30

Editedbydownload.e-bookshelf.de/download/0003/0679/96/L-G...NMTC Soorstr.86 14050Berlin Germany Prof.Hans-JorgFecht¨ UniversityofUlm Inst.Micro&Nanomaterials Albert-Einstein-Allee47

  • Upload
    leminh

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Edited by

Marcel Van de Voorde,

MatthiasWerner, and

Hans-Jorg Fecht

The Nano-Micro Interface

Volume 1

Edited by

Marcel Van de Voorde,

MatthiasWerner, and

Hans-Jorg Fecht

The Nano-Micro Interface

Volume 2

Related Titles

Tomczyk, M.

NanoInnovation

What Every Manager Needs to Know

2015

Print ISBN: 978-3-527-32672-3

Tao, F., Schneider, W.A., Kamat, P.V. (eds.)

Heterogeneous Catalysis at

Nanoscale for Energy

Applications

2014

Print ISBN: 978-0-470-95260-3

Waser, R. (ed.)

Nanoelectronics and

Information TechnologyAdvanced Electronic Materials and Novel

Devices

3rd Edition

2012

Print ISBN: 978-3-527-40927-3

van Tendeloo, G., van Dyck, D., Pennycook,

S.J. (eds.)

Handbook of Nanoscopy

2012

Print ISBN: 978-3-527-31706-6

Mukhopadhyay, S. (ed.)

Nanoscale Multifunctional

Materials

Science and Applications

2012

Print ISBN: 978-0-470-50891-6

Hanbücken, M., Müller, P., Wehrspohn, R.B.

(eds.)

Mechanical Stress on the

NanoscaleSimulation, Material Systems and

Characterization Techniques

2012

Print ISBN: 978-3-527-41066-8

Pagliaro, M.

Nano-AgeHow Nanotechnology Changes our

Future

2010

Print ISBN: 978-3-527-32676-1

Edited by

Marcel Van de Voorde, MatthiasWerner, and Hans-Jorg Fecht

The Nano-Micro Interface

Bridging the Micro and Nano Worlds

Volume 1

Second Edition

Edited by

Marcel Van de Voorde, MatthiasWerner, and Hans-Jorg Fecht

The Nano-Micro Interface

Bridging the Micro and Nano Worlds

Volume 2

Second Edition

Editors

Prof. Marcel Van de Voorde

TU Delft

Fac. Techn. Natuurwetenschappen

Eeuwige Laan, 33

1861 CL Bergen

The Netherlands

Dr. Matthias Werner

NMTC

Soorstr. 86

14050 Berlin

Germany

Prof. Hans-Jorg Fecht

University of Ulm

Inst. Micro & Nanomaterials

Albert-Einstein-Allee 47

89081 Ulm

Germany

All books published by Wiley-VCH are

carefully produced. Nevertheless, authors,

editors, and publisher do not warrant the

information contained in these books,

including this book, to be free of errors.

Readers are advised to keep in mind that

statements, data, illustrations, procedural

details or other items may inadvertently

be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication

Data

A catalogue record for this book is avail-

able from the British Library.

Bibliographic information published by the

Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this

publication in the Deutsche Nationalbib-

liografie; detailed bibliographic data are

available on the Internet at <http://

dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co.

KGaA, Boschstr. 12, 69469 Weinheim,

Germany

All rights reserved (including those of

translation into other languages). No part

of this book may be reproduced in any

form – by photoprinting, microfilm, or

any other means – nor transmitted or

translated into a machine language with-

out written permission from the publish-

ers. Registered names, trademarks, etc.

used in this book, even when not specif-

ically marked as such, are not to be con-

sidered unprotected by law.

