain  relies  primarily  on  acoustic  encoding,  while  encoding  for  long-­‐term  storage  is  more  reliant  (although  not  exclusively)  on  semantic  encoding.    Human  memory  is  fundamentally  associative,  meaning  that  a  new  piece  of  information  is  remembered  better  if  it  can  be  associated  with  previously  acquired  knowledge  that  is  already  firmly  anchored  in  memory.  The  more  personally  meaningful  the  association,  the  more  effective  the  encoding  and  consolidation.  Elaborate  processing  that  emphasizes  meaning  and  associations  that  are  familiar  tends  to  leads  to  improved  recall.  On  the  other  hand,  information  that  a  person  finds  difficult  to  understand  cannot  be  readily  associated  with  already  acquired  knowledge,  and  so  will  usually  be  poorly  remembered,  and  may  even  be  remembered  in  a  distorted  form  due  to  the  effort  to  comprehend  its  meaning  and  associations.  For  example,  given  a  list  of  words  like  "thread",  "sewing",  "haystack",  "sharp",  "point",  "syringe",  "pin",  "pierce",  "injection"  and  "knitting",  people  often  also  (incorrectly)  remember  the  word  "needle"  through  a  process  of  association.    Because  of  the  associative  nature  of  memory,  encoding  can  be  improved  by  a  strategy  of  organization  of  memory  called  elaboration,  in  which  new  pieces  of  information  are  associated  with  other  information  already  recorded  in  long-­‐term  memory,  thus  incorporating  them  into  a  broader,  coherent  narrative  which  is  already  familiar.  An  example  of  this  kind  of  elaboration  is  the  use  of  mnemonics,  which  are  verbal,  visual  or  auditory  associations  with  other,  easy-­‐to-­‐remember  constructs,  which  can  then  be  related  back  to  the  data  that  is  to  be  remembered.  Rhymes,  acronymns,  acrostics  and  codes  can  all  be  used  in  this  way.  Common  examples  are  �Roy  G.  Biv�  to  remember  the  order  of  the  colours  of  the  rainbow,  or  �Every  Good  Boy  Deserves  Favour�  for  the  musical  notes  on  the  lines  of  the  treble  clef,  which  most  people  find  easier  to  remember  than  the  original  list  of  colours  or  letters.            

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 41/66

 

         When  we  use  mnemonic  devices,  we  are  effectively  passing  facts  through  the  hippocampus  several  times,  so  that  it  can  keep  strengthening  the  associations,  and  therefore  improve  the  likelihood  of  subsequent  memory  recall.    In  the  same  way,  associating  words  with  images  is  another  commonly  used  mnemonic  device,  providing  two  alternative  methods  of  remembering,  and  creating  additional  associations  in  the  mind.  Taking  this  to  a  higher  level,  another  method  of  improving  memory  encoding  and  consolidation  is  the  use  of  a  so-­‐called  memory  palace  (also  known  as  the  method  of  loci),  a  mnemonic  techniques  that  relies  on  memorized  spatial  relationships  to  establish,  order  and  recollect  other  memories.  The  method  is  to  assign  objects  or  facts  to  different  rooms  in  an  imaginary  house  or  palace,  so  that  recall  of  the  facts  can  be  cued  by  mentally  �walking  though�  the  palace  until  it  is  found.  Many  top  memorizers  today  use  the  memory  palace  method  to  a  greater  or  lesser  degree.  Similar  techniques  involve  placing  the  items  at  different  landmarks  on  a  favourite  hike  or  trip  (known  as  the  journey  method),  or  weaving  them  into  a  story.    The  old  and  popular  notion  of  the  brain  as  a  kind  of  �muscle�  which  strengthens  with  repeated  use  (also  known  as  faculty  theory)  is  now  largely  discredited.  Research,  dating  back  to  William  James  towards  the  end  of  the  19th  Century,  shows  that  long  hours  spent  memorizing  does  not  build  up  the  powers  of  memory  at  all,  and,  on  the  contrary,  may  even  diminish  it.  This  is  not  to  say  that  individual  memories  cannot  be  strengthened  by  repetition,  but  that,  as  James  found,  daily  training  in  the  memorization  of  a  poetry  of  one  author,  for  example,  does  not  improves  a  person�s  ability  to  learn  the  poetry  of  another  author,  or  poetry  in  general.    Many  studies  have  shown  that  the  most  vivid  autobiographical  memories  tend  to  be  of  emotional  events,  which  are  likely  to  be  recalled  more  often  and  with  more  clarity  and  detail  than  neutral  events.  One  theory  suggests  that  high  levels  of  emotional  arousal  lead  to  attention  narrowing,  where  the  range  of  sensitive  cues  from  the  stimulus  and  its  environment  is  decreased,  so  that  information  central  to  the  source  of  the  emotional  arousal  is  strongly  encoded  while  peripheral  details  are  not  (e.g.  the  so-­‐called  �weapon  focus  effect�,  in  which  witnesses  to  a  crime  tend  to  remember  the  gun  or  knife  in  great  detail,  but  not  other  more  peripheral  details  such  as  the  perpetrator�s  clothing  or  vehicle).                                

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 42/66

 

         MEMORY  CONSOLIDATION  Consolidation  is  the  processes  of  stabilizing  a  memory  trace  after  the  initial  acquisition.  It  may  perhaps  be  thought  of  part  of  the  process  of  encoding  or  of  storage,  or  it  may  be  considered  as  a  memory  process  in  its  own  right.  It  is  usually  considered  to  consist  of  two  specific  processes,  synaptic  consolidation  (which  occurs  within  the  first  few  hours  after  learning  or  encoding)  and  system  consolidation  (where  hippocampus-­‐dependent  memories  become  independent  of  the  hippocampus  over  a  period  of  weeks  to  years).    Neurologically,  the  process  of  consolidation  utilizes  a  phenomenon  called  long-­‐term  potentiation,  which  allows  a  synapse  to  increase  in  strength  as  increasing  numbers  of  signals  are  transmitted  between  the  two  neurons.  Potentiation  is  the  process  by  which  synchronous  firing  of  neurons  makes  those  neurons  more  inclined  to  fire  together  in  the  future.  Long-­‐term  potentiation  occurs  when  the  same  group  of  neurons  fire  together  so  often  that  they  become  permanently  sensitized  to  each  other.  As  new  experiences  accumulate,  the  brain  creates  more  and  more  connections  and  pathways,  and  may  �re-­‐wire�  itself  by  re-­‐routing  connections  and  re-­‐arranging  its  organization.    As  such  a  neuronal  pathway,  or  neural  network,  is  traversed  over  and  over  again,  an  enduring  pattern  is  engraved  and  neural  messages  are  more  likely  to  flow  along  such  familiar  paths  of  least  resistance.  This  process  is  achieved  by  the  production  of  new  proteins  to  rebuild  the  synapses  in  the  new  shape,  without  which  the  memory  remains  fragile  and  easily  eroded  with  time.  For  example,  if  a  piece  of  music  is  played  over  and  over,  the  repeated  firing  of  certain  synapses  in  a  certain  order  in  your  brain  makes  it  easier  to  repeat  this  firing  later  on,  with  the  result  that  the  musician  becomes  better  at  playing  the  music,  and  can  play  it  faster,  with  fewer  mistakes.    In  this  way,  the  brain  organizes  and  reorganizes  itself  in  response  to  experiences,  creating  new  memories  prompted  by  experience,  education  or  training.  The  ability  of  the  connection,  or  synapse,  between  two  neurons  to  change  in  strength,  and  for  lasting  changes  to  occur  in  the  efficiency  of  synaptic  transmission,  is  known  as  synaptic  plasticity  or  neural  plasticity,  and  it  is  one  of  the  important  neurochemical  foundations  of  memory  and  learning.    It  should  be  remembered  that  each  neuron  makes  thousands  of  connections  with  other  neurons,  and  memories  and  neural  connections  are  mutually  interconnected  in  extremely  complex  ways.  Unlike  the  functioning  of  a  computer,  each  memory  is  embedded  in  many  connections,  and  each  connection  is  involved  in  several  memories.  Thus,  multiple  memories  may  be  encoded  within  a  single  neural  network,  by  different  patterns  of  synaptic  connections.  Conversely,  a  single  memory  may  involve  simultaneously  activating  several  different  groups  of  neurons  in  completely  different  parts  of  the  brain.  The  inverse  of  long-­‐term  potentiation,  known  as  long-­‐term  depression,  can  also  take  place,  whereby  the  neural  networks  involved  in  erroneous  movements  are  inhibited  by  the  silencing  of  their  synaptic  connections.  This  can  occur  in  the  cerebellum,  which  is  located  towards  the  back  of  the  brain,  in  order  to  correct  our  motor  procedures  when  learning  how  to  perform  a  task  (procedural  memory),  but  also  in  the  synapses  of  the  cortex,  the  hippocampus,  the  striatum  and  other  memory-­‐related  structures.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 43/66

 