Print ISBN: 978-3-527-33633-3

ePDF ISBN: 978-3-527-67922-5

ePub ISBN: 978-3-527-67921-8

Mobi ISBN: 978-3-527-67920-1

oBook ISBN: 978-3-527-67919-5

Cover Design Adam Design, Weinheim,

Germany

Typesetting Laserwords Private Limited,

Chennai, India

Printing and Binding Markono Print

Media Pte Ltd, Singapore

Printed on acid-free paper

V

Contents

Volume 1

Foreword XV

Acknowledgment XVII

List of Contributors XIX

Introduction XXVII

Part I Nanotechnology Research Funding and Commercialization

Prospects – Political, Social and Economic Context for the Science and

Application of Nanotechnology 1

1 A European Strategy for Micro- and Nanoelectronic Components

and Systems 3

Neelie Kroes

1.1 Introduction 3

1.2 Why are Micro- and Nanoelectronics Essential for Europe? 4

1.2.1 An Important Industry with a Significant Potential for Growth and a

Massive Economic Footprint 4

1.2.2 A Key Technology for Addressing the Societal Challenges 4

1.3 A Changing Industrial Landscape for Micro-

and Nanoelectronics 5

1.3.1 Technology Progress Opens New Opportunities 5

1.3.2 Escalating R&D&I Costs and a More Competitive R&D&I

Environment 5

1.3.3 New Business and Production Models 6

1.3.4 Equipment Manufacturers Own Key Elements of the Value Chain 7

1.4 Europe’s Strengths and Weaknesses 7

1.4.1 Industry Structured around Centers of Excellence and Wider Supply

Chains Covering all Europe 7

1.4.2 Leading in Essential Vertical Markets, Almost Absent in Some Large

Segments 8

1.4.3 Undisputed European Leadership in Materials and Equipment 8

VI Contents

1.4.4 Investments of EU Companies Remain Relatively Modest 9

1.5 European Efforts So Far 9

1.5.1 Regional and National Efforts Reinforcing the Clusters

of Excellence 9

1.5.2 A Growing and More Coordinated Investment in R&D&I

at EU Level 9

1.5.3 Technology Breakthroughs but Gaps in the Innovation Chain 10

1.6 TheWay Forward – A European Industrial Strategy 10

1.6.1 Objective: Reverse the Decline of EU’s Share of World’s Supply 10

1.6.2 Focus on Europe’s Strengths, Build on and Reinforce Europe’s

Leading Clusters 11

1.6.3 Seize Opportunities Arising in Non-conventional Fields and Support

SMEs Growth 11

1.7 The Actions 12

1.7.1 Towards a European Strategic Roadmap for Investment

in the Field 12

1.7.2 The Joint Technology Initiative: A Tripartite Model for Large-Scale

Projects 13

1.7.3 Building on and Supporting Horizontal Competitiveness

Measures 15

1.7.4 International Dimension 15

1.8 Conclusions 16

Annex 1.A 16

References 17

2 Governmental Strategy for the Support of Nanotechnology

in Germany 19

Gerd Bachmann and Leif Brand

2.1 Introduction 19

2.2 Future Options 20

2.3 From Basic Science Funding to the Nanotechnology Action Plan 21

2.4 Funding Situation 2011 24

2.5 Patent Applications in Nanotechnology: An International

Comparison 24

2.6 Innovation Accompanying Measures 27

2.6.1 Outreach and Citizen Dialogues 27

2.6.2 Chances – Risks Communication 28

2.6.3 Database for Nanomaterials 28

2.6.4 Education 29

2.7 Involved Organizations 30

2.8 Cooperation of the Governmental Bodies 31

2.9 International Cooperation 32

2.9.1 Research Marketing 33

2.9.2 Activities within the Framework of the European Union 33

Contents VII

2.10 Activities within the Framework of the Organization for Economic

Cooperation and Development (OECD) 34

References 34

3 Overview on Nanotechnology R&D and Commercialization in the Asia

Pacific Region 37

Lerwen Liu

3.1 Introduction 37

3.2 Public Investments 40

3.3 Infrastructure 45

3.4 R&D and Commercialization 48

3.5 Nanosafety, Standardization, and Education 51

3.6 Summary 52

Glossary 52

References 53

4 Near-Industrialization Nanotechnologies Developed in JST’s

Nanomanufacturing Research Area in Japan 55

Yasuhiro Horiike

4.1 Introduction 55

4.2 Utilization of Ionic Liquids Under Vacuum Conditions

for Nanoparticle Production and Electron Microscopic Studies 57

4.2.1 Introduction 57

4.2.2 Production of Metal Nanoparticles by Sputtering Instrument 57

4.2.3 Electron Microscopic Studies of Biopsy Specimens Using IL 58

4.2.4 Conclusion 59

4.3 Solution Plasma Process: An Emerging Technology for Nanoparticles

Synthesis 60

4.3.1 Solution Plasma Process 60

4.3.2 Synthesis of Carbon Nanoparticles and Its Application

in Electrochemistry 61

4.3.3 Conclusion 61

4.4 2D Inorganic Nanosheets 62

4.4.1 Background 62

4.4.2 Synthesis of Titanium Oxide Nanosheets 63

4.4.3 Production of TiO2 Particulates in Novel Shapes andTheir

Commercialization 64

4.4.4 Fabrication of Nanostructured Films andTheir Applications 64

4.4.5 Conclusion 65

4.5 Ultimate Separation of SWCNT and Its Application to Novel

Electonic Devices 66

4.5.1 Research Background 66

4.5.2 Production of 2G-SWCNT and Its Applications 66

4.5.3 Conclusion 69

4.6 Development of Liquid Crystalline Organic Semiconductors 69

VIII Contents

4.6.1 Historical Background 69

4.6.2 Research Project 69

4.6.3 Conclusion 72

4.7 Polymeric Micelles for Cancer Therapy 72

4.7.1 Background and Present Status 72

4.7.2 Polymeric Micelles as Nanocarriers 72

4.7.3 Perspectives to Industrialization 73

4.7.4 Conclusions 74

4.8 Nanoparticulate Vaccine Adjuvants and Delivery Systems 75

4.8.1 Introduction 75

4.8.2 The Role of Nanotechnology in Vaccine Developments 75

4.8.3 Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery

Systems 76

4.8.4 Clinical Application of Particulate Vaccine Adjuvants 77

4.8.5 Conclusions 77

References 77

5 Quo Vadis Nanotechnology? 79

Witold Łojkowski, Hans-Jörg Fecht, and Anna Swiderska Sroda

5.1 Introduction 79

5.2 What is Nanotechnology? 80

5.3 Quo Vadis Nanotechnology – In Academia? 82

5.4 Quo Vadis Nanotechnology – In Industry Eyes? 85

5.5 Quo Vadis Nanotechnology – In Governments’ and Funding

Agencies’ Eyes? 86

5.6 Quo Vadis Nanotechnology – In the World of Regulations, Laws

and Standards? 87

5.7 Quo Vadis Nanotechnology – In Society’s Eyes? 89

5.8 Effect of Education on Nanotechnology Development 90

5.9 Conclusions 91

5.10 Limitations of the Chapter 93

Acknowledgements 93

References 93

Part II Development of Micro and Nanotechnologies 95

6 Micro/Nanoroughness Structures on Superhydrophobic Polymer

Surfaces 97

Jared J. Victor, Uwe Erb, and Gino Palumbo

6.1 Introduction 97

6.2 Superhydrophobic Surfaces in Nature – The Lotus Effect 98

6.3 Basic Wetting Properties 99

6.4 Advanced Wetting Properties 100

6.5 Aspen Leaves as a Biological Blueprint 101

6.6 Template Design 103

Contents IX

6.7 Polymer Pressing 107

6.8 Process Scalability 109

6.9 Conclusions 111

Acknowledgments 112

References 112

7 Multisensor Metrology Bridging the Gap to the Nanometer – New

Measurement Requirements and Solutions in Wafer-Based

Production 115

Thomas Fries

7.1 Unflexible Metrology Solutions are Inefficient 115

7.2 The Solution is Named Multisensor Metrology 116

7.3 Basic Setup of a Multisensor Metrology Tool 118

7.4 Different Measuring Technologies Available 118

7.5 Metrology on Wafers has Reached theThird Dimension 123

7.6 Roughness Measurement 124

7.7 Geometrical Data – TTV, Bow, Warp, and So On 124

7.8 Nanotopography 128

7.9 TSV Measurement 130

7.10 FilmThickness and Stack Layer Thickness 132

7.11 Summary 133

References 134

8 Nanostructural Metallic Materials – Nanoengineering and

Nanomanufacturing 135

Michael E. Fitzpatrick, Francisca G. Caballero, andMarcel H. Van de Voorde

8.1 Introduction 135

8.2 Nanometallics and Nanomaterials 136

8.2.1 Nanomaterials Science and Engineering 136

8.2.2 Nanocrystalline and Nanostructured Metals 137

8.3 Production and Manufacturing of Nanometallic Materials 139

8.3.1 Processing Routes for Nanometallic Materials 139

8.3.2 Primary Production 140

8.3.3 Secondary Processing 141

8.3.4 Nanoengineering in the Modern Steel Industry 142

8.3.5 Metal Matrix Nanocomposites 145

8.3.6 The Future of Nanometallic Materials 145

8.4 Nanomaterials Engineering – Issues and Properties 146

8.4.1 Mechanical Properties of Materials and Assemblies 147

8.4.2 Joining of Nanometallic Materials 147

8.4.3 Characterization of Properties under Operating Conditions 148

8.4.4 Design Principle for Nanotechnology Engineering 149

8.5 Analytical Techniques for the Study of Nano-

and Micromechanics 149

8.5.1 Neutron and Synchroton X-Ray Techniques 151

X Contents

8.5.2 In situ and Environmental Testing of Materials

and Components 154

8.6 Summary and Future Trends 154

Acknowledgments 155

References 156

9 Bulk Metallic Glass in Micro to Nano Length Scale Applications 159

Jan Schroers and Golden Kumar

9.1 Introduction 159

9.2 Bulk Metallic Glasses 159

9.2.1 Size-Dependent Properties of a BMG 160

9.3 Processing of BMGs 162