       Contrary  to  long-­‐term  potentiation,  which  is  triggered  by  high-­‐frequency  stimulation  of  the  synapses,  long-­‐term  depression  is  produced  by  nerve  impulses  reaching  the  synapses  at  very  low  frequencies,  leading  them  to  undergo  the  reverse  transformation  from  long-­‐term  potentiation,  and,  instead  of  becoming  more  efficient,  the  synaptic  connections  are  weakened.  It  is  still  not  clear  whether  long-­‐term  depression  contributes  directly  to  the  storage  of  memories  in  some  way,  or  whether  it  simply  makes  us  forget  the  traces  of  some  things  learned  long  ago  so  that  new  things  can  be  learned.    Sleep  (particularly  slow-­‐wave,  or  deep,  sleep,  during  the  first  few  hours)  is  also  thought  to  be  important  in  improving  the  consolidation  of  information  in  memory,  and  activation  patterns  in  the  sleeping  brain,  which  mirror  those  recorded  during  the  learning  of  tasks  from  the  previous  day,  suggest  that  new  memories  may  be  solidified  through  such  reactivation  and  rehearsal.    Memory  re-­‐consolidation  is  the  process  of  previously  consolidated  memories  being  recalled  and  then  actively  consolidated  all  over  again,  in  order  to  maintain,  strengthen  and  modify  memories  that  are  already  stored  in  the  long-­‐term  memory.  Several  retrievals  of  memory  (either  naturally  through  reflection,  or  through  deliberate  recall)  may  be  needed  for  long-­‐term  memories  to  last  for  many  years,  depending  on  the  depth  of  the  initial  processing.  However,  these  individual  retrievals  can  take  place  at  increasing  intervals,  in  accordance  with  the  principle  of  spaced  repetition  (this  is  familiar  to  us  in  the  way  that  �cramming�  the  night  before  an  exam  is  not  as  effective  as  studying  at  intervals  over  a  much  longer  span  of  time).    The  very  act  of  re-­‐consolidation,  though,  may  change  the  intial  memory.  As  a  particular  memory  trace  is  reactivated,  the  strengths  of  the  neural  connections  may  change,  the  memory  may  become  associated  with  new  emotional  or  environmental  conditions  or  subsequently  acquired  knowledge,  expectations  rather  than  actual  events  may  become  incorporated  into  the  memory,  etc.    Research  into  a  cognitive  disorder  known  as  Korsakoff�s  syndrome  shows  that  the  retrograde  amnesia  of  sufferers  follows  a  distinct  temporal  curve,  in  that  the  more  remote  the  event  in  the  past,  the  better  it  is  preserved.  This  suggests  that  the  more  recent  memories  are  not  fully  consolidated  and  therefore  more  vulnerable  to  loss,  indicating  that  the  process  of  consolidation  may  continue  for  much  longer  than  initially  thought,  perhaps  for  many  years.    MEMORY  STORAGE    Storage  is  the  more  or  less  passive  process  of  retaining  information  in  the  brain,  whether  in  the  sensory  memory,  the  short-­‐term  memory  or  the  more  permanent  long-­‐term  memory.  Each  of  these  different  stages  of  human  memory  function  as  a  sort  of  filter  that  helps  to  protect  us  from  the  flood  of  information  that  confront  us  on  a  daily  basis,  avoiding  an  overload  of  information  and  helping  to  keep  us  sane.  The  more  the  information  is  repeated  or  used,  the  more  likely  it  is  to  be  retained  in  long-­‐term  memory  (which  is  why,  for  example,  studying  helps  people  to  perform  better  on  tests).  This  process  of  consolidation,  the  stabilizing  of  a  memory  trace  after  its  initial  acquisition,  is  treated  in  more  detail  in  a  separate  section.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 44/66

 

       Since  the  early  neurological  work  of  Karl  Lashley  and  Wilder  Penfield  in  the  1950s  and  1960s,  it  has  become  clear  that  long-­‐term  memories  are  not  stored  in  just  one  part  of  the  brain,  but  are  widely  distributed  throughout  the  cortex.  After  consolidation,  long-­‐term  memories  are  stored  throughout  the  brain  as  groups  of  neurons  that  are  primed  to  fire  together  in  the  same  pattern  that  created  the  original  experience,  and  each  component  of  a  memory  is  stored  in  the  brain  area  that  initiated  it  (e.g.  groups  of  neurons  in  the  visual  cortex  store  a  sight,  neurons  in  the  amygdala  store  the  associated  emotion,  etc).  Indeed,  it  seems  that  they  may  even  be  encoded  redundantly,  several  times,  in  various  parts  of  the  cortex,  so  that,  if  one  engram  (or  memory  trace)  is  wiped  out,  there  are  duplicates,  or  alternative  pathways,  elsewhere,  through  which  the  memory  may  still  be  retrieved.    Therefore,  contrary  to  the  popular  notion,  memories  are  not  stored  in  our  brains  like  books  on  library  shelves,  but  must  be  actively  reconstructed  from  elements  scattered  throughout  various  areas  of  the  brain  by  the  encoding  process.  Memory  storage  is  therefore  an  ongoing  process  of  reclassification  resulting  from  continuous  changes  in  our  neural  pathways,  and  parallel  processing  of  information  in  our  brains.    The  indications  are  that,  in  the  absence  of  disorders  due  to  trauma  or  neurological  disease,  the  human  brain  has  the  capacity  to  store  almost  unlimited  amounts  of  information  indefinitely.  Forgetting,  therefore,  is  more  likely  to  be  result  from  incorrectly  or  incompletely  encoded  memories,  and/or  problems  with  the  recall/retrieval  process.  It  is  a  common  experience  that  we  may  try  to  remember  something  one  time  and  fail,  but  then  remember  that  same  item  later.  The  information  is  therefore  clearly  still  there  in  storage,  but  there  may  have  been  some  kind  of  a  mismatch  between  retrieval  cues  and  the  original  encoding  of  the  information.  �Lost�  memories  recalled  with  the  aid  of  psychotherapy  or  hypnosis  are  other  examples  supporting  this  idea,  although  it  is  difficult  to  be  sure  that  such  memories  are  real  and  not  implanted  by  the  treatment.    Having  said  that,  though,  it  seems  unlikely  that,  as  Richard  Schiffrin  and  others  have  claimed,  ALL  memories  are  stored  somewhere  in  the  brain,  and  that  it  is  only  in  the  retrieval  process  that  irrelevant  details  are  �fast-­‐forwarded�  over  or  expurgated.  It  seems  more  likely  that  the  memories  which  are  stored  are  in  some  way  edited  and  sorted,  and  that  some  of  the  more  peripheral  details  are  never  stored.    Forgetting,  then,  is  perhaps  better  thought  of  as  the  temporary  or  permanent  inability  to  retrieve  a  piece  of  information  or  a  memory  that  had  previously  been  recorded  in  the  brain.  Forgetting  typically  follows  a  logarithmic  curve,  so  that  information  loss  is  quite  rapid  at  the  start,  but  becomes  slower  as  time  goes  on.  In  particular,  information  that  has  been  learned  very  well  (e.g.  names,  facts,  foreign-­‐language  vocabulary,  etc),  will  usually  be  very  resistant  to  forgetting,  especially  after  the  first  three  years.  Unlike  amnesia,  forgetting  is  usually  regarded  as  a  normal  phenomenon  involving  specific  pieces  of  content,  rather  than  relatively  broad  categories  of  memories  or  even  entire  segments  of  memory.            

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 45/66

 

     Theorists  disagree  over  exactly  what  becomes  of  material  that  is  forgotten.  Some  hold  that  long-­‐term  memories  do  actually  decay  and  disappear  completely  over  time;  others  hold  that  the  memory  trace  remains  intact  as  long  as  we  live,  but  the  bonds  or  cues  that  allow  us  to  retrieve  the  trace  become  broken,  due  to  changes  in  the  organization  of  the  neural  network,  new  experiences,  etc,  in  the  same  way  as  a  misplaced  book  in  a  library  is  �lost�  even  though  it  still  exists  somewhere  in  the  library.    Increasing  forgetfulness  is  a  normal  part  of  the  ageing  process,  as  the  neurons  in  ageing  brains  lose  their  connections  and  start  to  die  off,  and,  ultimately  the  brain  shrinks  and  becomes  less  effective.  The  hippocampus,  which  as  we  have  seen  is  crucial  for  memory  and  learning,  is  one  of  the  first  areas  of  the  brain  to  deteriorate  with  age.  Recent  studies  in  mice  involving  infusions  of  blood  from  young  mice  into  older  mice  have  shown  that  the  old  mice  that  received  young  blood  showed  a  significant  burst  of  brain  cell  growth  in  the  hippocampus  region  (and  vice  versa),  leading  to  speculation  that  young  blood  might  represent  the  antidote  to  senile  forgetfulness  (and  other  ravages  of  old  age).  Similar  studies  on  humans  with  Alzheimers  disease  are  currently  in  progress.    Interestingly,  it  appears  NOT  to  be  possible  to  deliberately  delete  memories  at  will,  which  can  have  negative  consequences,  for  example  if  we  experience  traumatic  events  we  would  actually  prefer  to  forget.  In  fact,  such  memories  tend  to  be  imprinted  even  more  strongly  than  normal  due  to  their  emotional  content,  although  recent  research  involving  the  use  of  beta  blockers  (such  as  propanonol)  suggests  that  it  may  be  possible  to  tone  down  the  emotional  aspects  of  such  memories,  even  if  the  memories  themselves  cannot  be  erased.  The  way  this  works  is  that  the  act  of  recalling  stored  memories  makes  them  "malleable"  once  more,  as  they  were  during  the  initial  encoding  phase,  and  their  re-­‐storage  can  then  be  blocked  by  drugs  which  inhibit  the  proteins  that  enable  the  emotional  memory  to  be  re-­‐saved.    MEMORY  RECALL/RETRIEVAL  Recall  or  retrieval  of  memory  refers  to  the  subsequent  re-­‐accessing  of  events  or  information  from  the  past,  which  have  been  previously  encoded  and  stored  in  the  brain.  In  common  parlance,  it  is  known  as  remembering.  During  recall,  the  brain  "replays"  a  pattern  of  neural  activity  that  was  originally  generated  in  response  to  a  particular  event,  echoing  the  brain's  perception  of  the  real  event.  In  fact,  there  is  no  real  solid  distinction  between  the  act  of  remembering  and  the  act  of  thinking.    These  replays  are  not  quite  identical  to  the  original,  though  -­‐  otherwise  we  would  not  know  the  difference  between  the  genuine  experience  and  the  memory  -­‐  but  are  mixed  with  an  awareness  of  the  current  situation.  One  corollary  of  this  is  that  memories  are  not  frozen  in  time,  and  new  information  and  suggestions  may  become  incorporated  into  old  memories  over  time.  Thus,  remembering  can  be  thought  of  as  an  act  of  creative  reimagination.    Because  of  the  way  memories  are  encoded  and  stored,  memory  recall  is  effectively  an  on-­‐the-­‐fly  reconstruction  of  elements  scattered  throughout  various  areas  of  our  brains.  Memories  are  not  stored  in  our  brains  like  books  on  library  shelves,  or  even  as  a  collection  of  self-­‐contained  recordings  or  pictures  or  video  clips,  but  may  be  better  thought  of  as  a  kind  of  collage  or  a  jigsaw  puzzle,  involving  different  elements  stored  in  disparate  parts  of  the  brain  linked  together  by  associations  and  neural  networks.        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 46/66