9.3.1 Mold Materials 164

9.3.2 Micromolding Process 166

9.3.3 Mold Filling Kinetics 166

9.4 Surface Patterning 170

9.5 3D Microparts 175

9.6 Surface Finish 179

9.7 Conclusions and Outlook 181

Acknowledgments 182

References 183

10 From Oxide Particles to Nanoceramics: Processes

and Applications 189

Jean-François Hochepied

10.1 Introduction 189

10.2 Solution Chemistry Processes for Oxide Nanoparticles Usable

for Nanoceramics 189

10.3 Dense Nanoceramics 193

10.3.1 Monophased Nanoceramics 194

10.3.1.1 Processes 194

10.3.1.2 Properties 195

10.3.2 Multiphased Oxide Nanoceramics 197

10.3.2.1 Multiferroic Nanoceramics Composites 197

10.4 Porous Ceramics 199

10.4.1 Random Porosity 199

10.4.1.1 Fuel Cells 199

10.4.1.2 Ceramic Membranes for Water Treatment 201

10.4.1.3 Ordered and Hierarchical Porosity 201

10.5 Conclusion and Perspectives 202

References 202

Contents XI

Part III Nanoelectronics and System Integration 205

11 Creating Tomorrow’s Applications through Deeper Collaboration

between Technology and Design 207

Jan Provoost, Diederik Verkest, and Gilbert Declerck

11.1 Introduction 207

11.2 A Holistic Approach – Imec’s INSITE Program 208

11.3 Bottom-Up – Designing Tomorrow’s Manufacturable

Technology 210

11.3.1 Modelling the Cost of Future Technology with and without EUV

Lithography 211

11.3.2 Developing PDKs and Test Chips for Advanced Nodes 212

11.3.3 Looking for Optimal SRAMMemory Cells 213

11.3.4 Designing Sophisticated 3D Test Chips 214

11.3.5 Optical Data Paths Between and on Chips 215

11.3.6 New Materials and Transistors for Next-Generation Chips 216

11.4 Top-Down – Designing Future Nanoelectronic Applications 217

11.4.1 Designing a New Toolbox for the Life Sciences 218

11.4.1.1 The Vision 218

11.4.1.2 A Tool to Detect Circulating Tumor Cells 218

11.4.2 Designing Next-Generation Wireless Radios 219

11.4.2.1 The Vision 219

11.4.2.2 SCALDIO: A Highly Reconfigurable Radio Transceiver 220

11.4.3 Designing a Microsized Hyperspectral Camera 221

11.4.3.1 The Vision 221

11.4.3.2 The Challenge: A Mass-Produced, Microsized HSI 221

11.5 Conclusion 222

References 223

12 Multiwalled Carbon Nanotube Network-Based Sensors and Electronic

Devices 225

Wolfgang R. Fahrner, Giovanni Landi, Raffaele Di Giacomo,

and Heinz C. Neitzert

12.1 Introduction 225

12.2 CNN without Matrix 226

12.3 Crystalline Silicon/Polymer Heterojunctions with and without CNTs

for Applications as Diodes, Solar Cells, and Electrical

Memories 230

12.3.1 PEDOT:PSS with and without CNTs on Crystalline Silicon

for Photovoltaic Applications 230

12.3.2 PMMA with MWCNTs on c-Si Heterodiodes 233

12.3.3 Polymerized Oxadiazole/Crystalline Silicon Heterojunction as

Electrical Memory Element 234

12.4 Bio-Nanocomposites with CNTs and Fungal Cells with Sensing

Capability 236

XII Contents

12.5 Conclusions 238

Acknowledgments 239

References 239

13 Thin Film Piezomaterials for Bulk Acoustic Wave Technology 243

Jyrki Molarius, Tommi Riekkinen, Martin Kulawski, andMarkku Ylilammi

13.1 Introduction 243

13.2 Zinc Oxide (ZnO) 244

13.3 Aluminum Nitride (AIN) 252

13.3.1 Layer Transfer Method 256

13.4 Scandium-Alloyed Aluminum Nitride (Sc:AIN) 257

13.5 Lead Zirconate Titanate (PZT) 261

13.6 Lead-Free Piezoelectric Materials 262

13.7 Future Trends and Applications 263

13.8 Conclusions 264

Acknowledgments 265

References 265

14 Properties and Applications of Ferroelectrets 271

Xunlin Qiu, Dmitry Rychkov, andWernerWirges

14.1 Introduction 271

14.2 Preparation of Polymer Foams or Void-Containing Polymer

Systems 272

14.2.1 Polymer Foams 272

14.2.2 Void-Containing Polymer Systems 274

14.3 Charging Process 276

14.3.1 Dielectric Barrier Discharges in Cavities 276

14.3.2 Polarization versus Electric-Field Hysteresis 277

14.4 Piezoelectricity of Ferroelectrets and its Stability 278

14.5 Applications 280

14.5.1 Concept for Focusing Ultrasound 281

14.5.2 Ferroelectret Microphone 282

14.5.3 Control Panels and Keyboards 283

14.6 Conclusions 284

References 285

Contents XIII

Volume 2

Foreword XVII

Acknowledgment XIX

List of Contributors XXI

Introduction XXIX

Part IV Biomedical Technologies and Nanomedicine 289

15 Translational Medicine: Nanoscience and Nanotechnology to Improve

Patient Care 291

Bert Müller, Andreas Zumbuehl, Martin A. Walter, Thomas Pfohl, Philippe C.