 

       Memory  retrieval  therefore  requires  re-­‐visiting  the  nerve  pathways  the  brain  formed  when  encoding  the  memory,  and  the  strength  of  those  pathways  determines  how  quickly  the  memory  can  be  recalled.  Recall  effectively  returns  a  memory  from  long-­‐term  storage  to  short-­‐term  or  working  memory,  where  it  can  be  accessed,  in  a  kind  of  mirror  image  of  the  encoding  process.  It  is  then  re-­‐stored  back  in  long-­‐term  memory,  thus  re-­‐consolidating  and  strengthening  it.    The  efficiency  of  human  memory  recall  is  astounding.  Most  of  what  we  remember  is  by  direct  retrieval,  where  items  of  information  are  linked  directly  a  question  or  cue,  rather  than  by  the  kind  of  sequential  scan  a  computer  might  use  (which  would  require  a  systematic  search  through  the  entire  contents  of  memory  until  a  match  is  found).  Other  memories  are  retrieved  quickly  and  efficiently  by  hierarchical  inference,  where  a  specific  question  is  linked  to  a  class  or  subset  of  information  about  which  certain  facts  are  known.  Also,  the  brain  is  usually  able  to  determine  in  advance  whether  there  is  any  point  in  searching  memory  for  a  particular  fact  (e.g.  it  instantly  recognizes  a  question  like  �What  is  Socrates�  telephone  number?�  as  absurd  in  that  no  search  could  ever  produce  an  answer).    There  are  two  main  methods  of  accessing  memory:  recognition  and  recall.  Recognition  is  the  association  of  an  event  or  physical  object  with  one  previously  experienced  or  encountered,  and  involves  a  process  of  comparison  of  information  with  memory,  e.g.  recognizing  a  known  face,  true/false  or  multiple  choice  questions,  etc.  Recognition  is  a  largely  unconscious  process,  and  the  brain  even  has  a  dedicated  face-­‐recognition  area,  which  passes  information  directly  through  the  limbic  areas  to  generate  a  sense  of  familiarity,  before  linking  up  with  the  cortical  path,  where  data  about  the  person's  movements  and  intentions  are  processed.  Recall  involves  remembering  a  fact,  event  or  object  that  is  not  currently  physically  present  (in  the  sense  of  retrieving  a  representation,  mental  image  or  concept),  and  requires  the  direct  uncovering  of  information  from  memory,  e.g.  remembering  the  name  of  a  recognized  person,  fill-­‐in  the  blank  questions,  etc.    Recognition  is  usually  considered  to  be  �superior�  to  recall  (in  the  sense  of  being  more  effective),  in  that  it  requires  just  a  single  process  rather  than  two  processes.  Recognition  requires  only  a  simple  familiarity  decision,  whereas  a  full  recall  of  an  item  from  memory  requires  a  two-­‐stage  process  (indeed,  this  is  often  referred  to  as  the  two-­‐stage  theory  of  memory)  in  which  the  search  and  retrieval  of  candidate  items  from  memory  is  followed  by  a  familiarity  decision  where  the  correct  information  is  chosen  from  the  candidates  retrieved.  Thus,  recall  involves  actively  reconstructing  the  information  and  requires  the  activation  of  all  the  neurons  involved  in  the  memory  in  question,  whereas  recognition  only  requires  a  relatively  simple  decision  as  to  whether  one  thing  among  others  has  been  encountered  before.  Sometimes,  however,  even  if  a  part  of  an  object  initially  activates  only  a  part  of  the  neural  network  concerned,  recognition  may  then  suffice  to  activate  the  entire  network.                

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 47/66

 

     In  the  1980s,  Endel  Tulving  proposed  an  alternative  to  the  two-­‐stage  theory,  which  he  called  the  theory  of  encoding  specificity.  This  theory  states  that  memory  utilizes  information  both  from  the  specific  memory  trace  as  well  as  from  the  environment  in  which  it  is  retrieved.  Because  of  its  focus  on  the  retrieval  environment  or  state,  encoding  specificity  takes  into  account  context  cues,  and  it  also  has  some  advantages  over  the  two-­‐stage  theory  as  it  accounts  for  the  fact  that,  in  practice,  recognition  is  not  actually  always  superior  to  recall.  Typically,  recall  is  better  when  the  environments  are  similar  in  both  the  learning  (encoding)  and  recall  phases,  suggesting  that  context  cues  are  important.  In  the  same  way,  emotional  material  is  remembered  more  reliably  in  moods  that  match  the  emotional  content  of  these  memories  (e.g.  happy  people  will  remember  more  happy  than  sad  information,  whereas  sad  people  will  better  remember  sad  than  happy  information).    According  to  the  levels-­‐of-­‐processing  effect  theory,  another  alternative  theory  of  memory  suggested  by  Fergus  Craik  and  Robert  Lockhart,  memory  recall  of  stimuli  is  also  a  function  of  the  depth  of  mental  processing,  which  is  in  turn  determined  by  connections  with  pre-­‐existing  memory,  time  spent  processing  the  stimulus,  cognitive  effort  and  sensory  input  mode.  Thus,  shallow  processing  (such  as,  typically,  that  based  on  sound  or  writing)  leads  to  a  relatively  fragile  memory  trace  that  is  susceptible  to  rapid  decay,  whereas  deep  processing  (such  as  that  based  on  semantics  and  meanings)  results  in  a  more  durable  memory  trace.  This  theory  suggests,  then,  that  memory  strength  is  continuously  variable,  as  opposed  to  the  earlier  Atkinson-­‐Shiffrin,  or  multi-­‐store,  memory  model,  which  just  involves  a  sequence  of  three  discrete  stages,  from  sensory  to  short-­‐term  to  long-­‐term  memory.    The  evidence  suggests  that  memory  retrieval  is  a  more  or  less  automatic  process.  Thus,  although  distraction  or  divided  attention  at  the  time  of  recall  tends  to  slow  down  the  retrieval  process  to  some  extent,  it  typically  has  little  to  no  effect  on  the  accuracy  of  retrieved  memories.  Distraction  at  the  time  of  encoding,  on  the  other  hand,  can  severely  impair  subsequent  retrieval  success.    The  efficiency  of  memory  recall  can  be  increased  to  some  extent  by  making  inferences  from  our  personal  stockpile  of  world  knowledge,  and  by  our  use  of  schema  (plural:  schemata).  A  schema  is  an  organized  mental  structure  or  framework  of  pre-­‐conceived  ideas  about  the  world  and  how  it  works,  which  we  can  use  to  make  realistic  inferences  and  assumptions  about  how  to  interpret  and  process  information.  Thus,  our  everyday  communication  consists  not  just  of  words  and  their  meanings,  but  also  of  what  is  left  out  and  mutually  understood  (e.g.  if  someone  says  �it  is  3  o�clock�,  our  knowledge  of  the  world  usually  allows  us  to  know  automatically  whether  it  is  3am  or  3pm).  Such  schemata  are  also  applied  to  recalled  memories,  so  that  we  can  often  flesh  out  details  of  a  memory  from  just  a  skeleton  memory  of  a  central  event  or  object.  However,  the  use  of  schemata  may  also  lead  to  memory  errors  as  assumed  or  expected  associated  events  are  added  that  did  not  actually  occur.                  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 48/66

 

       There  are  three  main  types  of  recall:    • Free  recall  is  the  process  in  which  a  person  is  given  a  list  of  items  to  remember  and  

then  is  asked  to  recall  them  in  any  order  (hence  the  name  �free�).  This  type  of  recall  often  displays  evidence  of  either  the  primacy  effect  (when  the  person  recalls  items  presented  at  the  beginning  of  the  list  earlier  and  more  often)  or  the  recency  effect  (when  the  person  recalls  items  presented  at  the  end  of  the  list  earlier  and  more  often),  and  also  of  the  contiguity  effect  (the  marked  tendency  for  items  from  neighbouring  positions  in  the  list  to  be  recalled  successively).    

• Cued  recall  is  the  process  in  which  a  person  is  given  a  list  of  items  to  remember  and  is  then  tested  with  the  use  of  cues  or  guides.  When  cues  are  provided  to  a  person,  they  tend  to  remember  items  on  the  list  that  they  did  not  originally  recall  without  a  cue,  and  which  were  thought  to  be  lost  to  memory.  This  can  also  take  the  form  of  stimulus-­‐response  recall,  as  when  words,  pictures  and  numbers  are  presented  together  in  a  pair,  and  the  resulting  associations  between  the  two  items  cues  the  recall  of  the  second  item  in  the  pair.  

 • Serial  recall  refers  to  our  ability  to  recall  items  or  events  in  the  order  in  which  they  occurred,  whether  chronological  events  in  our  autobiographical  memories,  or  the  order  of  the  different  parts  of  a  sentence  (or  phonemes  in  a  word)  in  order  to  make  sense  of  them.  Serial  recall  in  long-­‐term  memory  appears  to  differ  from  serial  recall  in  short-­‐term  memory,  in  that  a  sequence  in  long-­‐term  memory  is  represented  in  memory  as  a  whole,  rather  than  as  a  series  of  discrete  items.  Testing  of  serial  recall  by  psychologists  have  yielded  several  general  rules:    o more  recent  events  are  more  easily  remembered  in  order  (especially  with    auditory  

stimuli);    

o recall  decreases  as  the  length  of  the  list  or  sequence  increases;    o there  is  a  tendency  to  remember  the  correct  items,  but  in  the  wrong  order;    o where  errors  are  made,  there  is  a  tendency  to  respond  with  an  item  that  resembles  

the  original  item  in  some  way  (e.g.  �dog�  instead  of  �fog�,  or  perhaps  an  item  physically  close  to  the  original  item);  

 o repetition  errors  do  occur,  but  they  are  relatively  rare;    o if  an  item  is  recalled  earlier  in  the  list  than  it  should  be,  the  missed  item  tends  to  be  

inserted  immediately  after  it;    o if  an  item  from  a  previous  trial  is  recalled  in  a  current  trial,  it  is  likely  to  be  recalled  at  

its  position  from  the  original  trial.    