Cattin, Jörg Huwyler, and Simone E. Hieber

16 Nanotechnology Advances in Diagnostics, Drug Delivery,

and Regenerative Medicine 311

Costas Kiparissides and Olga Kammona

17 Biofunctional Surfaces 341

Wolfgang Knoll, Amal Kasry, and Jakub Dostalek

18 Biomimetic Hierarchies in Diamond-Based Architectures 363

Andrei P. Sommer, MatthiasWiora, and Hans-Jörg Fecht

Part V Energy andMobility 381

19 Nanotechnology in Energy Technology 383

Baldev Raj, U. Kamachi Mudali, John Philip, and SitaramDash

20 The Impact of Nanoscience in Heterogeneous Catalysis 405

Sharifah Bee Abd Hamid and Robert Schlögl

21 Processing of Nanoporous and Dense Thin Film Ceramic

Membranes 431

Tim Van Gestel and Hans Peter Buchkremer

22 Nanotechnology and Nanoelectronics for Automotive

Applications 459

MatthiasWerner, Vili Igel, andWolfgangWondrak

Part VI Process Controls and Analytical Techniques 473

23 Characterization of Nanostructured Materials 475

Alison Crossley and Colin Johnston

XIV Contents

24 Surface Chemical Analysis of Nanoparticles for Industrial

Applications 499

Marie-Isabelle Baraton

25 Nanometer-Scale View of the Electrified Interface: A Scanning Probe

Microscopy Study 537

Peter Muller, Laura Rossi, Santos F. Alvarado

Part VII Creative Strategies Connecting Nanomaterials to the

Macroscale World 551

26 Nanostructured Cement and Concrete 553

Henning Zoz, Reinhard Trettin, Birgit Funk, and Deniz Yigit

27 Hydrogen and Electromobility Agenda 567

Henning Zoz and Andreas Franz

28 Size Effects in Nanomaterials and Their Use in Creating Architectured

Structural Metamaterials 583

Seok-Woo Lee and Julia R. Greer

29 Position and Vision of Small- and Medium-Sized Enterprises Boosting

Commercialization 599

Torsten Schmidt, Nadine Teusler, and Andreas Baar

30 Optical Elements for EUV Lithography and X-ray Optics 613

Stefan Braun and Andreas Leson

31 Industrial Production of Nanomaterials with Grinding

Technologies 629

StefanMende

32 Guidelines for Safe Operation with Nanomaterials 647

IwonaMalka, Marcin Jurewicz, Anna Swiderska-Sroda, Joanna Sobczyk,

Witold Łojkowski, Sonja Hartl, and Andreas Falk

Part VIII Visions for the Future 677

33 Industrialization – Large-Scale Production

of Nanomaterials/Components 679

Marcel Van deVoorde

Index 685

V

Contents

Volume 1

List of Contributors XV

Foreword XXIII

Acknowledgment XXV

Introduction XXVII

Part I Nanotechnology Research Funding and Commercialization

Prospects – Political, Social and Economic Context for the Science and

Application of Nanotechnology 1

1 A European Strategy for Micro- and Nanoelectronic Components

and Systems 3

Neelie Kroes

2 Governmental Strategy for the Support of Nanotechnology

in Germany 19

Gerd Bachmann and Leif Brand

3 Overview on Nanotechnology R&D and Commercialization in the Asia

Pacific Region 37

Lerwen Liu

4 Near-Industrialization Nanotechnologies Developed in JST’s

Nanomanufacturing Research Area in Japan 55

Yasuhiro Horiike

5 Quo Vadis Nanotechnology? 79

Witold Łojkowski, Hans-Jörg Fecht, and Anna Swiderska Sroda

VI Contents

Part II Development of Micro and Nanotechnologies 95

6 Micro/Nanoroughness Structures on Superhydrophobic Polymer

Surfaces 97

Jared J. Victor, Uwe Erb, and Gino Palumbo

7 Multisensor Metrology Bridging the Gap to the Nanometer – New

Measurement Requirements and Solutions in Wafer-Based

Production 115

Thomas Fries

8 Nanostructural Metallic Materials – Nanoengineering and

Nanomanufacturing 135

Michael E. Fitzpatrick, Francisca G. Caballero, andMarcel H. Van de Voorde

9 Bulk Metallic Glass in Micro to Nano Length Scale Applications 159

Jan Schroers and Golden Kumar

10 From Oxide Particles to Nanoceramics: Processes

and Applications 189

Jean-François Hochepied

Part III Nanoelectronics and System Integration 205

11 Creating Tomorrow’s Applications through Deeper Collaboration

Between Technology and Design 207

Jan Provoost, Diederik Verkest, and Gilbert Declerck

12 Multiwalled Carbon Nanotube Network-Based Sensors and Electronic

Devices 225

Wolfgang R. Fahrner, Giovanni Landi, Raffaele Di Giacomo, and Heinz C.

Neitzert

13 Thin Film Piezomaterials for Bulk Acoustic Wave Technology 243

Jyrki Molarius, Tommi Riekkinen, Martin Kulawski, andMarkku Ylilammi

14 Properties and Applications of Ferroelectrets 271

Xunlin Qiu, Dmitry Rychkov, andWernerWirges

Volume 2

List of Contributors XVII

Foreword XXV

Acknowledgment XXVII

Introduction XXIX

Contents VII

Part IV Biomedical Technologies and Nanomedicine 289

15 Translational Medicine: Nanoscience and Nanotechnology to Improve

Patient Care 291

Bert Müller, Andreas Zumbuehl, Martin A. Walter, Thomas Pfohl, Philippe C.

Cattin, Jörg Huwyler, and Simone E. Hieber

15.1 Introduction 291

15.2 Nanoanatomy 294

15.3 Nanorepair 297

15.4 Nanoorthopedics 297

15.5 Nanovesicles 299

15.6 Nanodentistry 301

15.7 Interactions of Disciplines in Nanomedicine 302

Acknowledgements 303

References 303

16 Nanotechnology Advances in Diagnostics, Drug Delivery,

and Regenerative Medicine 311

Costas Kiparissides and Olga Kammona

16.1 Introduction 311

16.2 Diagnostics 311

16.2.1 In vitro Diagnostics 312

16.2.2 In vivo Diagnostics 314

16.3 Drug Delivery 316

16.3.1 Nanocarrier-Based DDSs 316

16.3.2 Novel Design Considerations 323

16.3.3 Theranostics 324

16.3.4 Administration Routes 325

16.4 Regenerative Medicine 328

16.4.1 Tissue Engineering 329

16.4.2 Cell Therapies 331

16.5 Personalized Medicine 333

16.6 Conclusions – Future Challenges 334

References 335

17 Biofunctional Surfaces 341

Wolfgang Knoll, Amal Kasry, and Jakub Dostalek

17.1 Introduction 341

17.2 Supramolecularly Controlled Oligonucleotide Architectures for PCR

(DNA Amplicon) Biosensing 344

17.3 Polymer Brushes for the Ultrasensitive Detection of Antibodies 349

17.4 Monitoring Bacteria Binding to Functional Surfaces 352

17.5 The t-BLM: A Novel Model Membrane Platform 355

17.6 Conclusions 359

VIII Contents

Acknowledgments 360

References 360

18 Biomimetic Hierarchies in Diamond-Based Architectures 363

Andrei P. Sommer, MatthiasWiora, and Hans-Jörg Fecht

18.1 Introduction 363

18.2 Biocompatibility Derived from Biomimetic Principles

and Nanoscopic Interfacial Water 364

18.3 Design and Fabrication of Biomimetic Diamond Layers 367

18.4 Precursor of the 3D Diamond Petri Dish 370

18.5 Biocompatibility of Biomimetic Surfaces 373

18.5.1 Surface Mechanical Properties at Nanoscale 375

18.5.2 Bottom Up–Top Down 376

18.6 Conclusions 377

References 378

Part V Energy andMobility 381

19 Nanotechnology in Energy Technology 383

Baldev Raj, U. Kamachi Mudali, John Philip, and SitaramDash

19.1 Introduction 383

19.2 Nanofluids for Efficient Cooling of Miniature Devices 386

19.3 Nanofluid-Based Optical Sensors 388

19.4 Intelligent Coatings for Corrosion Mitigation 389

19.4.1 Synthesis of Nanocontainers 389

19.4.2 Preparation of Hybrid Coatings 390

19.4.3 Protective Properties of Coatings 391

19.4.4 Superhydrophobic Engineering Surfaces for Corrosion

Mitigation 392

19.4.5 Superhydrophobic Surface Modification 393

19.4.6 Superhydrophobic Surfaces with Enhanced Corrosion

Resistance 394

19.5 Nano-structured Coatings for Energy Technologies 395

19.5.1 Studies on Titanium Aluminum Nitride (TiAlN) 395

19.5.2 Oxidation-Resistant Hard Coatings 397

19.6 Super-Low Friction Ultrananocrystalline Diamond Films 398

19.7 Conclusions 399

Acknowledgements 400

References 400

20 The Impact of Nanoscience in Heterogeneous Catalysis 405

Sharifah Bee Abd Hamid and Robert Schlögl

20.1 Introduction 405

20.2 Nanocatalysis 408

20.3 Nano in Catalysis 409

Contents IX

20.4 Electronic Structure and Catalysis 411

20.5 Geometric Structure and Catalysis 411

20.6 Large Nano-objects in Catalysis 415

20.7 Nanostructured Carbons 415

20.8 The “Semiconductor” Approach 419

20.9 The Combicat Approach 420

20.10 Conclusions 423

References 424

21 Processing of Nanoporous and Dense Thin Film Ceramic

Membranes 431

Tim Van Gestel and Hans Peter Buchkremer

21.1 Introduction 431

21.1.1 General 431

21.1.2 Ceramic Gas Separation Membranes 433

21.1.3 Thin Film Solid Oxide Fuel Cells 434

21.2 Synthesis and Coating Methods 435

21.2.1 Porous Support Materials 435

21.2.2 Formation of Thin Films and Membranes 436

21.2.3 Synthesis of Coating Liquids 436

21.3 Examples of Mesoporous, Microporous, and DenseThin Film

Membranes 440

21.3.1 Mesoporous Membranes 440

21.3.1.1 γ-Al2O3 Membranes 440

21.3.1.2 ZrO2 Membranes 441

21.3.2 Microporous Membranes 444

21.3.2.1 SiO2 Microporous Membrane for H2 Purification 444

21.3.2.2 Doped SiO2 Membranes for H2 Purification 445

21.3.2.3 Microporous Hybrid Membranes for CO2 Purification 446

21.3.3 DenseThin Film 8YSZ Membranes 449

21.4 Summary and Additional Comments 452

References 453

22 Nanotechnology and Nanoelectronics for Automotive

Applications 459

MatthiasWerner, Vili Igel, andWolfgangWondrak

22.1 Introduction 459

22.2 Effects andTheir Application Potential 459

22.3 State of the Art and Future Development of Nanoelectronics 460

22.3.1 Down-Scaling and Its Limits 460

22.3.2 Nanoelectronic Approaches 462

22.3.2.1 Crossbar Structures with Carbon Nanotubes 463

22.3.2.2 Spintronics 463

22.3.2.3 Magnetoresistive Memories 463