         

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 49/66

 

       

If  we  assume  that  the  "purpose"  of  human  memory  is  to  use  past  events  to  guide  future  actions,  then  keeping  a  perfect  and  complete  record  of  every  past  event  is  not  necessarily  a  useful  or  efficient  way  of  achieving  this.  So,  in  most  people,  some  specific  memories  may  be  given  up  or  converted  into  general  knowledge  (i.e.  converted  from  episodic  to  semantic  memories)  as  part  of  the  ongoing  recall/re-­‐consolidation  process,  so  that  that  we  are  able  to  generalize  from  experience.    It  is  also  possible  that  false  memories  (or  at  least  wrongly  interpreted  memories)  may  be  created  during  recall,  and  carried  forward  thereafter.  Research  into  false  memory  creation  is  particularly  associated  with  Elizabeth  Loftus'  work  in  the  1970s.  Among  many  other  experiments  in  this  area  (see  the  side  panel  on  the  Psychogenic  Amnesia  page,  for  example),  she  showed  how  the  precise  wording  of  a  question  about  memories  (e.g.  "the  car  hit"  or  "the  car  smashed  into")  can  dramatically  influence  the  recall  and  re-­‐creation  of  memories,  and  can  even  permanently  change  those  memories  for  future  recalls  -­‐  a  phenomenon  which  is  not  lost  on  the  legal  profession.  It  is  thought  that  it  may  even  be  possible,  up  to  a  point,  to  choose  to  forget,  by  blocking  out  unwanted  memories  during  recall,  a  process  achieved  by  frontal  lobe  activity,  which  inhibits  the  laying  down  or  re-­‐consolidation  of  a  memory.    However,  there  is  a  rare  condition  called  hyperthymesia  (also  known  as  hypermnesia  or  superior  autobiographical  memory)  in  which  a  few  people  show  an  extraordinary  capacity  to  recall  detailed  specific  events  from  a  person�s  personal  past,  without  relying  on  practised  mnemonic  strategies.  Although  only  a  handful  of  cases  of  hyperthymesia  have  ever  been  definitively  confirmed,  some  of  these  cases  are  quite  startling,  such  as  a  California  woman  who  could  recall  every  day  in  complete  detail  from  the  age  of  14  onwards,  a  young  English  girl  with  an  IQ  of  191  who  had  a  perfect  photographic  memory  spanning  almost  18  years,  and  a  Russian  man  known  simply  as  "S."  who  was  only  able  to  forget  anything  by  a  deliberate  act  of  will.  One  of  the  most  famous  cases,  known  as  �A.J.�,  described  it  as  a  burden  rather  than  a  gift,  but  others  seem  to  be  able  to  organize  and  compartmentalize  their  prodigious  memories  and  do  not  appear  to  feel  that  their  brains  are  "cluttered"  with  excess  information.  There  is  a  good  "60  Minutes"  documentary  on  the  subject  at  http://www.cbsnews.com/video/watch/?id=7166313n.  Interestingly,  recent  research  has  shown  that  such  individuals  tend  to  have  significantly  larger  than  average  temporal  lobes  and  caudate  nuclei,  and  many  exhibit  mild  Obsessive  Compulsive  Disorder-­‐like  behaviour  (the  caudate  nucleus  is  also  associated  with  OCD).                              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 50/66

 

       5.  CHAPTER  6:  MEMORY  (DEWEY)  (http://www.intropsych.com/ch06_memory/tofc_for_ch06_memory.html)      Overview  of  Chapter  6:  Memory  Memory  feels  like  a  dip  into  the  past,  but  actually  memory  takes  place  in  the  present  moment.  It  uses  information  stored  in  the  past  and  in  some  cases  reconstructs  events  from  the  past.  This  is  like  baking  a  cake  using  a  recipe.  The  result  can  be  a  reasonably  good  copy  of  what  came  before,  or  it  can  turn  out  to  be  totally  different.  Memory  processes  are  creative  processes,  and  memory  errors  are  more  common  than  most  people  think.    Memory  research  is  one  of  the  oldest  forms  of  experimental  research  in  psychology,  but  it  really  blossomed  in  the  1960s  and  1970s.  During  those  decades  memory  research  became  a  hot  area.  The  so-­‐called  encoding  revolution  marked  the  end  of  stimulus-­‐response  inherited  from  mid-­‐20th  Century  behaviorism  and  the  beginning  of  the  information  processing  approach  that  increasingly  predominates  in  21st  Century  experimental  psychology.  Biological  theories  came  to  the  forefront  with  the  emergence  of  the  neurosciences  in  the  1980s  and  1990s,  and  in  the  21st  Century  large  scale  memory  processes  can  be  visualized  in  brain  scans.    In  present-­‐day  psychology,  memory  is  not  regarded  as  a  single  process  or  a  single  system.  It  occurs  in  multiple  systems  operating  in  parallel.  To  some  extent,  each  different  system  in  the  brain  has  its  own  memory.  This  contrasts  with  the  assumption  common  during  psychology's  first  century  (1860-­‐1960)  that  memory  was  a  single  system  shared  by  different  parts  of  the  brain.  Large-­‐scale,  integrated,  event  memories  are  now  regarded  as  one  important  type  of  memory�  but  only  one  type.    The  topic  of  memory  is  one  of  practical  importance.  College  students  are  confronted  every  day  with  the  necessity  of  using  their  memory.  Research  on  memory  can  help  students  understand  why  some  study  habits  work,  while  others  do  little  good.  We  will  see  (in  "What  Should  a  Student  Do?")  that  repetition  and  effort,  by  themselves,  have  little  effect  on  memory.  Much  more  important  is  the  cultivation  of  interest  and  attention  to  detail,  plus  a  good  night's  sleep  after  studying.    How  this  chapter  is  organized    The  first  section  starts  with  the  oldest  tradition  of  memory  research,  that  of  Ebbinghaus.  We  will  examine  Ebbinghaus's  rationale  for  using  nonsense  syllables.  We  will  see  how  the  effort  to  remove  meaning  from  memory  research  failed  and  how  the  "encoding  revolution"  in  memory  research  focused  new  attention  on  the  ways  people  manipulate  information.                  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 51/66

 

       Next  we  examine  the  different  types  of  memory  documented  by  researchers  in  recent  decades.  Some  examples  are  semantic  memory,  procedural  memory,  episodic  memory,  and  implicit  memory.  The  section  titled  "Biological  Perspectives  on  Memory"  examines  research  on  the  brain  processes  that  influence  memory.  We  will  find  that  memory  benefits  from  a  little  adrenaline...but  not  too  much.  A  section  on  memory  improvement  examines  other  ways  memory  is  enhanced.  We  review  classic  techniques  such  as  mnemonic  systems,  then  we  address  the  question  of  how  a  student  might  best  improve  memory  for  academic  material.    Finally,  we  end  the  chapter  with  a  look  at  people  with  fantastic  memories  of  various  types.  Although  each  extraordinary  memorist  uses  a  different  approach,  one  can  find  common  elements  in  their  techniques,  and  we  try  to  draw  some  conclusions  for  ordinary  people  based  on  the  unusually  capable  memories  of  these  individuals.    Related  topics  in  other  chapters  V    Chapter  3  (States  of  Consciousness)  discusses  hypnosis  and  memory.  The  Conditioning  chapter  (Chapter  5)  discusses  acquisition  of  classical  and  operant  conditioned  responses,  a  form  of  learning  and  memory.  Memory  turns  up  in  Chapter  11  (Personality  Theories)  in  Freud's  concept  of  repression  and  in  Chapter  13  (Therapies)  in  Adler's  diagnostic  use  of  early  memories.  Chapter  14  (Frontiers  of  Psychology)  discusses  eyewitness  testimony  and  cryptomnesia  in  the  context  of  Psychology  and  Law.                                                          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 52/66

 

     6.  THE  ATKINSON-­‐SHIFFRIN  MODEL  (http://www.intropsych.com/ch06_memory/atkinson-­‐shiffrin_model.html)    Memory  is  not  one  thing.  Rather,  it  is  any  process  that  allows  us  to  use  previously  stored  information  in  present  cognitive  constructions.  Such  processes  may  be  widespread  in  the  brain,  and  each  major  brain  system  may  have  its  own  form  of  memory.  This  insight  occurred  gradually  to  modern  psychologists  and  represented  a  major  shift  of  emphasis  in  memory  research,  as  compared  to  the  historical  era  of  Ebbinghaus  and  other  early  memory  researchers.  By  the  mid  to  late  1960s,  psychologists  were  starting  to  get  comfortable  with  the  idea  of  human  information  processing.  By  this  they  meant  the  mental  processes  involved  in  acquiring,  organizing,  and  using  knowledge  and  information  of  any  type.                                            In  1965  Atkinson  and  Shiffrin  suggested  that  human  memory  was  organized  as  an  information  processing  system  with  three  stages.  The  diagram  is  based  on  their  classic  1968  article  in  The  Psychology  of  Learning  and  Memory,  Vol.  2.    The  diagram  suggests  that  information  from  the  environment  first  enters  a  sensory  storage  system,  which  Atkinson  and  Shiffrin  called  the  sensory  registers.  Information  in  this  system  (the  first  box)  is  preserved  for  a  brief  period  so  the  brain  can  process  it.    Next  the  information  enters  a  second  box  or  memory  system,  labeled  short-­‐term  store  This  box  represents  ongoing  activity  of  the  brain:  whatever  you  are  thinking  about  at  the  present  moment.  In  the  1890s  William  James  called  this  primary  memory.  In  the  1970s  it  was  often  called  short-­‐term  memory  (abbreviated  STM).  The  most  common  label  in  the  2000s  is  working  memory,  although  some  researchers  argue  for  a  distinction  between  working  memory  and  short-­‐term  memory,  based  on  subtle  distinctions.          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 53/66

 

       7.  CRITICISMS  OF  THE  THREE-­‐BOX  MODEL  (http://www.intropsych.com/ch06_memory/criticisms_of_the_classic_three-­‐box_model.html)    Like  all  influential  models  and  theories,  the  Atkinson-­‐Shiffrin  model  attracted  many  criticisms.  Here  are  some  of  them.    What  were  objections  to  the  Atkinson-­‐Shiffrin  model?    1.  The  sensory  stores  are  sensory  systems,  not  memory  systems  as  most  people  think  of  the  term  "memory."    2.  The  three-­‐box  model  suggests  that  there  is  nothing  in  between  short-­‐term  and  long-­‐term  memory.  However,  evidence  shows  that  information  can  reside  somewhere  between  the  extremes  of  active  attention  and  long-­‐term  storage.  Memories  can  be  "warmed  up"  but  outside  of  attention.  In  other  words,  intermediate  levels  of  activation  are  possible.    3.  The  three-­‐box  model  implies  that  there  is  just  one  short-­‐term  system  and  just  one  long-­‐term  system.  In  reality,  there  are  many  memory  systems  operating  in  parallel  (for  example,  different  systems  for  vision,  language,  and  odor  memory).  Each  has  short-­‐term  and  long-­‐term  operations.    4)  The  Atkinson-­‐Shiffrin  model  does  not  give  enough  emphasis  to  unconscious  processes.  Unconscious  activation  is  shown  with  a  tentative,  dotted  arrow.  Modern  researchers  find  that  unconscious  and  implicit  forms  of  memory  are  more  common  than  consciously  directed  memory  processes.    In  short,  the  old  Atkinson  &  Shiffrin  has  its  limitations.  However,  it  is  still  a  useful  scheme,  in  part  because  every  researcher  is  familiar  with  it  and  uses  it  as  a  foil  (a  sort  of  negative  reference  point)  for  proposing  new  ways  of  looking  at  memory.                                        

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 54/66

 

     8.  ICONIC  MEMORY  (http://www.intropsych.com/ch06_memory/iconic_memory.html)    In  the  classic  Atkinson  &  Shiffrin  model,  the  first  box  is  labeled  sensory  registers.  These  are  more  commonly  called  the  sensory  stores  today.  The  sensory  stores  are  like  brief  delay  systems  associated  with  each  sense.  They  preserve  the  pattern  of  stimulation  before  it  enters  attention.  The  sensory  stores  are  sensory  systems,  but  they  are  also  memory  systems  because  they  preserve  information  after  the  external  stimulus  is  gone.  Other  names  for  the  sensory  stores  are  sensory  buffers,  or  very  short  term  stores.  What  does  "icon"  mean?  What  are  characteristics  of  iconic  memory?    Iconic  memory  is  the  sensory  store  for  vision.  The  term  icon  means  form  or  image.  Ulric  Neisser  (1967)  proposed  this  label  to  convey  the  idea  that  iconic  memory  preserves  an  exact  duplicate  of  the  image  falling  on  the  retina.  Iconic  memory  was  first  reported  in  the  modern  era  by  George  Sperling  (1963).  Sperling  tested  subjects  by  flashing  several  rows  of  letters  on  a  screen  for  a  split  second  to  see  how  many  letters  they  could  read  after  very  short  exposures.    What  is  a  tachistoscope?  What  did  Sperling  do?    Sperling  used  a  tachistoscope  (pronounced  tuh-­‐KISS-­‐tuh-­‐scope),  an  instrument  invented  by  Volkmann  in  1859  to  replace  a  then-­‐current  methodology  of  using  electric  sparks  to  produce  brief  visual  exposures.  The  tachistoscope  used  a  camera-­‐like  shutter  to  flash  a  picture  onto  a  screen  for  a  brief  time  measured  in  milliseconds  (thousandths  of  a  second).  In  Sperling's  experiment,  subjects  saw  an  array  of  letters  like  this  flashed  very  briefly  on  a  screen:  

W  P  X  T  M  R  C  S  L  H  Y  D  

 Subjects  were  asked  to  read  as  many  letters  as  possible  during  the  brief  flash.  Usually  they  could  only  read  3  or  4  letters.  Next  Sperling  tried  a  variation  of  his  experiment  called  the  partial  report  method.  After  he  flashed  the  letters  he  sounded  a  high,  medium,  or  low  tone.  Depending  on  which  tone  was  sounded,  the  subject  read  the  high,  medium,  or  low  row  of  letters.    When  was  the  tone  sounded,  in  the  "partial  report"  experiment?    Because  the  tone  came  only  after  the  flash  of  letters,  you  might  think  it  would  not  do  the  subjects  any  good.  However,  Sperling  found  that  as  long  as  the  tone  was  sounded  within  250  milliseconds  (a  quarter  second)  of  the  flash,  subjects  could  report  3  out  of  4  letters  from  any  row.  Apparently  they  preserved  a  memory  of  the  entire  image  for  a  quarter  second.                  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 55/66

 

       What  function  does  iconic  memory  serve?    Why  does  this  memory  system  exist?  Eye  movements  take  about  a  quarter  second,  and  during  a  sudden  eye  movement,  visual  information  from  the  eye  to  the  brain  is  interrupted.  During  this  quarter  second,  the  iconic  memory  system  preserves  information  from  the  last  place  where  the  eye  stopped  (the  previous  "eye  fixation").  Therefore  iconic  memory  helps  maximize  useful  information  available  to  the  visual  system,  preserving  information  from  one  eye  fixation  while  the  eye  moves  to  the  next  fixation  point.    When  did  Sperling's  subjects  think  the  tone  was  sounded?    Partly  because  of  iconic  memory,  we  are  unaware  of  the  gap  between  eye  fixations.  Similarly,  Sperling's  subjects  were  unaware  of  the  gap  between  the  flash  of  letters  and  the  tone.  They  simply  waited  for  a  tone  and  read  the  appropriate  row.  They  believed  the  image  of  letters  was  still  showing  on  the  screen  when  the  tone  sounded.  Actually  they  were  reading  the  letters  from  their  iconic  image  when  the  tone  sounded.    What  is  another  "sensory  storage"  system  for  visual  information,  and  how  long  does  it  last?    The  iconic  image  is  complete.  It  contains  all  the  sensory  information  available  from  the  retina  of  the  eye.  However,  it  lasts  only  a  fraction  of  a  second  and  cannot  be  conjured  up  voluntarily  at  a  later  time.  Probably  the  location  of  the  iconic  image  is  the  circuitry  of  the  retina  itself.  Complex  experimental  techniques  reveal  that  individual  sensory  traces  or  "pictures"  can  also  be  preserved  in  visual  processing  areas  of  the  brain  for  up  to  five  minutes.  Unlike  iconic  images,  the  image  memories  which  last  for  several  minutes  are  "accessible  to  higher  level  processes"  such  as  attempts  to  remember  a  picture  (Ishai  and  Sagi,  1995).  This  second  system  might  be  the  one  used  by  people  with  so-­‐called  photographic  memory,  called  eidetikers,  discussed  later  in  this  chapter.                                          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 56/66

 

     9.  ECHOIC  MEMORY  (http://www.intropsych.com/ch06_memory/echoic_memory.html)    Just  as  the  eye  has  a  delay  system  to  cling  onto  sensory  information,  so  does  the  ear.  The  auditory  information  store,  dubbed  echoic  memory  by  Neisser  (1967),  lasts  one  or  two  seconds.  Echoic  memory  can  also  be  called  the  auditory  store  or  auditory  sensory  register.    What  is  echoic  memory  and  how  long  does  it  last?  How  did  Guttman  and  Julesz  test  the  duration  of  echoic  memory  and  what  did  they  determine?    One  creative  experiment  designed  to  measure  echoic  memory  was  carried  out  by  Guttman  and  Julesz  (1963).  They  used  a  computer  to  generate  repeating  segments  of  white  noise.  White  noise  is  composed  of  all  frequencies  randomly  mixed  together.  It  sounds  like  "shhhh"  and  cannot  be  described  or  memorized.  The  computer  made  it  possible  to  put  together  a  repeating  pattern  of  white  noise  with  no  gap  between  repetitions.  The  subjects  had  no  clue  that  a  sound  was  being  repeated.  Guttman  and  Julesz  instructed  subjects  to  put  on  headphones,  listen  to  the  noise,  and  report  what  they  heard.    If  the  repeating  segment  of  white  noise  lasted  longer  than  a  few  seconds,  the  subjects  never  realized  it  was  repeating.  They  heard  a  continuous  whooshing  sound  with  no  pattern.  If  the  segment  of  white  noise  was  less  than  two  seconds  long,  the  subjects  suddenly  realized  they  heard  a  repeated  sound.  They  still  could  not  describe  the  sound  (other  than  saying  "shhhh")  but  they  knew  it  was  being  repeated.  To  detect  a  repeating  pattern  of  random  frequencies,  subjects  must  use  a  memory  system  capable  of  preserving  an  exact  copy  of  the  noise  from  one  repetition  to  the  next.  This  is  what  echoic  memory  does:  it  preserves  the  exact  pattern  of  sound  for  one  or  two  seconds.    How  does  the  "Why  did  you  say?"  phenomenon  illustrate  echoic  memory?    A  less  scientific  demonstration  of  echoic  memory  is  the  "What  did  you  say?"  phenomenon,  which  goes  like  this:  Person  #1:  "What  time  is  it?"  Person  #2:  "What  did  you  say?  Oh,  2:30."    The  second  person  hears  the  question  after  asking,  "What  did  you  say?"  This  is  due  to  echoic  memory,  which  holds  the  sound  of  the  question  for  a  second  or  two.  Even  if  you  were  not  paying  attention  to  the  words  when  they  were  uttered,  you  can  "hear"  them  when  you  turn  your  attention  to  them.  This  can  be  annoying  to  the  person  who  starts  repeating  the  question  only  to  be  interrupted  by  an  answer.    Development  of  brain  scanning  technology  made  it  possible  to  observe  echoic  memory  in  the  brain.  Using  MEG  (magnetoencephalography),Lu,  Williamson,  and  Kaufman  (1992)  were  able  to  show  activity  in  a  portion  of  the  auditory  cortex  (part  of  the  cerebral  cortex  which  responds  to  sound)  lasting  two  to  five  seconds  after  a  sound  stimulus.          