22.3.2.4 Single-Electron Tunneling (SET) 463

X Contents

22.3.2.5 RTDs (Resonant Tunneling Diodes) 463

22.3.2.6 Wide Bandgap Devices 464

22.3.3 Comparison of Nanoelectronic Applications 464

22.4 Nanotechnology for Passive Components 464

22.4.1 Li Ion Batteries 465

22.4.2 Supercapacitors as Energy Storage in Hybrid and Electric Cars 465

22.4.2.1 DC Link Capacitors 465

22.5 Assembly Processes in Automotive Electronics 465

22.5.1 CNT Bumps 466

22.5.2 CNT Lawn 466

22.5.3 Solder Pastes with Nanoparticles 466

22.5.4 Silver Sintering 466

22.6 Reliability 467

22.7 Nanotechnology for Sensors, Actuators, and Optics 467

22.7.1 Magneto-Rheological Fluids for Damping Systems 468

22.7.2 Electro-Chrome Coatings for Rear-View Mirrors 468

22.7.3 Transparent Electrodes 468

22.7.4 Magnetic Sensors 468

22.8 Other Applications 469

22.8.1 Filled Nanoglues 469

22.8.2 Nanostructured Catalysts 469

22.8.3 Thermal Management 469

22.9 Outlook 470

References 470

Part VI Process Controls and Analytical Techniques 473

23 Characterization of Nanostructured Materials 475

Alison Crossley and Colin Johnston

23.1 Introduction 475

23.2 Materials on the 1D Nanoscale 477

23.2.1 Atom Probe 478

23.3 Materials on the 2D Nanoscale 480

23.3.1 Raman Spectroscopy 481

23.3.2 Raman Spectroscopy of CNTs 481

23.4 Materials on the 3D Nanoscale 483

23.4.1 Photon-Correlation Spectroscopy (PCS) or Dynamic Light Scattering

(DLS) 487

23.4.2 Separation Methods 488

23.4.2.1 The Basics of Differential Sedimentation 489

23.4.3 Other Important Parameters for Nanoparticle

Characterization 490

23.4.3.1 Zeta Potential 490

23.4.3.2 Surface Area Determination 491

Contents XI

23.5 Conclusions 495

References 495

24 Surface Chemical Analysis of Nanoparticles for Industrial

Applications 499

Marie-Isabelle Baraton

24.1 Introduction 499

24.2 Surface Chemistry of Nanoparticles 500

24.2.1 Importance of the Surface in Nanoparticle Properties 500

24.2.2 Characterization of Nanoparticles: Needs and Challenges 501

24.2.3 Relevance of the Surface Characterization for Industrial Applications

of Nanoparticles 503

24.2.3.1 Biomedical Applications 505

24.2.3.2 Electrical Properties 505

24.2.3.3 Energy Applications 506

24.2.3.4 Environmental Applications: Catalysis, Photocatalysis, Gas

Sensors 506

24.2.3.5 Other Properties and Applications 507

24.3 Analytical Instruments for Surface Characterization 507

24.3.1 Challenges in Surface Analysis of Nanoparticles 507

24.3.2 Techniques for Surface Analysis 508

24.3.2.1 Photoelectron Spectroscopy: X-Ray Photoelectron Spectroscopy

(XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) 509

24.3.2.2 Auger Electron Spectroscopy (AES) 509

24.3.2.3 Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) 510

24.3.2.4 Scanning Probe Microscopy: Atomic Force Microscopy (AFM)

and Scanning Tunneling Microscopy (STM) 510

24.3.2.5 Low-Energy Ion Scattering (LEIS) 511

24.3.2.6 Other Techniques for Surface Analysis 511

24.4 Fourier Transform Infrared (FTIR) Spectroscopy 512

24.4.1 Background 512

24.4.2 Surface Characterization of Nanoparticles by FTIR Spectroscopy:

Some Examples 514

24.4.2.1 Comparison of Silicon Nitride (Si3N4) and Silicon Carbide (SiC)

Surfaces 514

24.4.2.2 Comparison of Alumina (Al2O3) and Aluminum Nitride (AlN)

Surfaces 515

24.4.2.3 Comparison of Differently Synthesized Boron Nitride (BN) 515

24.4.2.4 Comparison of Differently Synthesized Titanium Dioxide

(TiO2) 516

24.4.3 Surface Functionalization of Nanoparticles 518

24.4.4 Surface Study of Semiconductor Nanoparticles 519

24.4.4.1 Drude-Zener Theory 519

24.4.4.2 Application to the Functionalization of Semiconductor

Nanoparticles 520

XII Contents

24.4.4.3 Applications to Chemical Gas Sensors Based on Semiconductor

Nanoparticles 521

24.5 Conclusions 523

24.6 Annex: Nanomaterials, Nanotechnology, and “Nanotools” 524

24.6.1 Nanomaterial and Nanoparticle: Definition 524

24.6.2 Markets for Nanotechnology, Nanoparticles, and “Nanotools” 525

Acknowledgments 527

References 527

25 Nanometer-Scale View of the Electrified Interface: A Scanning Probe

Microscopy Study 537

Peter Muller, Laura Rossi, Santos F. Alvarado

25.1 Introduction 537

25.2 STM z–V Spectroscopy 538

25.3 Experimental Details 543

25.3.1 Alq3 Thin Films on Au(1 1 1) 543

25.3.2 CuPcThin Films on Au(1 1 1) 544

25.4 Concluding Remarks 546

Acknowledgments 547

References 547

Part VII Creative Strategies Connecting Nanomaterials to the

Macroscale World 551

26 Nanostructured Cement and Concrete 553

Henning Zoz, Reinhard Trettin, Birgit Funk, and Deniz Yigit

26.1 Introduction 553