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 57/66

 

     10.  WORKING  MEMORY  (http://www.intropsych.com/ch06_memory/working_memory.html)    Whatever  information  is  held  in  attention  at  a  given  moment  is  said  to  be  in  working  memory.  This  is  the  information  you  are  "thinking  about."  Working  memory  is  also  called  primary  memory  and  short-­‐term  memory.    What  is  working  memory?  What  are  its  two  components?    Brain  scans  show  that  working  memory  involves  two  components:  short-­‐term  storage  that  lasts  only  for  a  few  seconds,  and  longer-­‐term  "executive  processes  that  operate  on  the  contents  of  storage"  (Smith  &  Jonides,  1999).  Zelinsky  &  Murphy  (2000)  describe  the  short-­‐term  process  as  a  visual  scratchpad  which  briefly  preserves  the  visual  appearance  of  a  scene,  while  the  longer-­‐term  process  is  a  verbal  storage  system  used  when  people  rehearse  or  repeat  something  to  themselves  again  and  again  to  remember  it.    11.  REHEARSAL  (http://www.intropsych.com/ch06_memory/rehearsal.html)    Rehearsal  is  an  example  of  an  executive  process  in  working  memory.  In  other  words,  it  is  a  consciously  controlled  form  of  information  processing  that  people  must  learn;  they  do  not  do  it  automatically.  When  people  are  trying  to  remember  an  unfamiliar  telephone  number  as  they  punch  it  into  a  phone,  they  typically  repeat  the  number  to  themselves.  This  is  what  memory  researchers  call  rehearsal.  Several  forms  of  evidence  indicate  that  silent  language  rehearsal  is  much  like  re-­‐hearing  something.  For  one  thing,  silent  rehearsal  takes  the  same  time  as  spoken  speech  (Landauer,  1962).  Also,  errors  made  during  language  rehearsal  involve  confusions  between  similar  sounds  as  would  happen  with  spoken  speech.  A  subject  might  remember  the  nonsense  syllable  "DNW"  as  "TNW"  because  "D"  and  "T"  both  contain  the  "ee"  sound.  Sound-­‐based  errors  presumably  occur  during  rehearsal  because  the  auditory  image  starts  to  fade  and  subjects  grasp  at  the  fading  image  to  reconstruct  it.  Errors  based  on  similar  sounds  are  called  acoustic  confusions.    What  is  evidence  that  rehearsal  is  like  an  internal  voice?  What  are  acoustic  confusions?  Why  do  they  occur?    A  student  provides  this  example:  Recently,  I  experienced  acoustic  confusion.  A  friend  of  mine  called  and  asked  if  I  would  like  to  come  over.  He  gave  me  his  room  number,  which  was  North  205,  and  I  kept  rehearsing  it  over  and  over  in  my  head.  By  the  time  I  reached  Dorman  Hall,  I  was  saying  North  209.  I  went  to  room  209,  knocked  on  the  door,  and  went  in.  I  asked  where  Jeff  was,  and  they  said  he  was  not  in  that  room;  he  was  in  205.  I  was  really  embarrassed,  but  when  we  studied  about  acoustic  confusions  during  rehearsal  I  realized  what  I  had  done.  [Author's  files]    This  is  an  example  of  an  acoustical  error  because  "5"  and  "9"  share  the  hard  "i"  sound.  If  the  student  was  distracted  while  rehearsing  the  number  "205,"  perhaps  she  grasped  at  the  "i"  sound  and  reconstructed  the  number  as  "209,"  all  in  a  split  second,  without  being  aware  of  the  error.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 58/66

 

       12.  THE  MAGICAL  NUMBER  SEVEN  PLUS  OR  MINUS  TWO  (http://www.intropsych.com/ch06_memory/magical_number_seven.html)    One  of  the  best-­‐documented  characteristics  of  working  memory  is  its  limited  capacity.  The  short-­‐term  storage  process  of  working  memory  can  hold  only  about  seven  items  at  a  time.  To  deal  with  more  information  than  that,  the  information  must  be  organized  into  larger  chunks.  For  example,  words  can  be  combined  into  sentences  or  stories;  then  more  than  seven  words  can  be  held  in  working  memory.    Psychologist  George  Miller  pointed  out  the  seven  item  limitation  of  working  memory  in  a  classic  1956  article,  "The  magical  number  seven,  plus  or  minus  two:  Some  limits  on  our  capacity  for  processing  information."  As  you  can  see  from  date,  this  journal  article  was  published  in  the  early  days  of  the  encoding  revolution...in  fact,  some  people  say  this  article  started  the  whole  idea  of  using  computer  concepts  like  information  processing  to  understand  human  memory.    What  is  a  chunk?    The  magic  number  seven  is  the  number  of  chunks  of  information  a  person  can  hold  in  working  memory  at  the  same  time.  A  chunk  is  a  unit  of  some  kind.  It  could  be  a  letter,  a  word,  or  a  short  sentence.  Think  of  it  as  a  box  or  container  in  memory.  Miller  examined  short-­‐term  memory  tasks  and  found  that  typical  subjects  could  hold  about  7  chunks  in  memory  at  once.  This  was  true  whether  the  subjects  were  holding  7  letters  in  memory  at  once,  7  numbers  at  once,  or  7  words  at  once.  Miller  wrote  in  a  humorous  tone  that  he  was  being  "persecuted  by  an  integer"  (the  number  7)  in  these  studies.  Old-­‐time  psychologists,  before  the  encoding  revolution,  probably  would  have  assumed  that  fewer  words  could  be  held  in  memory  than  letters,  because  each  word  contains  many  letters.  But  this  is  not  the  case.  Miller's  big  discovery  was  that  an  organized  whole  (a  chunk)  functions  as  one  item  in  primary  memory.    What  was  Miller's  "big  discovery?"    Miller  realized  the  profound  implications  of  this  simple  insight.  If  items  can  be  grouped  and  treated  as  chunks  in  memory,  then  the  capacity  of  memory  can  be  increased  by  organizing  and  grouping  things.  To  demonstrate  this  to  yourself,  try  holding  the  following  sequence  of  numbers  in  memory,  all  at  once.    How  can  you  reduce  the  string  of  10  numbers  to  4  chunks?  

7  4  1  4  9  2  1  9  4  5  

If  you  interpret  this  as  a  string  of  ten  separate  numbers,  it  exceeds  the  capacity  of  working  memory.  Ten  chunks  are  too  many  to  hold  at  one  time  in  primary  memory.  But  if  you  recognize  two  meaningful  dates  in  the  string  of  digits,  you  have  only  four  chunks,  and  you  easily  hold  the  string  of  10  digits  in  working  memory.  

 

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 59/66

 

 

Chunking  points  to  the  importance  of  organization  in  overcoming  the  limits  of  memory.  If  short  term,  working  memory  is  limited  to  about  7  chunks,  the  only  way  to  improve  its  capacity  is  to  organize  larger  chunks.  This  turns  out  to  be  a  common  theme  in  memory  research.  Memory  is  improved  by  organizing  little  pieces  into  larger  wholes.  

How  did  Smith  quadruple  his  memory  capacity?    In  his  original  article,  Miller  described  a  1954  experiment  by  psychologist  Sidney  Smith.  Smith  memorized  sets  of  four  binary  digits,  which  are  always  1s  or  0s  (e.g.  0  0  1  0).  Each  four-­‐number  set  of  binary  numbers  is  equivalent  to  one  decimal  digit  (0  0  1  0  equals  the  number  2).  This  meant  that  a  string  of  16  binary  numbers  could  be  converted  into  4  decimal  numbers.  Once  Smith  learned  to  make  the  4-­‐to-­‐1  conversion  easily  and  automatically,  his  memory  span  for  binary  digits  increased  from  10  to  about  40.  In  other  words,  he  could  memorize  10  decimal  numbers  in  a  row,  then  convert  them  back  into  0's  and  1's  to  reconstruct  a  list  of  40  binary  numbers.    How  did  an  undergraduate  use  recoding  to  improve  his  memory  for  digits,  in  an  experiment  lasting  more  than  a  year?    Ericsson,  Chase  and  Faloon  (1980)  decided  to  see  how  far  this  "recoding"  idea  could  be  pushed.  They  had  an  undergraduate  student  memorize  random  strings  of  decimal  digits  an  hour  a  day,  3  to  5  days  a  week,  for  more  than  a  year  and  a  half.  (Presumably  they  paid  him  well  for  this  effort!)  At  the  end  of  this  period  his  memory  span  had  increased  from  7  to  79  digits.  In  other  words,  he  could  repeat  back  a  string  of  79  random  digits  immediately  after  hearing  it  without  any  error.  His  long-­‐term  memory  for  the  digits  also  improved.  By  the  end  of  the  experiment,  he  often  remembered  many  sequences  from  previous  days.    The  subject  was  not  instructed  in  any  particular  coding  scheme;  he  invented  his  own.  Being  a  runner,  he  found  it  easiest  to  translate  number  sequences  into  running  times.  The  number  3492  was  recoded  as  "3  minutes  and  49  point  2  seconds,  near  world-­‐record  mile  time."  Later  this  was  supplemented  with  ages;  e.g.  893  became  89  point  3,  very  old  man.  (Ericsson,  Chase  &  Faloon,  1980,  p.1181).    What  sort  of  "burden"  seems  to  improve,  rather  than  harm,  memory?    This  should  remind  you  of  example  from  Miller,  Galanter,  and  Pribram  described  earlier,  involving  a  subject  who  memorized  "BOF"  and  "MIB"  by  composing  a  sentence  about  a  man  named  BOF  who  was  in  "false  misery"  (MIB).  There  is  an  important  principle  lurking  here:  Human  memory  seems  to  work  better,  not  worse,  when  a  person  adds  elaborate  encoding  schemes,  as  long  as  they  provide  organization  to  aid  memory  retrieval.                    

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 60/66

 

     13.  VARIETIES  OF  SECONDARY  MEMORY  (http://www.intropsych.com/ch06_memory/varieties_of_secondary_memory.html)    Atkinson  and  Shiffrin  depicted  long-­‐term  memory  as  one  box  in  the  mid-­‐1960s.  Since  then,  psychologists  have  found  several  different  systems  that  contribute  to  secondary  or  long-­‐term  memory.  The  relevant  distinctions  are  often  conveyed  in  pairs  of  opposites:  —episodic  vs.  semantic  memory  (memory  for  single  events  vs.  information  extracted  from  repeated  events)    —declarative  vs.  procedural  memory  (memory  for  facts  vs.  processes)    —implicit  vs.  explicit  (memory  which  is  automatically  retrieved  vs.  memory  which  requires  a  a  conscious  act  of  retrieval)    These  are  distinct  forms  of  memory.  In  some  cases  they  are  based  in  distinct  biological  systems  within  the  brain.  For  example,  procedural  memory  seems  to  require  the  cerebellum,  the  "small  brain"  at  the  back  of  the  skull.  Episodic  memory  seems  to  require  the  hippocampus  and  temporal  lobes.  Implicit  memory  is  embedded  in  many  brain  systems  and  acts  semi-­‐independently,  while  explicit  memory  requires  some  coordination  by  the  executive  processes  of  the  frontal  lobes.    What  are  different  names  for  episodic  memory?    Consider  the  first  distinction:  between  single  events  and  repeated  events.  Memory  researcher  Endel  Tulving  (1972)  coined  the  term  episodic  memory  for  memory  of  single  episodes  of  your  life.  Episodic  memory  is  sometimes  called  single-­‐event  memory  because  it  is  a  memory  for  a  distinct  experience  at  a  particular  time  and  place.  It  can  also  be  called  autobiographical  memory.  It  seems  to  have  a  tag  on  it  that  says,  "This  was  an  event  in  my  life."    Episodic  memory  can  be  entirely  wiped  out  by  brain  damage  to  the  hippocampal/temporal  lobe  area.  Clive  Wearing  is  a  famous  patient  who  lost  his  event  memory  after  an  infection  of  the  brain.  He  does  not  remember  a  moment  of  his  life,  before  or  after  the  encephalitis.  As  soon  as  information  leaves  his  working  memory,  it  is  forgotten,  and  he  always  feels  like  he  is  "just  waking  up"  or  "just  becoming  conscious  for  the  first  time."    What  happens  in  cases  of  dissociative  amnesia?    Episodic  memory  can  also  be  lost  independently  of  other  forms  of  memory  in  certain  cases  of  dissociative  amnesia.  Dissociative  amnesia  is  the  classic  amnesia  syndrome  seen  in  old-­‐time  movies.  Some  people  who  experience  a  psychological  trauma  react  by  forgetting  who  they  are.  They  forget  personal  information—memory  linked  to  their  identity.  In  other  words,  they  lose  episodic  memory.  However,  they  retain  memory  for  factual  knowledge.  Such  a  person  could  tell  you  that  2+2  equals  4.  The  same  is  true  of  Clive  Waring,  who  has  disattached  knowledge  like  the  fact  that  England  returned  Hong  Kong  to  the  Chinese  (something  that  happened  after  his  brain  damage).  Clive's  problem,  being  due  to  brain  damage,  is  irreversible.  Most  episodes  of  dissociative  amnesia  caused  by  psychological  trauma  are  reversible.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 61/66

 

     Why  has  the  name  "semantic  memory"  gone  out  of  favor  with  some  psychologists?    Knowledge  like  "2  +  2  =  4"  or  "Hong  Kong  is  part  of  China"  is  encountered  repeatedly.  This  distinguishes  such  knowledge  from  personal  event  knowledge,  which  represents  a  unique  and  one-­‐time  event.  Tulving's  term  for  non-­‐episodic  memory,  semantic  memory,  has  gone  out  of  favor  with  some  psychologists,  because  "semantic"  means  "related  to  word  meanings"  and  this  type  of  memory  involves  more  than  words.  Therefore  researchers  now  distinguish  between  memory  for  single  events  (episodic  memory,  which  requires  the  brain  area  called  the  hippocampus)  and  memory  for  general  knowledge  abstracted  from  repeated  events  (declarative  and  procedural  memory,  which  require  other  brain  areas).    What  problem  did  N.T.  have?    Tulving  studied  a  patient  known  as  N.T.  who,  like  Clive  Waring,  lost  all  his  episodic  memory.  In  N.T.'s  case,  the  damage  was  caused  by  a  stroke.  N.T.  was  capable  of  learning  new  word  meanings,  skills,  and  facts.  He  lost  only  his  memory  for  the  individual  events  of  his  life.  Note  that  non-­‐episodic  memory  in  this  case  involved  both  skills  (procedural  memory)  and  facts  (declarative  memory)        14.  DECLARATIVE  VS.  PROCEDURAL  MEMORY  (http://www.intropsych.com/ch06_memory/declarative_vs._procedural_memory.html)    Declarative  memory  is  is  memory  for  repeatedly  encountered  facts  and  data  such  as  who  is  president,  what  is  the  square  root  of  25,  and  where  you  were  born.    

Procedural  memory,  by  contrast,  is  specifically  memory  for  sequences  of  events,  processes,  and  routines.  Deciding  which  letter  of  the  alphabet  has  three  vertical  strokes  (M)  involves  declarative  memory.  Remembering  how  to  tie  your  shoes,  ride  a  bike,  or  shoot  a  layup  on  a  basketball  court  requires  procedural  memory.  

What  are  two  types  of  memory  for  general  knowledge?  What  is  evidence  they  are  distinct  systems?  

Evidence  for  a  basic  distinction  between  declarative  knowledge  and  procedural  knowledge  comes  from  the  effects  of  brain  damage  and  electric  shock.  In  the  21st  Century  ECS  (electroconvulsive  shock)  procedures  are  refined  to  the  point  where  "shock  treatments"  do  not  produce  measurable  effects  on  memory,  largely  because  of  drugs  that  are  administered  before  treatment  and  have  a  protective  effect  on  brain  tissue.  However,  in  earlier  decades,  the  treatment  was  cruder,  and  memory  loss  after  ECS  was  common.  Patients  receiving  electroconvulsive  shock  treatments  (ECS)  often  showed  amnesia  for  factual  information  presented  to  them  in  the  preceding  days.  They  showed  no  similar  loss  of  memory  for  procedural  skills  that  they  practiced  before  the  shock.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 62/66

 

     15.  IMPLICIT  VS.  EXPLICIT  MEMORY  (http://www.intropsych.com/ch06_memory/implicit_vs_explicit_memory.html)    Certain  forms  of  memory  do  not  require  conscious  executive  control.  An  example  is  remembering  how  to  brush  your  teeth.  You  probably  do  not  need  to  think  about  it.  These  forms  of  memory—called  implicit  memory  —are  usable  even  if  a  person  suffers  severe  brain  damage  from  organic  brain  syndromes  such  as  Alzheimer's  Syndrome.  What  is  the  difference  between  implicit  and  explicit  memory?    People  who  are  drunk,  or  who  suffer  from  organic  brain  syndromes,  may  perform  very  poorly  on  memory  tasks  requiring  conscious  control:  explicit  memory  tasks.  An  example  of  an  explicit  memory  task  would  be  reciting  everything  you  remember  reading  on  the  last  page.  By  contrast,  implicit  memory  tasks  are  automatic  responses,  drawn  out  or  elicited  by  a  situation,  like  clapping  after  a  performance.    In  the  following  columns,  tasks  on  the  left  are  examples  of  implicit  memory  that  do  not  require  executive  control.  Brain-­‐damaged  or  intoxicated  humans  can  still  perform  them.  Tasks  on  the  right  are  examples  of  explicit  memory  that  do  require  some  conscious  control.  They  are  performed  poorly  by  people  who  are  brain-­‐damaged  or  drunk.    

Tasks  requiring  implicit  memory   Tasks  requiring  explicit  memory          mirror  tracing   recalling  last  year  reading  reversed  text   paired  associate  learning  doing  a  word-­‐completion  task   identifying  the  head  of  state  singing  part  of  a  familiar  song   writing  a  term  paper  

 Items  in  the  left  column  are  all  indirect  forms  of  memory.  They  do  not  involve  a  conscious  strategy  for  retrieving  information.  If  you  once  learned  to  read  text  that  is  printed  backwards,  chances  are  you  will  be  able  to  do  it  later,  even  if  you  suffer  a  brain  disorder.  The  same  is  true  of  the  other  tasks  on  the  left.    How  does  implicit  memory  help  old  people  who  stay  in  their  own  homes?    The  importance  and  power  of  implicit  memory  helps  explain  why  old  people  are  often  more  comfortable  and  capable  when  they  stay  in  a  familiar  place.  Years  of  living  in  the  same  rooms  produces  implicit  memory  such  as  knowing  where  to  find  a  broom  and  other  useful  knowledge  and  skills.  When  an  old  person  is  put  in  a  nursing  home  or  other  unfamiliar  environment,  the  same  person  may  seem  disabled,  because  none  of  the  old  automatic  routines  work  in  the  new  environment.    What  was  discovered  in  the  study  of  "alcohol  amnesia?    Hashtroudi,  Parker,  DeLisi,  Wyatt,  and  Mutter  (1984)  studied  the  effects  of  alcohol  on  implicit  and  explicit  memory.  Ninety-­‐six  male  volunteers  between  the  ages  of  21  and  35  were  recruited  for  the  all-­‐day  experiment  (they  were  kept  at  the  lab  until  their  blood  alcohol  returned  to  zero).  The  researchers  found  that  alcohol  intoxication  had  effects  similar  to  brain  injury.  It  damaged  explicit  memory  but  not  implicit  memory.      