26.2 Innovation and Performance 554

26.3 Costs/Benefits, Hard Facts 557

26.4 CO2-Savings in Figures and Non-Cash Benefits 558

26.5 National and Global Importance 560

26.6 Market and Ready-to-Market 560

26.7 Realization and Planning 561

26.8 Benefits for the Construction Industry, FuturZement versus

HPPC 563

Acknowledgments 565

References 565

27 Hydrogen and Electromobility Agenda 567

Henning Zoz and Andreas Franz

27.1 Introduction 567

27.2 H2Tank2Go®and isigo®H2.0 569

27.3 The H2-OnAir+ Project, “Iron Bird,” and Economical Fuel Cells 571

27.3.1 So What Is H2-OnAir+? 572

27.3.1.1 The Case for Including Fuel Cell Development intoThis Project 575

Contents XIII

27.4 Zoz ZEV Fleet and Project “REMONET” 577

27.5 Power to Gas to Fuel 578

28 Size Effects in Nanomaterials and Their Use in Creating Architectured

Structural Metamaterials 583

Seok-Woo Lee and Julia R. Greer

28.1 Introduction 583

28.2 Size Matters: Mechanical Behavior at Nanoscale 584

28.2.1 Smaller is Stronger in Single Crystalline Metals 584

28.2.2 Smaller is Weaker in Nanocrystalline Metals 588

28.2.3 Emergence of Ductility in Nanometer-Sized Metallic Glasses 590

28.3 Capturing Size Effects and UsingThem in Developing

Three-Dimensional Hierarchical Metamaterials 593

References 597

29 Position and Vision of Small- and Medium-Sized Enterprises Boosting

Commercialization 599

Torsten Schmidt, Nadine Teusler, and Andreas Baar

29.1 Challenges for SME in Nano-Industrialization: A Case Study 599

29.2 Scope 600

29.3 Four Propositions 602

29.3.1 Proposition 1: Cooperation in Large Industry Customer-Supplier

Networks Allows SMEs to Launch New Product Ideas

Successfully 602

29.3.2 Proposition 2: Packaging the Innovation into a Solution for the

Global Market is a Key Success Factor in SMEs 604

29.3.3 Proposition 3: Competencies of SMEs and Research Institutions are

Complementary Rather than Competing 605

29.3.4 Proposition 4: Suitable Networks Provide Special Skill Sets for

Assuring Access to Partnering SMEs, Universities, and Public

Funding 608

29.4 Summary and Future Outlook 609

29.5 The Authors 610

References 610

30 Optical Elements for EUV Lithography and X-ray Optics 613

Stefan Braun and Andreas Leson

30.1 Development and Trends in Microelectronics 613

30.2 Optics for EUV Applications 614

30.3 Fabrication and Characterization of EUV and X-ray Multilayer

Mirrors 616

30.3.1 Multilayer Fabrication 616

30.3.2 Multilayer Characterization 618

30.4 Latest Developments in the Field of EUVMirrors 621

30.4.1 EUVMirrors with Reduced Reflectance for IR Radiation 621

XIV Contents

30.4.2 Broadband EUVMirrors 621

30.5 Multilayers as Nano-Focusing Optics for X-ray Microscopy 622

30.6 Summary and Outlook 624

References 625

31 Industrial Production of Nanomaterials with Grinding

Technologies 629

StefanMende

31.1 Introduction 629

31.2 Wet Grinding in Agitator Bead Mills 629

31.2.1 Development of Agitator Bead Mills 629

31.2.2 Advantages of Wet Grinding Processes 631

31.2.3 Basic Setup of an Agitator Bead Mill 631

31.2.4 Influence of Operating Parameters 632

31.3 Real Comminution in Agitator Bead Mills 633

31.3.1 Influence of the Grinding Media Diameter and the Stirrer Tip

Speed 634

31.3.2 Concept of Energy Transfer and Energy Utilization 635

31.3.3 Real Comminution of Titanium Dioxide (TiO2) 637

31.4 Mild Dispersion 638

31.4.1 Desagglomeration of Titanium Dioxide 640

31.4.2 Desagglomeration of Barium Titanate (BaTiO3) 642

31.4.3 Desaggregation of Zinc Oxide 643

31.5 Conclusions 644

References 645

32 Guidelines for Safe Operation with Nanomaterials 647

IwonaMalka, Marcin Jurewicz, Anna Swiderska-Sroda, Joanna Sobczyk,

Witold Łojkowski, Sonja Hartl, and Andreas Falk

32.1 Introduction 647

32.1.1 Terms and Definitions in Nanotechnology 649

32.1.2 Safety Guidelines for Nanotechnology Development 650

32.2 The Nanomaterials Characterization Methods 652

32.3 Safe Working Condition for Nanotechnology in Industry 652

32.3.1 Nanomaterial SDS 661

32.3.2 Labeling of Nanomaterials 667

32.3.3 International Organizations for Nanomaterials

Standardizations 668

32.4 Nanomaterials Industrialization 670

32.5 Conclusions 671

Acknowledgments 673

Appendix 674

References 674

Contents XV

Part VIII Visions for the Future 677

33 Industrialization – Large-Scale Production of

Nanomaterials/Components 679

Marcel Van deVoorde

33.1 Nanomanufacture and Process Control 679

33.2 Potential Industrial Nanotechnology Sectors 680

33.3 Standardization Procedures 681

33.4 Routes to Commercialization 683

33.5 Looking Ahead 683

Index 685