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 63/66

 

     The  subjects  were  divided  into  6  groups  of  16.  Three  groups  received  alcoholic  drinks;  three  groups  received  placebos.  Each  received  4  drinks  in  40  minutes,  then  the  memory  tests  began.  Subjects  saw  a  list  of  words  for  2  seconds  each.  They  performed  an  arithmetic  task  for  5  minutes,  then  they  were  tested  on  one  of  three  memory  tests:  (1)  recalling  the  words,  (2)  recognizing  the  words,  (3)  identifying  the  words  in  degraded  form.  

 

 

 

 

 

Degraded  words  progressively  filled  in    What  tasks  were  affected  by  alcohol,  and  what  were  not?    The  figure  shows  some  degraded  words  used  in  the  experiment.  Each  subject  had  to  indicate  as  quickly  as  possible  the  word  seen  a  few  minutes  earlier  for  2  seconds.  First  they  saw  the  word  in  severely  degraded  form  (top)  then  with  more  and  more  of  the  word  revealed.(as  shown  top  to  bottom).    Alcohol-­‐intoxicated  subjects  performed  just  as  well  as  sober  subjects  on  the  last  two  tasks:  recognizing  the  degraded  words  and  recognizing  other  words  in  a  Yes/No  recognition  test.  (Actually  the  drunk  subjects  identified  fewer  words  from  the  list,  but  they  also  made  fewer  errors  of  false  identification,  so  the  recognition  scores  came  out  the  same.)  Both  forms  of  recognition  are  examples  of  implicit  memory,  because  a  person  does  not  have  to  perform  any  elaborate  or  deliberate  mental  activity  to  recognize  a  word.  You  see  the  word,  later  on  you  recognize  it,  and  it  is  all  somewhat  automatic  and  effortless.    However,  on  the  recall  task,  a  big  difference  appeared.  Drunk  subjects  recalled  only  half  as  many  words  as  sober  subjects.  This  was  a  task  that  involved  explicit  memory.  Subjects  knew  they  would  be  asked  to  recall  the  words  later,  so  they  probably  tried  to  memorize  them  during  the  initial  presentation  of  the  list.  Sober  subjects  were  better  at  this  consciously  controlled  process.                  

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 64/66

 

       With  what  type  of  memory  are  preschool  children  just  as  good  as  adults?    Implicit  memory  occurs  under  the  surface  all  the  time.  As  you  explore  the  environment,  you  absorb  information  about  it  continuously  without  trying.  If  somebody  asks  you  where  a  certain  missing  object  is  located,  you  may  reply,  "Oh,  I  saw  that  in  such-­‐and-­‐such  a  place."  You  did  not  make  a  conscious  effort  to  memorize  its  location  when  you  saw  it,  nor  did  you  have  to  make  much  of  a  conscious  effort  to  retrieve  this  information  when  the  person  asked  you  about  it.    Implicit  memory  operates  almost  without  conscious  intervention.  No  sophisticated  executive  control  is  required.  That  is  why  preschool  children  are  sometimes  as  good  as  adults  at  tasks  requiring  only  implicit  memory.  Ask  a  3  year  old  where  a  favorite  toy  is,  and  the  child  is  as  likely  as  you  are  to  remember  where  it  was  last  seen.  Ask  a  3  year  old  to  hold  a  series  of  numbers  in  memory  and  he  or  she  will  not  perform  well,  because  a  child  does  not  know  to  rehearse  such  a  series  to  "hold  it  in  memory."  This  is  something  learned,  and  it  requires  executive  control.      What  did  Crowder  say  about  implicit  memory?    Implicit  memory  is  very  pervasive  or  widespread  in  human  cognitive  processing.  Robert  G.  Crowder  of  Yale  University  pointed  out,  "Most  researchers  now  agree  that  implicit  memory  is  more  influential  than  explicit,  conscious  memory"  (Bower,  1990).        16.  PRIMING  (http://www.intropsych.com/ch06_memory/priming.html)                                              

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 65/66

 

     A  technique  called  priming  can  demonstrate  implicit  memory.  A  person  who  sees  the  word  yellow  will  be  slightly  faster  to  recognize  the  word  banana  as  a  word.  This  happens  because  the  words  yellow  and  banana  are  closely  associated  in  memory.    What  is  "priming"?  What  is  a  "semantic  network"?    Researchers  sometimes  envision  a  network  of  word  meanings  or  semantic  network  somewhat  like  the  diagram.  The  distance  between  words  indicates  the  frequency  with  which  the  words  are  associated  in  everyday  life.  Because  of  these  associations,  activating  one  node  of  the  network  (showing  the  person  one  word)  warms  up  or  primes  nearby  words,  speeding  retrieval.  This  effect  lasts  about  30  minutes  after  exposure  to  the  priming  word.    Are  priming  effects  implicit  or  explicit?  Why?    Priming  does  not  require  conscious  rehearsal  of  word  meanings.  The  associations  between  words  used  in  a  priming  experiment  are  not  consciously  memorized  for  purposes  of  the  experiment;  they  are  naturally  occurring  associations.  (However,  they  are  learned,  and  they  can  be  culture-­‐specific.  Not  every  society  has  yellow  school  busses,  for  example.)  No  conscious  strategy  is  required  to  show  priming  effects.  Brain-­‐damaged  and  intoxicated  people  show  the  same  priming  effects  as  other  people.  This  is  another  example  of  implicit  memory.  Indeed,  the  example  used  on  the  preceding  page,  about  implicit  vs.  explicit  memory,  was  also  a  form  of  priming.  It  involved  degraded  words,  shown  as  a  cue  to  recall  words  a  person  saw  earlier  in  the  experiment.  In  that  case,  the  experimenters  were  interested  in  seeing  whether  the  priming  effect  (showing  the  words  earlier)  would  occur  equally  in  drunk  and  sober  subjects,  which  it  did.  How  does  priming  normally  help  language  comprehension?  In  normal  reading,  words  seen  ahead  of  the  fixation  point  of  the  eye  (in  peripheral  vision)  are  activated  in  semantic  memory  ("warmed  up")  so  when  the  eye  fixates  upon  them,  their  meanings  are  available  faster.  Similarly,  in  conversation,  if  you  hear  somebody  say,  "I  ate  a  yellow"  [followed  by  a  muffled  word  that  sounds  like  "an-­‐an-­‐an"]  you  might  well  hear  "I  ate  a  yellow  banana"  because  you  have  a  semantic  network  like  the  one  in  the  diagram.  The  word  banana  is  activated  by  its  association  to  the  word  yellow,  so  you  easily  retrieve  it  even  if  the  stimulus  is  partial  or  degraded.  The  memory  retrieval  is  automatic,  evoked  by  the  situation,  so  this  is  an  example  of  implicit  memory.                              

   

10/4/2015 Module 3.3 COGNITIVE THEORIES

http://myportal.upou.edu.ph/mod/book/tool/print/index.php?id=52429 66/66

 

       17.  SUMMARY:  DIFFERENT  TYPES  OF  MEMORY  (http://www.intropsych.com/ch06_memory/summary_different_types_of_memory.html)    One  of  the  earliest  theories  of  memory  during  the  information  processing  era  was  the  Atkinson  and  Shiffrin  model.  It  portrayed  memory  as  a  flow  of  information  through  three  boxes,  each  representing  a  distinct  memory  system.  The  first  box  consisted  of  the  sensory  stores.  The  sensory  storage  system  for  vision  is  called  iconic  memory.  George  Sperling  showed  that  a  visual  image  persists  for  a  split  second  after  stimulation.  The  sensory  storage  system  for  hearing  is  called  echoic  memory.  Studies  indicate  that  it  lasts  for  about  two  seconds.  Other  senses  such  as  taste  have  split-­‐second  memory  systems,  too.    The  second  box  in  the  classic  Atkinson-­‐Shiffrin  model  represents  the  short-­‐term  store  also  known  as  primary  memory,  working  memory,  and  short-­‐term  memory.  Working  memory  has  two  components:  a  short-­‐lasting  visual  "scratchpad"  and  a  longer-­‐lasting  verbal  memory.  The  longer-­‐lasting  verbal  memory  enables  you  to  circulate  words  in  your  head.  Rehearsal  is  one  way  to  keep  information  in  primary  memory;  you  just  say  something  to  yourself  again  and  again.                The  verbal  portion  of  working  memory  has  a  limited  capacity.  George  Miller  coined  the  term  "chunk"  to  describe  an  organized  entity  or  thing  in  memory.  Working  memory  can  handle  about  seven  chunks  at  one  time.  To  increase  the  amount  of  information  in  attention,  one  must  increase  the  amount  of  information  in  each  chunk.  This  can  be  done  by  organizing  material  into  integrated  wholes,  each  of  which  functions  as  one  chunk.    Secondary  memory,  also  known  as  long-­‐term  memory,  comes  in  several  distinct  varieties.  Memory  for  general  knowledge  is  apparently  stored  differently  from  memory  for  personal  events  of  one's  life.  There  are  at  least  two  types  of  general  knowledge  derived  from  repeated  experiences:  declarative  knowledge  and  procedural  knowledge.      Memory  for  factual  information  is  stored  differently  from  memory  for  procedures.  Memory  that  requires  conscious  processing  (explicit  memory)  is  easier  to  disrupt  than  automatic  (implicit)  memory.